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Behaviors & all that

A dynamical system &

TCR the time-axis

> = (T,W,3)

W the signal space

24 CWT  the behavior

- afamily of trajectories
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Behaviors & all that

A dynamical system & 2= (T,W,%)

TCR the time-axis today T =R
W the signal space today W = R¥

# CW!'  the behavior - afamily of trajectories

2 = (R,R¥, #) is said to belinear < A is a linear space

time-invariant ;< £ i1s shift-invariant
we ZandtcR = owe XA
o' denotes the ‘shift: (o'w) (t') = w(t’ +1t)

differential ;& £ Is the set of sol'ns of an ODE
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LTID systems

Linear, time-invariant, differential dynamical system«

d d? db
Row+ Ry d2W+ +R|_—W 0

W+ R
d+2
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LTID systems

Linear, time-invariant, differential dynamical system«

d d? db
ROW—l—Rld d2W+ +R|_—W 0

Short-hand notation: introduce polynomial matrix

W+ Ry

R(¢) :RO+R1€—|—R2€2_|_..._|_RLEL ER[f]OXW

R(§)w=0
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LTID systems

Linear, time-invariant, differential dynamical system«

d? d-

d
Row+ R —w+ Ro—w+-- +RL—W 0

dt dt?
Short-hand notation: introduce polynomial matrix
d )y
R(g)w=0
Behavior := all solutions, i.e.

#={we€”R,R") |R(Z)w=0}

% = kernel(R(

Q.lQ_

)) ‘kernel representation’, polynomial type.
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LTID systems

Linear, time-invariant, differential dynamical system«
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Controllability and stabilizability

Let > = (R,R", %) be a time-invariant dynamical system

> IS said to be controllable : &

Vwi,woe A, 4T >0, andw € £ such that ...

W
1

N
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Controllability and stabilizability

Let > = (R,R", %) be a time-invariant dynamical system

> IS said to be controllab

> IS said to be stabilizabl

AN

le (&
e &

Vwe A, W € £ such that ...

>_'55:ffi£lvgﬁtime

W’
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Controllability and stabilizability

Let > = (R,R", %) be a time-invariant dynamical system
2 Is said to be controllable :&

> IS said to be stabilizable &

Theorem: R(&) w = 0 defines acontrollable system<

rank(R(A)) isthe samev A € C

a stabilizable system<«

rank(R(A)) is the samev A € C with real part >0
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’
G(§)w=0
dt

What do we mean by the solutionsi.e. by the behavior?
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Rational representations

Let Ge R (&)*™", and consider the ‘differential equation’
G(§)w=0
dt

What do we mean by the solutionsi.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G

i.e. PQc R[&]***,delP) #0,G =P 1Q,[P: Q] left-prime.

d
G()w=0:s Q(§)w=0

E.g., In scalar case, meanB and Q have no common roots.
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Rational representations
Let (P,Q) be a left coprime polynomial factorization of G

d
G()w=0:s Q(&)w=0

Justification:

1. G proper. G(s) = C(Is— A)~1B+ D controllable realization.
Consider output nulling inputs:

%X:AX—I— Bw, O0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w = 0.

Same for $x= Ax+Bw,0=Cx+D(%)w=0, DeR[E]**".
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Rational representations
Let (P,Q) be a left coprime polynomial factorization of G

d
G()w=0:s Q(&)w=0

Justification:

2. Considery = G(s)u. View G as a transfer f'n.
Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy
G(&)w=0.

3. via Laplace transforms...
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G(&) is not a map!

Consider
d
y=G(g)u
We now know what it means that(u,y) € € (R,R*®) satisfies
this ‘ODE’.

Is there a uniquey for a given u?

d d
P(—)y=Q(—
If P +# | (better, not unimodular), there are many sol’'nsy of

this ODE for a given RHS.
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Representations

Linear time-invariant differential systems % = (R,R", £).
% = kernel(R($)) for someRe R[&]**" by definition .
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someG c R(&)*™" as the definition.
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Representations

Linear time-invariant differential systems % = (R,R", £).
% = kernel(R($)) for someRe R[&]**" by definition .

But we may as well take the representatiorG () w = 0 for

someG c R(&)*™" as the definition.

R: all poles at, we can takeG with no poles ate, or more
generally with all poles in some non-empty set - symmetric
w.r.t. R. In particular:

Theorem: Every linear time-invariant differential systems has
a representation

G () w="0

with G € R (&)**" strictly proper stable rational .

Proof: Take G(s) = >n, suitableA € R,n € N.
— (stA)
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Matrices of rational functions
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Subrings of R (¢)

R (¢ ): real rational functions.

