OPEN AND CONNECTED

Jan C. Willems
K.U. Leuven, Belgium

Open and Connected

The central tenets of our field:

Systems are open and consist of interconnected subsystems.

Synthesis of systems consists of
interconnecting subsystems

Open

Open

In this lecture, we think of this interaction boundary as 'terminals'

electrical components with 'wires'
mechanical components with 'pins'
fluidic components with 'ducts'
signal processors with inputs and outputs
motors with terminals \& pins
computer terminal, etc., etc., etc.

Connected

An interconnection architecture with subsystems

Connected

Think of:
electrical circuits
mechanical constructions
fluidic systems
networks of signal processors
computers
essentially all engineering systems

Connected

Observe the hierarchical nature

Interconnect

Interconnect

Interconnect

Reverse process: 'tearing' \& 'zooming' \& 'linking': very useful in modeling.

Mathematization

What are the appropriate concepts / mathematization?
What is an open dynamical system?
How do we deal with interconnections?
How does control fit in?

Mathematization

1. Get the physics right
2. The rest is mathematics

R.E. Kalman, Opening lecture

IFAC World Congress, Prague, July 4, 2005

THEMES

1. Open and connected
2. A brief history of systems theory
3. Control, interconnection, inputs and outputs
4. Models and behaviors
5. Linear time-invariant differential systems
6. Controllability and stabilizability
7. Representations of linear differential systems
8. PDE's

The paradigm of closed systems

Axiomatization

K.1, K.2, \& K. 3

$$
\leadsto \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0
$$

$$
\leadsto \quad \frac{d}{d t} x=f(x)
$$

\sim closed systems as paradigm of dynamics

Axiomatization

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930-)

Axiomatization

A dynamical system is defined by a state space X and a state transition function
ϕ : ... such that ...
$\phi(t, x)=$ state at time t starting from state x

How could they forget about Newton's second law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?

Newton's laws

2-nd law $\quad F^{\prime}(t)=m \frac{d^{2}}{d t^{2}} w(t)$
gravity $\quad F^{\prime \prime}(t)=m \frac{1_{w(t)}}{|w(t)|^{2}}$
3-rd law $\quad F^{\prime}(t)+F^{\prime \prime}(t)=0$

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Closed systems

Reply: assume 'fixed boundary conditions'

$~$ an absurd situation: to model a system, we have to model also the environment!

Closed systems

Chaos theory, cellular automata, sync, etc., 'function' in this framework ...

Closed systems

Chaos: not a property of the physical laws, but just as much of what the system is interconnected to.

Closed systems

Turbulence may not be a property of Navier-Stokes, but just as much of the boundary conditions.

Meanwhile, in engineering, ...

The paradigm of input/output systems

Input/output systems

The originators

and the many electrical circuit theorists ...

Mathematical description

$$
\begin{aligned}
& y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime} \\
& y(t)=H_{0}(t)+\int_{-\infty}^{t} H_{1}\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}+ \\
& \int_{-\infty}^{t} \int_{-\infty}^{t^{\prime}} H_{2}\left(t-t^{\prime}, t^{\prime}-t^{\prime \prime}\right) u\left(t^{\prime}\right) u\left(t^{\prime \prime}\right) d t^{\prime} d t^{\prime \prime}+\cdots
\end{aligned}
$$

These models fail to deal with 'initial conditions'.
A physical system is SELDOM an i/o map

Input/state/output systems

$$
\leadsto \quad \frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Rudolf Kalman (1930-)

'Axiomatization'

State transition function: $\phi(t, \mathrm{x}, u)$: state reached at time t from x using input u.

Read-out function:
$g(\mathrm{x}, \mathrm{u})$: output value with state x and input value u .

The input/state/output view turned out to be a very effective and fruitful paradigm

- for control (stabilization, robustness, ...)

The input/state/output view turned out to be a very effective and fruitful paradigm

- for control (stabilization, robustness, ...)
- prediction of one signal from another, filtering
- understanding system representations
(transfer f'n, input/state/output, etc.)
- model simplification, reduction
- system ID: models from data
- etc., etc., etc.

