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Lyapunov functions

Consider the classical dynamical system, the ‘flow’

��� ��� � � � � � 	
with � 
 � � � 

the state and

��� � �
the vectorfield.

Denote the set of solutions �� � �
by , the ‘behavior’.

is said to be a Lyapunov function for if along

Equivalently, if
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Typical Lyapunov theorem

Lyapunov

trajectory
system

function
V

X

� � � 	 � � and
� � � � � 	 � � for � � � � 
 �

� � 
 � there holds � ��� 	 � for � � ‘global stability’
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Lyapunov

Lyapunov f’ns play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his thesis (1899).
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Dissipative systems
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Open systems

‘Open’ systems are a much more appropriate starting point
for the study of dynamics. For example,

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

� the dynamical system��� ��� � � � � � �  	 � ! � " � � �  	 �

 
 # � � $ � ! 
 % � � & � � 
 � � � 

: input, output, state.

Behavior � all sol’ns

�  � ! � � 	 � � #(' %(' ��

– p.7/49



Dissipative dynamical systems

Let )� #' % �

be a function, called the supply rate.

�

is said to be dissipative w.r.t. the supply rate ) if

*

�� � � �
called the storage function, such that

��� � � � ��� 	 	 ) �  ��� 	 � ! �� 	 	

� �  ��� 	 � ! �� 	 � � ��� 	 	 
 .
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Dissipation inequality

��� � � � ��� 	 	 ) �  ��� 	 � ! �� 	 	

� �  ��� 	 � ! �� 	 � � ��� 	 	 
 .

This inequality is called the dissipation inequality.

Equivalent to

� � � � � �  	 � � � � � 	 � � � � �  	 ) �  � " � � �  	 	

for all

�  � � 	 
 #' �

.

If equality holds: ‘conservative’ system.
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Dissipation inequality

supply

input

output

SYSTEM

DISSIPATION

SUPPLY

STORAGE

) �  � ! 	

models something like the power delivered to the
system when the input value is  and output value is !.

� � � 	

then models the internally stored energy.

Dissipativity �
rate of increase of internal energy power delivered.
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Dissipation inequality

Special case: ‘closed’ system: ) � � then

dissipativeness

�

is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems Dissipativity for open systems.
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Dissipation inequality

Special case: ‘closed’ system: ) � � then

dissipativeness

�

is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems + Dissipativity for open systems.
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The construction of storage functions

Basic question:

Given (a representation of )

�

, the dynamics,
and given ), the supply rate,

is the system dissipative w.r.t. ), i.e.
does there exist a storage function

�
such that

the dissipation inequality holds?

supply

input

output

SYSTEM

Monitor power in, known dynamics, what is the stored energy?
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The construction of storage functions

The construction of storage f’ns is very well understood,
particularly for finite dimensional linear systems and
quadratic supply rates.

Leads to the KYP-lemma, LMI’s , ARIneq, ARE,
semi-definite programming, spectral factorization, Lyapunov
functions, and robust control , positive and bounded real
functions, electrical circuit synthesis, stochastic realization
theory.

The storage function is in general far from unique. There
are two ‘canonical’ storage functions:

the available storage and the required supply .

For conservative systems, is unique.

– p.13/49
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Dissipative systems

Dissipative systems and storage functions play a remarkably
central role in the field.

The construction of storage functions
is the question which we shall discuss today

for systems described by PDE’s.
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PDE’s
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PDE’s: polynomial notation

Consider, for example, the PDE:

-/. 021 .43 1/5 687 95
915:5 -. 01 .3 1/5 6 7 9
91 . -5 021 .3 15 6 ; <

-5 021 .=3 185 687 9 >
91 >5 -. 01 .3 185 6 7 9 ?
91 ?. -5 021 .3 15 6 ; <

Notation:
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PDE’s: polynomial notation

Consider, for example, the PDE:

-/. 021 .43 1/5 687 95
915:5 -. 01 .3 1/5 6 7 9
91 . -5 021 .3 15 6 ; <

-5 021 .=3 185 687 9 >
91 >5 -. 01 .3 185 6 7 9 ?
91 ?. -5 021 .3 15 6 ; <

@
Notation:

A . B 9
91 . 3 A5 B 9
91/5 3 - ;

C
D -.

-5
E

F3 G 0 A .=3 A5 6 ;
C

D H7 A55 A .