Consider 3 subrings:
1. R[&]: polynomials with real coefficients
2. R(&) ,: proper rational functions

3. R(&) ,: stable proper rational functions
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Subrings of R (¢)

R (&): real rational functions.

Consider 3 subrings:
1. R[&]: polynomials with real coefficients  all poles ateo
2. R(&) ,: proper rational functions no poles atew

3. R(&) ,: stable proper rational functions
no poles in RHP oro

Each of these rings haR () as its field of fractions.

Unimodular elements (invertible in ring)
1. Non-zero constants
2. bi-proper
3. bi-proper and mini-phase
miniphase < poles & zeros in LHP
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R(§)"™"

Matrices over these rings

matrices of real rational functions.

1. R[E]*™*:

2. R(€)

3. R(€)

exe,

«:@ .

exe,

y .

polynomial matrices with real coefficients
matrices of proper rational functions

of stable proper rational functions
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Matrices over these rings

R (&)***: matrices of real rational functions.

1. R[&]*"*: polynomial matrices with real coefficients
unimodular: square & determinant = non-zero constant

2. R(&)%,°: matrices of proper rational functions
unimodular: square & determinant biproper

3. R(&)%,*: of stable proper rational functions
unimodular: square & determinant biproper
and miniphase (poles & zeros in LHP)
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Prime elements

M e R[E]™7"2 is left-prime &
M =FM/F € R[§]™™ M € R[§]"*02
= U Is uni-modular
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Prime elements

M e R[E]™7 "2 is left-prime overR [¢] i<
M =FM/F € R[] ™ M € R[§]"*02
= U is uni-modular over R [¢]

M e R (&)™ is left-prime overR (), <
M=FM FeR(&)L™ MecR(&)L ™
= U is uni-modular overR (¢)

M e R (&) " isleft-prime overR (§) ., i<
M=FM FeR(&)T™ MecR(§)L ™
= U is uni-modular overR (¢ ) .,
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Prime representations & system properties
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Prime representations

Theorem: an LTI differential system admits a representation
d
G|l— |w=0

1. GeR(&)S," left prime over R(§), always

with

2. GERI[&]*™Y left prime over R[€] < itis controllable

3. GER(&)," left prime over R(§) ., < itis stabilizable

The proof of case 3 is not easy!
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Image-like representations

see my website
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Elimination

d d
Gl(dt>W1_Gz<dt>

G1,G, c R(&)*"°. Behavior . Eliminate w, ~»

Consider

A1 = {w1 | 3w such that (wy,w>) € £}

Then A1 Is also a LTID behavior.

In particular

d uxe
w=H (dt)e HeR()

w-behavior is LTID. Image-like representation.
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Representations of controllable systems

Theorem: The following are equivalent for LTID systems
1. % is controllable

2. % admits an image-like representation
w=M (&)¢ with H € R[&]"**

3. % admits an image-like representation
w=H (&) ¢ with H e R(&)"

4. with observabillity (¢ can be deduced fromw) added
5. with M € R[&]"”® right prime over R[£]
6. with H e R(&)%° right prime over R (&) .,
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Relations with classical results

Consider systemy = Gu, GeR(&)P*" ‘transfer function’

d
1=6()"

Automatically controllable!
Only controllable systems covered by tf. f'ns.

Interpret this as

Even if G is I/o unstable or improper, 3 stable kernel- and
Image-like representations!
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Relations with classical results

= G(;)

Even if G is i/o unstable or improper, 3 stable kernel- and
Image-like representations!

o ()7~ (@)

[Gl : (32} ceR (&)%) ° left prime over R (&) ..
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Relations with classical results

= G(;)

Even if G is i/o unstable or improper, 3 stable kernel- and
Image-like representations!

o ()7~ (@)

[Gl : (32} ceR (&)%) ° left prime over R (&) ..

ul _ [Hi(g)

- v [H ()
e R(&)%,° right prime over R(f);ﬁ’.

2




Relations with classical results

= G(;)

G =G Gy =HyH; !

left/right co-prime factorizations over R () ... As overR [£].

Classical, but we obtain the representation

o (a)r= (@)

with {Gl : (32} e R (&)%) ° left prime over R(&) .,

also for stabilzable systems, instead of only controllablenes.
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Why bother with rational rather than just polynomial ‘symbo Is’?

—n. 21/



Why bother with rational rather than just polynomial ‘symbo Is’?

1. Parametrization of all stabilizing controllers
2. Model reduction of behavioral systems
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Unitary representations

It is pedagogically easier to discuss ‘image-like’
representations, hence controllable systems.