Let's take a closer look at the i/o framework ...

in control

Difficulties with i/o

active control

versus passive control Dampers, heat fins, pressure valves, ...

Controllers without sensors and actuators

Difficulties with i/o

active control versus passive control

Controlling turbulence
for airplanes, sharks, dolphins, golf balls, bicycling helmets, etc.

Difficulties with i/o

active control versus passive control

Controlling turbulence

Difficulties with i/o

active control versus passive control

Controlling turbulence
Nagano 1998

Difficulties with i/o

active control versus passive control

Controlling turbulence
Nagano 1998

Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998

Strips op schaatspak verminderen drukweerstand en verhogen snelheid

Difficulties with i/o

active control versus passive control

Controlling turbulence
Nagano 1998

These are beautiful controllers! But, the only people not calling this "control", are the control engineers ...

Difficulties with i/o

active control versus passive control
Another example: the stabilizer of a ship

These are beautiful controllers! But, the only people not calling this
"stabilization", are the control engineers ...
Btw, this interconnection is, but shouldn't be, called 'singular'

Difficulties with i/o

active control versus passive control

The appropriate figure is

With the 'classical' interconnection figure

such controllers do not stabilize, because
dynamic order controlled system $<$ dynamic order plant +dynamic order contro

Let's take a closer look at the i/o framework ...

for interconnection

i/o and interconnection

$$
\begin{aligned}
& \frac{d}{d t} h_{1}=F_{1}\left(h_{1}, p_{11}, p_{12}\right), f_{11}=H_{11}\left(h_{1}, p_{11}\right), f_{12}=H_{12}\left(h_{1}, p_{12}\right) \\
& \frac{d}{d t} h_{2}=F_{1}\left(h_{2}, p_{21}, p_{22}\right), f_{21}=H_{21}\left(h_{2}, p_{21}\right), f_{22}=H_{22}\left(h_{2}, p_{22}\right)
\end{aligned}
$$

inputs: the pressures $p_{11}, p_{12}, p_{21}, p_{22}$ outputs: the flows $f_{11}, f_{12}, f_{21}, f_{22}$

i/o and interconnection

$$
\begin{aligned}
& \frac{d}{d t} h_{1}=F_{1}\left(h_{1}, p_{11}, p_{12}\right), f_{11}=H_{11}\left(h_{1}, p_{11}\right), f_{12}=H_{12}\left(h_{1}, p_{12}\right) \\
& \frac{d}{d t} h_{2}=F_{1}\left(h_{2}, p_{21}, p_{22}\right), f_{21}=H_{21}\left(h_{2}, p_{21}\right), f_{22}=H_{22}\left(h_{2}, p_{22}\right)
\end{aligned}
$$

Interconnection:

$$
p_{12}=p_{21}, f_{12}+f_{21}=0
$$

This identifies 2 inputs AND (NOT WITH) 2 outputs, the sort of thing SIMULINK ${ }^{\circledR}$ forbids.
This situation is the rule, not the exception (in fluidics, mechanics,...) Interconnection is not input-to-output assignment!

Sharing variables, not input-to-output assignment, is the basic mechanism by which systems interact.

Before interconnection:
the variables on the interconnected terminals are independent.
After interconnection: they are set equal.

Let's take a closer look at the i/o framework ...

for modeling

i/o in modeling

Physical systems often interact with their environment through physical terminals

On each of these terminals many variables 'live':

- voltage \& current
- position \& force
- pressure \& flow
- price \& demand
- angle \& momentum
- etc. \& etc.

i/o in modeling

Physical systems often interact with their environment through physical terminals

Situation is NOT: on one terminal there is an input, on another there is an output.

This picture is misleading, if superficially interpreted.

i/o in modeling

Physical systems often interact with their environment through physical terminals
The selection of what is an input and what is an output

- most often does not need to be made
- if it made, it should be made after the modeling is done
- sometimes it cannot be made

i/o in modeling

Physical systems often interact with their environment through physical terminals
The selection of what is an input and what is an output

- does not need to be made
- if it made, it should be made after the modeling is done

- sometimes it cannot be made

i/o in modeling

Physical systems often interact with their environment through physical terminals
The selection of what is an input and what is an output

- does not need to be made
- if it made, it should be made after the modeling is done
- sometimes it cannot be made

variables: $(x, v) \quad \frac{d}{d t} x=v$
tangent bundle of the sphere is not 'trivial'

Conclusion

The inability of the i/o framework to properly deal with
(i) interconnections

> and
(ii) passive control
is lethal.