A >5 H7 A ?.
E

FI

J KKMLON � KKMLOP Q � ���
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Linear differential distributed systems

R � �  � the set of independent variables,
typically S � T: time and space,� �U � the set of dependent variables,� the solutions of a linear constant coefficient PDE.

Let and consider

Define the associated behavior

holds

Notation for n-D linear differential systems:
or

– p.17/49



Linear differential distributed systems

R � �  � the set of independent variables,
typically S � T: time and space,� �U � the set of dependent variables,� the solutions of a linear constant coefficient PDE.

Let

J 
 � � V U WXZY � � � � � X  [ � and consider

J KKMLN � � � � � KKMLM\ Q � � � �^] 	

Define the associated behavior

� _ Q 
 ` , � �  � �U 	a �^] 	

holds

b �

Notation for n-D linear differential systems:� �  � � U � 	 
 c U  � or 
 c U  �
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Examples

Heat diffusion in a bar

x

q(x,t)

T(x,t)� the PDE d
d� e � d f
d � f eg h

(1 i j

, position, k i j
, time), (2-D system)

describes the evolution of the temperature

l 01 3 k 6

and the heat m 01 3 l 6
supplied to / radiated away.

Maxwell’s equations

(time and space) (4-D system) ,

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables.
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Examples

The voltage

� � � � � 	

and current

n � � � � 	

in a coaxial cable

V(x,t)
x

I(x,t)

+

−

d
d � � � J no p d
d� n �

d
d � n � q � o r d
d� � �

G

the resistance,
s

the inductance,

t

the capacitance of the cable,u

the conductance of the dielectric medium, all per unit length.
(2-D system)

Maxwell’s equations

(time and space) (4-D system) ,

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables.
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Examples

Maxwell’s equations

vxw y{z | .}~ ���

v� yMz | � ��� y{��vxw y � | � ��P v� y � | .}~ y��� ��� y{z��
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R � �(' � �
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(electric field, magnetic field, current density, charge density),� � � ' � � ' � � ' � � �� � � �,� set of solutions to these PDE’s.

Note: 10 variables, 8 equations!

*

free variables.
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Elimination theorem

Theorem:

If the behavior of

� QY � � � � � Q�� � Q�� �Y � � � � � Q U 	

obeys a constant coefficient linear PDE,
then so does the behavior of

� QY � � � � � Q � 	

!

Which PDE’s describe ( ) in Maxwell’s equations ?

Eliminate from Maxwell’s equations
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�^�
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} ~ ��� vxw y z � vxw y�� | ��

}~ �P ��P y z � } ~ �P v� v� yMz � ��� y�� | � �
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Image representation

J KKMLN � � � � � KKMLM\ Q � �
is called a kernel representation of the associated 
 c U .

Another representation: image representation

Elimination thm
Do all behaviors of linear constant coefficient PDE’s admit an
image representation???

admits an image representation iff it is ‘controllable’.
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Controllability

Def’n in pictures:

O

1
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W

R

R
1

w2

O2

w

QY � Q f 
 .

Theorem: The following are equivalent:

1. is controllable
2. admits an image representation
3.
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Controllability

Def’n in pictures:
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W

R

R
1 O2

O

w1 w2w

Q ‘patches’ QY � Q f 
 .

* Q 
 � QY � Q f 
 : Controllability : ‘patchability’.

Theorem: The following are equivalent:

1. is controllable
2. admits an image representation
3.
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Controllability

Def’n in pictures:

Theorem: The following are equivalent:

1. 
 c U  is controllable
2. admits an image representation
3. � � �
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential and
the vector potential
generate exactly the solutions to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential

¬� � ' � � �

and
the vector potential

�®� � ' � � � �

generate exactly the solutions to Maxwell’s equations:

y�z | � ��� y�¯ � v °�y � | v� y±¯�y�� | } ~ �P ��P y ¯ � } ~ �P vP y²¯ � }~ �P v ³ vxw y²¯ ´ � }~ ��� v °�

� | � }~ ��� vw y¯ � }~ vP ° �

Proves controllability. Illustrates the interesting connection

controllability

*

potential!

– p.22/49



Observability

Observability of the image representation

Q � KKMLN � � � � � KKML�\ �
is defined as:

�

can be deduced from Q,
i.e.

KKMLN � � � � � KKML�\ should be injective.

Not all controllable systems admit an observable im. repr’n.
For , they do. For , exceptionally so.

The latent variable in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.