Even though it is possible to deal also with ‘kernel-like’

representations. These would only require stabilizabiliy.
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Unitary representations

d
W—G<a>€

IS said to be a unitary representation <
(W 0) € €°(R,R*) andw=G($)¢ =

HWHc%z(R,R’) — H&sz(R,R’)
Easy:
unitary < G'(—s)G(s)=1 VscC

If in addition G is stable rational, then norm preserving on
ogz (R+,R.) .
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Unitary representations
A controllable LTID system admits a unitary representation.

Proof: start with any observable representationw = G () /.
Spectral factor

G'(—s)G(s) =F ' (—s)F(s).

Take G — GF ~1. The representationw = GF 1 (&) ¢ is
unitary. Stability may be added.

This result needs rational symbols - not possible with
polynomial models.
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Distance between two systems

Usually state space systems

d
ax: Ax—+ Bu,y = Cx+ Du

that are moreover stable Balancing, Hankel norm.

Error bound

|G — Greduced| .z, < 2(sum of neglected SV’s

|s stability needed for model reduction
What can be done with behaviors?
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Distance between two systems

In usual input/output approach, the system is (roughly) an
Input/output map.

Then distance between two systems = induced norm of
difference. ~ Fe-NOIMS etc.

But this only makes sense if the maps are bounded.
Requires stability!

How do we measure system approximation if a system is given
as a behavior?
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Distance between two systems

Distance between two LTID behaviors:

Define, for a given%, henceC ¢* (R,R"), the -#-behavior as
LBy = BNLH (R,Rw) :

Easy: % is a linear subspace of% (R,R¥) . Take closure.
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Distance between two systems

Distance between two LTID behaviors:
Define, for a given%, henceC ¢* (R,R"), the -#-behavior as
By = BN L5 (R,Rw) :

Easy: % is a linear subspace of% (R,R¥) . Take closure.

Define the distance between two controllable LTID behaviors
#',#" as the distance betweet#;, and %,. ~ distance

between 2 closed linear subspaces &, (R, R¥) . Standard
notion (Kato): graph metric.

d(#', ") = ||Pg, — Payl|

where theP's denote the orthogonal projection operators.
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Model reduction of behaviors

Consider the LTID 4, controllable (no stability).
Complexity := McMillan degree. Notation: n(%).
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Model reduction of behaviors

Consider the LTID 4, controllable (no stability).

Complexity := McMillan degree. Notation: n(%).
This can be defined in many ways. Easiest. dimension of the
state space in a minimal state representation of4

d W
—X = AX+ Bwp, Wy = CX+ Dwo, W = L
dt Wo
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Model reduction of behaviors

Consider the LTID 4, controllable (no stability).
Complexity := McMillan degree. Notation: n(%).

Problem:

Approximate % by a LTID PBredqucedof cOmplexity < k
with k < n(%).

Give a bound for d(%, Breduced IN the graph metric.
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Model reduction of behaviors

Algorithm:

1. Compute a stable unitary representation of%:
d
w=G|— |/
G Is stable!

2. Make a balanced reduction ofG ~ Gieduced
3. Define%educedas the system with image-like

representation ;
W= Greduced(a) l.
4. There holds

d (A, Breduced < 2(sum of the neglected SV’s)
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Recapitulation
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L I

Conclusion

LTID: %= (R,R*,%),% =kemel(R(&)),RER[E]*.

controllability, stabilizability.

Representations: ways to specifys:.
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&) w = 0, using left
co-prime polynomial factorization of GeE R (&)*™".
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controllability, stabilizability.

Representations: ways to specifys:.
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&) w = 0, using left
co-prime polynomial factorization of GeE R (&)*™".

Left prime representations: overR || < controllable,
over proper stable rational < stabilizable.
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L I

Conclusion

LTID: %= (R,R*,%),% =kemel(R(&)),RER[E]*.

controllability, stabilizability.

Representations: ways to specifys:.
kernel, image, state space, transfer functions, ...

in terms of rational symbols: G (&)

w = 0, using left

co-prime polynomial factorization of GeE R (&)*™".

Left prime representations: overR
over proper stable rational < stabi

Applications where rational symbo

&] < controllable,
1zable.

s are indispensable:

Kucera-Youla parametrization of stabilizing controllers;

unitary representations and model

reduction.



Reference:
JCWand YY

Behaviors defined by rational functions

Linear Algebra and Applications
to appear
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Reference:
JCW and YY
Behaviors defined by rational functions
Linear Algebra and Applications
to appear

Thank you for your attention
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