Just as the state, the input/output partition needs to be constructed from first principles models. Contrary to the state, such a partition may not be useful, or even possible

We need a better, more flexible, universal, simpler framework that properly deals with
open \& connected.

At last, a framework that deals with these difficulties

General formalism

Generalities

What is a model? As a mathematical concept. What is a dynamical system? What is the role of differential equations in thinking about dynamical models?

Generalities

Intuition

We have a 'phenomenon' that produces 'outcomes' ('events').
We wish to model the outcomes that can occur.
Before we model the phenomenon:
the outcomes are in a set, which we call the universum.
After we model the phenomenon:
the outcomes are declared (thought, believed)
to belong to the behavior of the model, a subset of this universum.

This subset is what we consider the mathematical model.

Generalities

This way we arrive at the

Definition

A math. model is a subset \mathfrak{B} of a universum \mathfrak{U} of outcomes

$$
\mathfrak{B} \subseteq \mathfrak{U}
$$

\mathfrak{B} is called the behavior of the model.
For example, the ideal gas law states that the temperature T, pressure P, volume V, and quantity (number of moles) N of an ideal gas satisfy

$$
\frac{P V}{N T}=R
$$

with R a universal constant.

Generalities

So, before Boyle, Charles, and Avogadro got into the act, T, P, V and N may have seemed unrelated, yielding

$$
\mathfrak{U}=\mathbb{R}_{+}^{4}
$$

The ideal gas law restricts the possibilities to

$$
\mathfrak{B}=\left\{(T, P, V, N) \in \mathbb{R}_{+}^{4} \mid P V / N T=R\right\}
$$

Features

- Generality, applicability
- shows the role of model equations
- ~ notion of equivalent models
- ~ notion of more powerful model
- Structure, symmetries

We will only consider deterministic models.

Stochastic models: there is a map \boldsymbol{P} (the 'probability')

$$
P: \mathcal{A} \rightarrow[0,1]
$$

with \mathcal{A} a ' σ-algebra' of subsets of \mathfrak{U}.
$\boldsymbol{P}(\boldsymbol{B})=$ 'the degree of certainty (belief, plausibility, propensity, relative frequency) that outcomes are in \mathfrak{B};
\cong the degree of validity of \mathfrak{B} as a model.

We will only consider deterministic models.

Stochastic models: there is a map \boldsymbol{P} (the 'probability')

$$
P: \mathcal{A} \rightarrow[0,1]
$$

with \mathcal{A} a ' σ-algebra' of subsets of \mathfrak{U}.

Fuzzy models: there is a map μ (the 'membership function')

$$
\mu: \mathfrak{U} \rightarrow[\mathbf{0}, \mathbf{1}]
$$

$\mu(x)=$ 'the extent to which $x \in \mathfrak{U}$ belongs to the model'.

We will only consider deterministic models.

Stochastic models: there is a map \boldsymbol{P} (the 'probability')

$$
P: \mathcal{A} \rightarrow[0,1]
$$

with \mathcal{A} a ' σ-algebra' of subsets of \mathfrak{U}.

Determinism: $\mathcal{A}=\left\{\varnothing, \mathfrak{B}, \mathfrak{B}^{\text {complement }}, \mathfrak{U}\right\}, \boldsymbol{P}(\mathfrak{B})=1$.
Fuzzy models: there is a map μ (the 'membership function')

$$
\mu: \mathfrak{U} \rightarrow[0,1]
$$

Determinism: μ is 'crisp':
image $(\mu)=\{0,1\}, \mathfrak{B}=\mu^{-1}(\{1\}):=\{x \in \mathfrak{U} \mid \mu(x)=1\}$

Dynamical systems

In dynamics, the outcomes are functions of time \sim

Which event trajectories are possible?

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances), \mathbb{W}, the signal space
(= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior (= the admissible trajectories).

