

BEHAVIORS defined by RATIONAL FUNCTIONS

Jan Willems, K.U. Leuven, Belgium

CDC 2006, San Diego

December 13, 2006

Co-authored with

Yutaka Yamamoto, Kyoto University

Preliminaries

Behaviors & all that

A dynamical system : $\Leftrightarrow \quad \Sigma = (\mathbb{T}, \mathbb{W}, \mathscr{B})$

 $\mathbb{T} \subseteq \mathbb{R}$ the time-axis \mathbb{W} the signal space $\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior- a family of trajectories

Behaviors & all that

A dynamical system : $\Leftrightarrow \Sigma = (\mathbb{T}, \mathbb{W}, \mathscr{B})$

 $\mathbb{T} \subseteq \mathbb{R}$ the time-axistoday $\mathbb{T} = \mathbb{R}$ \mathbb{W} the signal spacetoday $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$ $\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior- a family of trajectories

Behaviors & all that

A dynamical system
$$:\Leftrightarrow$$
 $\Sigma = (\mathbb{T}, \mathbb{W}, \mathscr{B})$

$\mathbb{T}\subseteq\mathbb{R}$	the <i>time-axis</i>		today $\mathbb{T} = \mathbb{R}$
\mathbb{W}	the signal space	e	today $\mathbb{W} = \mathbb{R}^{w}$
$\mathscr{B}\subseteq \mathbb{W}^{\mathbb{T}}$	the <mark>behavior</mark>	-	a family of trajectories

 $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathbb{W}}, \mathscr{B}) \text{ is said to be linear } :\Leftrightarrow \mathscr{B} \text{ is a linear space}$ time-invariant $:\Leftrightarrow \mathscr{B} \text{ is shift-invariant}$ $w \in \mathscr{B} \text{ and } t \in \mathbb{R} \Rightarrow \sigma^t w \in \mathscr{B}$ $\sigma^t \text{ denotes the 'shift': } (\sigma^t w)(t') = w(t'+t)$ differential $:\Leftrightarrow \mathscr{B} \text{ is the set of sol'ns of an ODE}$

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Short-hand notation: introduce polynomial matrix

$$R(\xi) = R_0 + R_1 \xi + R_2 \xi^2 + \dots + R_L \xi^L \in \mathbb{R}[\xi]^{\bullet \times w}$$
$$R\left(\frac{d}{dt}\right) w = 0$$

$$R_0w + R_1\frac{d}{dt}w + R_2\frac{d^2}{dt^2}w + \dots + R_L\frac{d^L}{dt^L}w = 0$$

Short-hand notation: introduce polynomial matrix

$$R\left(\frac{d}{dt}\right)w=0$$

Behavior := all solutions, i.e.

$$\mathscr{B} = \{ w \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}}) \mid R\left(\frac{d}{dt}\right) w = 0 \}$$

 $\mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ 'kernel representation', polynomial type.

$$R_0w + R_1 \frac{d}{w} + R_2 \frac{d^2}{w} + \dots + R_L \frac{d^L}{w} = 0$$

Short-hand notation: introduce polynomial matrix

$$R\left(\frac{d}{dt}\right)w = 0$$

Behavior := all solutions, i.e.

$$\mathscr{B} = \{ w \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}}) \mid R\left(\frac{d}{dt}\right) w = 0 \}$$

 $\mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ 'kernel representation', polynomial type.

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^w, \mathscr{B})$ be a time-invariant dynamical system Σ is said to be controllable : \Leftrightarrow

 $\forall w_1, w_2 \in \mathscr{B}, \exists T \ge 0, \text{ and } w \in \mathscr{B} \text{ such that } \dots$

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^w, \mathscr{B})$ be a time-invariant dynamical system

 Σ is said to be **controllable** : \Leftrightarrow

 Σ is said to be stabilizable : \Leftrightarrow

 $\forall w \in \mathscr{B}, \exists w' \in \mathscr{B}$ such that ...

Controllability and stabilizability

Let $\Sigma = (\mathbb{R}, \mathbb{R}^w, \mathscr{B})$ be a time-invariant dynamical system

 Σ is said to be **controllable** : \Leftrightarrow

 Σ is said to be stabilizable : \Leftrightarrow

Theorem: $R\left(\frac{d}{dt}\right)w = 0$ **defines a controllable system** \Leftrightarrow

rank $(R(\lambda))$ is the same $\forall \lambda \in \mathbb{C}$

a stabilizable system \Leftrightarrow

rank $(R(\lambda))$ is the same $\forall \lambda \in \mathbb{C}$ with real part ≥ 0

Rational representations

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(\frac{d}{dt}\right)w = 0$$

What do we mean by the solutions, i.e. by the behavior?