– p.23/49
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Dissipative distributed systems
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Notation

Multi-index notation:

� � � �Y � � � � � �  	 � µ � � µY � � � � � µ  	 � � � � �Y � � � � � �  	 �X � � XZY � � � � � X  	 � ¶ � � ¶Y � � � � � ¶  	 � · � � ·Y � � � � � ·  	 �

��L � KKMLN � � � � � KKML�\ � � ¸�L ¸ � K ¸NKML ¸NN � � � � � K ¸\KML ¸\\ �

¹ � � ¹ �Y ¹ � f � � � ¹ �  �

J ��L Q � � for
J KKMLN � � � � � KKML�\ Q � � �

Q � ��L �

for Q � KKMLN � � � � � KKML�\ � �

etc.

For simplicity of notation, and for concreteness, we often take
, independent variables, , time, and space.
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Notation

� � � KKMLN g � � � g KKMLM\ �

For simplicity of notation, and for concreteness, we often takeS � T, independent variables, � , time, and � � ! � º � space.

� � � KKML g KKM» g KKM¼ � ‘spatial flux’
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QDF’s

The quadratic map acting on Q � �  �U

and its
derivatives, defined by

Q½ ¾À¿ Á ¹ ¾
¹ � ¾ Q

Â
Ã ¾À¿ Á ¹ Á

¹ � Á Q

is called quadratic differential form (QDF) on

` , � �  � � U 	

.Ã ¾À¿ Á 
 �U V U�Ä WLOG:

Ã ¾¿ Á � Ã ÂÁ¿ ¾ .

Introduce the -variable polynomial matrix

Denote the QDF as . QDF’s are parametrized by
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QDF’s

The quadratic map acting on Q � �  �U

and its
derivatives, defined by

Q½ ¾À¿ Á ¹ ¾
¹ � ¾ Q

Â
Ã ¾À¿ Á ¹ Á

¹ � Á Q

is called quadratic differential form (QDF) on

` , � �  � � U 	

.Ã ¾À¿ Á 
 �U V U�Ä WLOG:

Ã ¾¿ Á � Ã ÂÁ¿ ¾ .
Introduce the Å S-variable polynomial matrix

Ã

Ã � ¶ � · 	 � ¾À¿ Á
Ã ¾À¿ Á ¶ ¾ · Á �

Denote the QDF as Æ . QDF’s are parametrized by

� W ¶ � · [ �
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Dissipative distributed systems

We henceforth consider only controllable linear differential
systems and QDF’s for supply rates.

Definition: , controllable, is said to be

dissipative with respect to the supply rate

(a QDF) if

for all of compact support, i.e., for all .

and ‘compact support’.
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Dissipative distributed systems
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Dissipative distributed systems

Assume S � T:
independent variables � � ! � ºÄ � � space and time.

Idea: Æ � Q 	 � � � ! � ºÄ � 	 ¹ � ¹ ! ¹ º ¹� �
‘energy’ supplied to the system
in the space-cube

W � � � g ¹ � [ ' W ! � ! g ¹ ! [ ' W º � º g ¹ º [

during the time-interval

W� � � g ¹� [
.

Dissipativity�

Ç É Ç Ê Æ � Q 	 � � � ! � º � � 	 ¹ � ¹ ! ¹ º Ë ¹� � � Q 
 È �

A dissipative system absorbs net energy.
– p.28/49



Example: EM fields

Maxwell’s eq’ns define a dissipative (in fact, a conservative)
system w.r.t. the QDF o ��� � ���

Indeed, if

��� � � �

are of compact support and satisfy

Ì/Í d
d� � � � g � �^� � � �

ÌÎÍ d f
d� f � �g ÌÎÍ Ï f ' ' ��� g d
d� ��� � � �

then

Ç Ð Ç Ê o � � � � � ¹ � ¹ ! ¹ º Ñ ¹� � � �
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The storage and the flux
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Local dissipation law

Dissipativity�

Ç É Ç Ê Æ � Q 	 ¹ � ¹ ! ¹ º Ë ¹� � for all Q 
 È �

Can this be reinterpreted as:
As the system evolves, some of the energy supplied is locally
stored, some locally dissipated, and some redistributed over
space?

– p.31/49
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Local dissipation law

!! Invent storage and flux, locally defined in time and space,
such that in every spatial domain there holds:��� Storage + Spatial flux Supply.

SUPPLY

DISSIPATION

FLUX

STORAGE

Supply = partly stored + partly radiated + partly dissipated.
– p.32/49



MAIN RESULT (stated for SÒ Ó

)

Thm: S � T� � � ! � ºÄ � � space/time; 
 c UÕÔ , controllable.