Rational representations

Let $G \in \mathbb{R}(\xi)^{\bullet \times w}$, and consider the 'differential equation'

$$G\left(\frac{d}{dt}\right)w = 0$$

What do we mean by the solutions, i.e. by the behavior? Let (P,Q) be a left coprime polynomial factorization of Gi.e. $P,Q \in \mathbb{R}[\xi]^{\bullet \times \bullet}$, det $(P) \neq 0, G = P^{-1}Q, [P \vdots Q]$ left-prime.

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q\left(\frac{d}{dt}\right)w = 0$$

E.g., in scalar case, means *P* and *Q* have no common roots.

Let (P,Q) be a left coprime polynomial factorization of G

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q(\frac{d}{dt})w = 0$$

Justification:

1. *G* proper. $G(s) = C(Is - A)^{-1}B + D$ controllable realization. Consider output nulling inputs:

$$\frac{d}{dt}x = Ax + Bw, \quad 0 = Cx + Dw$$

This set of *w*'s are exactly those that satisfy $G\left(\frac{d}{dt}\right)w = 0$.

Same for
$$\frac{d}{dt}x = Ax + Bw, 0 = Cx + D\left(\frac{d}{dt}\right)w = 0, \ D \in \mathbb{R}[\xi]^{\bullet \times \bullet}$$
.

Let (P,Q) be a left coprime polynomial factorization of G

$$G(\frac{d}{dt})w = 0 :\Leftrightarrow Q(\frac{d}{dt})w = 0$$

Justification:

2. Consider y = G(s)u. View *G* as a transfer f'n. Take your usual favorite definition of input/output pairs.

The output nulling inputs are exactly those that satisfy $G\left(\frac{d}{dt}\right)w = 0$.

3. via Laplace transforms...

Consider

$$y = G\left(\frac{d}{dt}\right) u$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet})$ satisfies this 'ODE'.

Is there a unique *y* **for a given** *u***?**

$$P(\frac{d}{dt})y = Q(\frac{d}{dt})u$$

If $P \neq I$ (better, not unimodular), there are many sol'ns *y* of this ODE for a given RHS.

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathbb{W}}, \mathscr{B})$. $\mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times \mathbb{W}}$ by definition.

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathbb{W}}, \mathscr{B})$. $\mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times \mathbb{W}}$ by definition.

But we may as well take the representation $G\left(\frac{d}{dt}\right)w = 0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times w}$ as the definition.

Linear time-invariant differential systems $\Sigma = (\mathbb{R}, \mathbb{R}^{\mathbb{W}}, \mathscr{B})$. $\mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right)$ for some $R \in \mathbb{R}\left[\xi\right]^{\bullet \times \mathbb{W}}$ by definition.

But we may as well take the representation $G\left(\frac{d}{dt}\right)w = 0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times w}$ as the definition. *R*: all poles at ∞ , we can take *G* with no poles at ∞ , or more generally with all poles in some non-empty set - symmetric w.r.t. \mathbb{R} . In particular:

Theorem: Every linear time-invariant differential systems has a representation

$$G\left(\frac{d}{dt}\right)w = 0$$

with $G \in \mathbb{R}(\xi)^{\bullet \times w}$ strictly proper stable rational. Proof: Take $G(s) = \frac{R(s)}{(s+\lambda)^n}$, suitable $\lambda \in \mathbb{R}, n \in \mathbb{N}$.

Matrices of rational functions

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients
- 2. $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients **all poles at** ∞
- **2.** $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions **no poles at** ∞
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

no poles in RHP or ∞

 $\mathbb{R}(\xi)$: real rational functions.

Consider 3 subrings:

- **1.** $\mathbb{R}[\xi]$: polynomials with real coefficients **all poles at** ∞
- **2.** $\mathbb{R}(\xi)_{\mathscr{P}}$: proper rational functions **no poles at** ∞
- 3. $\mathbb{R}(\xi)_{\mathscr{S}}$: stable proper rational functions

no poles in RHP or ∞

Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions.

Unimodular elements (invertible in ring)

- 1. Non-zero constants
- 2. bi-proper
- 3. bi-proper and mini-phase

miniphase: \Leftrightarrow **poles & zeros in LHP**

Matrices over these rings

$\mathbb{R}(\xi)^{\bullet \times \bullet}$: matrices of real rational functions.

- **1.** $\mathbb{R}[\xi]^{\bullet \times \bullet}$: polynomial matrices with real coefficients
- 2. $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{P}}$: matrices of proper rational functions
- **3.** $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{S}}$: of stable proper rational functions

Matrices over these rings

$\mathbb{R}(\xi)^{\bullet \times \bullet}$: matrices of real rational functions.

- R[ξ]^{•ו}: polynomial matrices with real coefficients unimodular: square & determinant = non-zero constant
- 2. $\mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{P}}$: matrices of proper rational functions unimodular: square & determinant biproper
- 3. ℝ(ξ)^{•ו}_𝒴: of stable proper rational functions
 unimodular: square & determinant biproper and miniphase (poles & zeros in LHP)

 $M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \text{ is left-prime} \qquad :\Leftrightarrow \\ M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \\ \Rightarrow U \text{ is uni-modular}$

 $M \in \mathbb{R} [\xi]^{\mathbf{n}_1 \times \mathbf{n}_2} \text{ is left-prime over } \mathbb{R} [\xi] :\Leftrightarrow$ $M = FM', F \in \mathbb{R} [\xi]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} [\xi]^{\mathbf{n}_1 \times \mathbf{n}_2}$ $\Rightarrow U \text{ is uni-modular over } \mathbb{R} [\xi]$

 $M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \text{ is left-prime over } \mathbb{R} \left[\xi \right] :\Leftrightarrow$ $M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \Rightarrow U \text{ is uni-modular over } \mathbb{R} \left[\xi \right]$

 $M \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \text{ is left-prime over } \mathbb{R} \left(\xi \right)_{\mathscr{P}} :\Leftrightarrow$ $M = FM', F \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{1}}, M' \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \Rightarrow U \text{ is uni-modular over } \mathbb{R} \left(\xi \right)_{\mathscr{P}}$

 $M \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \text{ is left-prime over } \mathbb{R} \left[\xi \right] :\Leftrightarrow$ $M = FM', F \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_1}, M' \in \mathbb{R} \left[\xi \right]^{\mathbf{n}_1 \times \mathbf{n}_2} \Rightarrow U \text{ is uni-modular over } \mathbb{R} \left[\xi \right]$

 $M \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \text{ is left-prime over } \mathbb{R} \left(\xi \right)_{\mathscr{P}} :\Leftrightarrow$ $M = FM', F \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{1}}, M' \in \mathbb{R} \left(\xi \right)_{\mathscr{P}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \Rightarrow U \text{ is uni-modular over } \mathbb{R} \left(\xi \right)_{\mathscr{P}}$

 $M \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \text{ is left-prime over } \mathbb{R} \left(\xi \right)_{\mathscr{S}} :\Leftrightarrow$ $M = FM', F \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{1}}, M' \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\mathbf{n}_{1} \times \mathbf{n}_{2}} \Rightarrow U \text{ is uni-modular over } \mathbb{R} \left(\xi \right)_{\mathscr{S}}$

Prime representations & system properties

Theorem: an LTI differential system admits a representation

$$G\left(\frac{d}{dt}\right)w = 0$$

with

G ∈ ℝ (ξ)^{•×w} left prime over ℝ (ξ)_𝒫 always
 G ∈ ℝ [ξ]^{•×w} left prime over ℝ [ξ] ⇔ it is controllable
 G ∈ ℝ (ξ)^{•×w} left prime over ℝ (ξ)_𝒫 ⇔ it is stabilizable

The proof of case 3 is not easy!

Image-like representations

see my website

Elimination

Consider

$$G_1\left(\frac{d}{dt}\right)w_1 = G_2\left(\frac{d}{dt}\right)w_2$$

 $G_1, G_2 \in \mathbb{R}(\xi)^{\bullet \times \bullet}$. Behavior \mathscr{B} . Eliminate $w_2 \rightsquigarrow$

$$\mathscr{B}_1 = \{w_1 \mid \exists w_2 \text{ such that } (w_1, w_2) \in \mathscr{B}\}$$

Then \mathscr{B}_1 is also a LTID behavior.

In particular

$$w = H\left(\frac{d}{dt}\right)\ell, \quad H \in \mathbb{R}\left(\xi\right)^{w \times \bullet}$$

w-behavior is LTID. Image-like representation.