Then Ç É Ç Ê Æ � Q 	 ¹ � ¹ ! ¹ º Ë ¹� � for all Q 
 È

an im. repr. of , and
QDF’s , the storage, and the flux,
such that the local dissipation law

holds for all that satisfy
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holds for all
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Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!

latent variables (the

�
’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.

– p.34/49



Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative)
with respect to o � � � � � � the rate of energy supplied.

Introduce the stored energy density, , and
the energy flux density (the Poynting vector), ,

Local conservation law for Maxwell’s equations:

Involves unobservable from and .

– p.35/49
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with respect to o � � � � � � the rate of energy supplied.

Introduce the stored energy density,

Ö

, and
the energy flux density (the Poynting vector),

�×

,

Ö ��� � �2� � � Ì/Í Å ��� � � �g Ì/Í Ï f
Å � � � � � �

�× ��� � �^� � � Ì/Í Ï f ���' �^��

Local conservation law for Maxwell’s equations:
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Involves
� � � unobservable from
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The proof
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Outline of the proof

Using controllability and image representations, we may
assume, WLOG: � ` , � �  � �U 	

To be shown

Global dissipation :

Ç\ Æ � Q 	 � for all Q 


*Ø � � Ù � Q 	 Æ � Q 	

for all Q 
 ` ,

� Local dissipation

– p.37/49



Ç\ Æ � Q 	 � for all Q 


(Parseval)

Ã �o Ú�Û � Ú�Û 	 � for all Û 
 � 

(Factorization equation)

(easy)

(clearly)

for all
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation :

Ç\ Æ � Q 	 � for all Q 


*Ø � � Ù � Q 	 Æ � Q 	

for all Q 
 ` ,

� Local dissipation

However, ... this argument is valid only for ...
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The factorization equation (FE)
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The factorization equation

Consider Â �o X 	 � X 	 � Ü � X 	

(FE)

with

Ü 
 � � V � WX [

given, and the unknown. Solvable??

with given, and the unknown.

Under what conditions on does there exist a solution ?

Scalar case: write the real polynomial as a sum of squares

– p.41/49
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Þ � X 	 � X 	 � Ü � X 	

(FE)

Ü

is a given polynomial matrix; is the unknown.

For S � � and

Ü 
 � WX [

, solvable (with 
 � f WX [
) iff

Ü �àß 	 � for all ß 
 ��

For and under the symmetry and positivity condition

for all

this equation can nevertheless in general not be solved over
the polynomial matrices, for ,
but it can be solved over the matrices of rational functions,
i.e., for .
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

!! Solve á � á fY g á ff g � � � g á f� � á given

A polynomial with
for all can in general not be expressed as a
SOS of polynomials, with the ’s .
But a rational function (and hence a polynomial)

with for all
, can be expressed as a SOS of ( )

rational functions, with the ’s .

– p.43/49
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Outline of the proof

solvability of the factorization eq’n

Ã �o Ú�Û � Ú�Û 	 � for all Û 
 � 
(Factorization equation)

* � Ã �o X � X 	 � Â �o X 	 � X 	

over the rational functions, i.e., with a matrix with
elements in

� � XZY � � � � � X  	 �

The need to introduce rational functions in this factorization
equation and an image representation of (to reduce the
pbm to ) are the causes of the unavoidable presence of
(possibly unobservable, i.e., ‘hidden’) latent variables in the
local dissipation law.
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Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable in various
(non-observable) image representations of .

2. of in the factorization equation

3. (in the case ) of the solution of

For conservative systems, , whence ,
but, when , the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.

Cfr.

The ambiguity of the field energy
... There are, in fact, an infinite number of different possibilities
for [the internal energy] and [the flux] ... It is sometimes
claimed that this problem can be resolved using the theory of
gravitation ... as yet nobody has done such a delicate
experiment ... So we will follow the rest of the world - besides,
we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics,
Volume II, page 27-6.

– p.47/49
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SUMMARY

The theory of dissipative systems centers around the
construction of the storage function

global dissipation local dissipation law

Involves possibly hidden latent variables
(e.g. in Maxwell’s eq’ns)

The proof Hilbert’s 17-th problem
Neither controllability nor observability are good generic
system theoretic assumptions for physical models
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Thank you
Thank you

Thank you
Thank you

Thank you
Thank you
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