Representations of controllable systems

Theorem: The following are equivalent for LTID systems

- **1.** \mathscr{B} is controllable
- 2. \mathscr{B} admits an image-like representation

$$w = M\left(\frac{d}{dt}\right)\ell$$
 with $H \in \mathbb{R}\left[\xi\right]^{w \times \bullet}$

3. *B* admits an image-like representation

$$w = H\left(\frac{d}{dt}\right)\ell$$
 with $H \in \mathbb{R}\left(\xi\right)^{w \times \bullet}$

- 4. with observability (ℓ can be deduced from w) added
- 5. with $M \in \mathbb{R}[\xi]^{w \times \bullet}$ right prime over $\mathbb{R}[\xi]$
- 6. with $H \in \mathbb{R}(\xi)_{\mathscr{S}}^{\mathsf{w} \times \bullet}$ right prime over $\mathbb{R}(\xi)_{\mathscr{S}}$

Consider system y = Gu, $G \in \mathbb{R}(\xi)^{p \times m}$ **'transfer function'**

Interpret this as

$$y = G\left(\frac{d}{dt}\right)u$$

Automatically controllable!

Only controllable systems covered by tf. f'ns.

Even if *G* **is i/o unstable or improper,** ∃ **stable kernel- and image-like representations!**

$$y = G\left(\frac{d}{dt}\right)u$$

Even if *G* **is i/o unstable or improper,** ∃ **stable kernel- and image-like representations!**

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

 $\begin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R}(\xi)^{\bullet \times \bullet}_{\mathscr{S}} \text{ left prime over } \mathbb{R}(\xi)_{\mathscr{S}}.$

$$y = G\left(\frac{d}{dt}\right)u$$

Even if *G* **is i/o unstable or improper,** ∃ **stable kernel- and image-like representations!**

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

 $\begin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\bullet \times \bullet} \text{ left prime over } \mathbb{R} \left(\xi \right)_{\mathscr{S}}.$ $\begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} H_1 \left(\frac{d}{dt} \right) \\ H_2 \left(\frac{d}{dt} \right) \end{bmatrix} \ell,$ $\begin{bmatrix} H_1 \\ H_2 \end{bmatrix} \in \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\bullet \times \bullet} \text{ right prime over } \mathbb{R} \left(\xi \right)_{\mathscr{S}}^{\bullet \times \bullet}.$

$$y = G\left(\frac{d}{dt}\right)u$$

$$G = G_1^{-1} G_2 = H_2 H_1^{-1}$$

left/right co-prime factorizations over $\mathbb{R}(\xi)_{\mathscr{S}}$. As over $\mathbb{R}[\xi]$.

Classical, but we obtain the representation

$$G_1\left(\frac{d}{dt}\right)y = G_2\left(\frac{d}{dt}\right)u,$$

with $\begin{bmatrix} G_1 & \vdots & G_2 \end{bmatrix} \in \mathbb{R}(\xi)_{\mathscr{S}}^{\bullet \times \bullet}$ left prime over $\mathbb{R}(\xi)_{\mathscr{S}}$ also for stabilzable systems, instead of only controllable ones.

Why bother with rational rather than just polynomial 'symbols'?

Why bother with rational rather than just polynomial 'symbols'?

1. Parametrization of all stabilizing controllers

2. Model reduction of behavioral systems

Unitary representations

It is pedagogically easier to discuss 'image-like' representations, hence controllable systems.

Even though it is possible to deal also with 'kernel-like' representations. These would only require stabilizability. **Unitary representations**

$$w = G\left(\frac{d}{dt}\right)\ell$$

is said to be a unitary representation : \Leftrightarrow $(w, \ell) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet})$ and $w = G\left(\frac{d}{dt}\right) \ell \Rightarrow$

$$||w||_{\mathscr{L}_{2}(\mathbb{R},\mathbb{R}^{\bullet})} = ||\ell||_{\mathscr{L}_{2}(\mathbb{R},\mathbb{R}^{\bullet})}$$

Easy:

unitary
$$\Leftrightarrow$$
 $G^{\top}(-s)G(s) = I$ $\forall s \in \mathbb{C}$

If in addition *G* is stable rational, then norm preserving on $\mathscr{L}_2(\mathbb{R}_+,\mathbb{R}^{\bullet})$.

A controllable LTID system admits a unitary representation.

Proof: start with any observable representation $w = G\left(\frac{d}{dt}\right) \ell$. Spectral factor

$$G^{\top}(-s)G(s) = F^{\top}(-s)F(s).$$

Take $G \rightarrow GF^{-1}$. The representation $w = GF^{-1}\left(\frac{d}{dt}\right) \ell$ is unitary. Stability may be added.

This result needs rational symbols - not possible with polynomial models.

Usually state space systems

$$\frac{d}{dt}x = Ax + Bu, y = Cx + Du$$

that are moreover stable. Balancing, Hankel norm.

Error bound

 $||G - G_{\text{reduced}}||_{\mathscr{H}_{\infty}} \leq 2(\text{sum of neglected SV's})$

Is stability needed for model reduction What can be done with behaviors?

In usual input/output approach, the system is (roughly) an input/output map.

Then distance between two systems = induced norm of difference. $\sim \mathscr{H}_{\infty}$ -norms etc.

But this only makes sense if the maps are bounded. Requires stability!

How do we measure system approximation if a system is given as a behavior?

Distance between two LTID behaviors:

Define, for a given \mathscr{B} , hence $\subseteq \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$, the \mathscr{L}_{2} -behavior as

$$\mathscr{B}_2 = \mathscr{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}}).$$

Easy: \mathscr{B}_2 is a linear subspace of $\mathscr{L}_2(\mathbb{R}, \mathbb{R}^w)$. Take closure.

Distance between two LTID behaviors:

Define, for a given \mathscr{B} , hence $\subseteq \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$, the \mathscr{L}_{2} -behavior as

$$\mathscr{B}_2 = \mathscr{B} \cap \mathscr{L}_2(\mathbb{R}, \mathbb{R}^{\mathsf{w}}).$$

Easy: \mathscr{B}_2 is a linear subspace of $\mathscr{L}_2(\mathbb{R}, \mathbb{R}^w)$. Take closure.

Define the distance between two controllable LTID behaviors $\mathscr{B}', \mathscr{B}''$ as the distance between \mathscr{B}'_2 and \mathscr{B}''_2 . \rightsquigarrow distance between 2 closed linear subspaces of $\mathscr{L}_2(\mathbb{R}, \mathbb{R}^w)$. Standard notion (Kato): graph metric.

$$d(\mathscr{B}', \mathscr{B}'') := ||P_{\mathscr{B}'_2} - P_{\mathscr{B}''_2}||$$

where the *P*'s denote the orthogonal projection operators.

Model reduction of behaviors

Consider the LTID \mathscr{B} , controllable (no stability). Complexity := McMillan degree. Notation: $n(\mathscr{B})$.

Consider the LTID *B***, controllable (no stability).**

Complexity := McMillan degree. Notation: $n(\mathcal{B})$. This can be defined in many ways. Easiest: dimension of the state space in a minimal state representation of \mathcal{B}

$$\frac{d}{dt}x = Ax + Bw_1, w_2 = Cx + Dw_2, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Model reduction of behaviors

Consider the LTID \mathscr{B} , controllable (no stability). Complexity := McMillan degree. Notation: $n(\mathscr{B})$.

Problem:

 $\begin{array}{l} \textbf{Approximate} \ \mathscr{B} \ \textbf{by a LTID} \ \mathscr{B}_{reduced} \ \textbf{of complexity} \leq \texttt{k} \\ \textbf{with} \ \texttt{k} < \texttt{n}(\mathscr{B}). \end{array}$

Give a bound for $d(\mathcal{B}, \mathcal{B}_{reduced})$ in the graph metric.

Algorithm:

1. Compute a stable unitary representation of \mathscr{B} :

$$w = G\left(\frac{d}{dt}\right)\ell.$$

G is stable!

- **2.** Make a balanced reduction of $G \rightsquigarrow G_{\text{reduced}}$.
- 3. Define $\mathscr{B}_{reduced}$ as the system with image-like representation

$$w = G_{\text{reduced}} \left(\frac{d}{dt}\right) \ell.$$

4. There holds

 $d(\mathcal{B}, \mathcal{B}_{reduced}) \leq 2(\text{sum of the neglected SV's})$

Recapitulation

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathscr{B}), \mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right), R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify *B*: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w = 0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times w}$.

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathscr{B}), \mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right), R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify *B*: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w = 0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times w}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.

Conclusion

- LTID: $\Sigma = (\mathbb{R}, \mathbb{R}^{\bullet}, \mathscr{B}), \mathscr{B} = \operatorname{kernel}\left(R\left(\frac{d}{dt}\right)\right), R \in \mathbb{R}\left[\xi\right]^{\bullet \times w}$.
- controllability, stabilizability.
- Representations: ways to specify *B*: kernel, image, state space, transfer functions, ...
- in terms of rational symbols: $G\left(\frac{d}{dt}\right)w = 0$, using left co-prime polynomial factorization of $G \in \mathbb{R}(\xi)^{\bullet \times w}$.
- Left prime representations: over $\mathbb{R}[\xi] \Leftrightarrow$ controllable, over proper stable rational \Leftrightarrow stabilizable.
- Applications where rational symbols are indispensable: Kucera-Youla parametrization of stabilizing controllers; unitary representations and model reduction.

Reference:

JCW and YY Behaviors defined by rational functions *Linear Algebra and Applications* to appear

Reference:

JCW and YY Behaviors defined by rational functions *Linear Algebra and Applications* to appear

Thank you for your attention