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space
(= where the variables take on their values),

$$
\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}
$$ the behavior (= the admissible trajectories).

Totality of 'legal' trajectories =: the behavior

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space
(= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior (= the admissible trajectories).
For a trajectory ('an event') $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}$: the model allows the trajectory w,
$w \notin \mathfrak{B}$: the model forbids the trajectory \boldsymbol{w}.

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space
(= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior (= the admissible trajectories).
Usually,
$\mathbb{T}=\mathbb{R}$, or $[0, \infty)$, etc. (in continuous-time systems), or \mathbb{Z}, or \mathbb{N}, etc. (in discrete-time systems).

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space
(= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior (= the admissible trajectories).
Usually,
$\mathbb{W} \subseteq \mathbb{R}^{\mathrm{W}}$ (in lumped systems),
a function space
(in distributed systems, time a distinguished variable),
a finite set (in DES)' etc.

Dynamical systems

Definition

A dynamical system $=\Sigma:=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
with $\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space
(= where the variables take on their values),

$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$ the behavior (= the admissible trajectories).

Emphasis:

$$
\begin{aligned}
& \mathbb{T}=\mathbb{R} \\
& \mathbb{W}=\mathbb{R}^{W}
\end{aligned}
$$

$\mathfrak{B}=$ solution set of system of (linear constant coefficient) ODE's, or difference eqn's, or PDE's. \sim 'differential systems'.

A series of examples

Examples

Let's put Kepler and Newton in this setting.

K1+K2+K3 obviously define a dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{3}$,
$\mathfrak{B}=$ all $\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{\mathbf{3}}$ that satisfy Kepler's 3 laws.
Nice example of a dynamical model 'without equations'.

Examples

Let's put Kepler and Newton in this setting.

K1+K2+K3 obviously define a dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{3}$,
$\mathfrak{B}=$ all $\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{\mathbf{3}}$ that satisfy Kepler's 3 laws.
Nice example of a dynamical model 'without equations'.
Is it a differential system?
This question turned out to be of revolutionary importance...

Examples

$$
\text { Flows: } \quad \frac{d}{d t} x(t)=f(x(t))
$$

$\mathfrak{B}=$ all state trajectories.

Observed flows:

$$
\frac{d}{d t} x(t)=f(x(t)) ; \quad y(t)=h(x(t))
$$

$\mathfrak{B}=$ all possible output trajectories.

Note:

1. It may be impossible to express \mathfrak{B} as the solutions of a differential equation involving only y.
2. The auxiliary (latent variable) nature of x.

Examples

Input / output systems

$$
\begin{aligned}
f_{1}\left(y(t), \frac{d}{d t} y(t), \frac{d^{2}}{d t^{2}}\right. & y(t), \ldots, t) \\
& =f_{2}\left(u(t), \frac{d}{d t} u(t), \frac{d^{2}}{d t^{2}} u(t), \ldots, t\right)
\end{aligned}
$$

$\mathbb{T}=\mathbb{R}$ (time),
$\mathbb{W}=\mathbb{U} \times \mathbb{Y}$ (input \times output signal spaces),
$\mathfrak{B}=$ all input / output pairs.

Examples

Input / state / output systems

$$
\frac{d}{d t} x(t)=f(x(t), u(t), t), y(t)=h(x(t), u(t), t)
$$

What do we want to call the behavior?
the (u, y, x) 's, or the (u, y) 's?

Is the (u, y) behavior described by a differential eq'n?

Examples

Codes

$\mathfrak{C} \subseteq \mathbb{A}^{\mathbb{I}}=$ the code; yields the system $\Sigma=(\mathbb{I}, \mathbb{A}, \mathfrak{C})$.

Redundancy structure, error correction possibilities, etc., are visible in the code behavior \mathfrak{C}. It is the central object of study.

Formal languages
$\mathbb{A}=\mathbf{a}$ (finite) alphabet,
$\mathfrak{L} \subseteq \mathbb{A}^{*}=$ the language $=$ all 'legal' 'words' $a_{1} a_{2} \cdots a_{\mathrm{k}} \cdots$ $\mathbb{A}^{*}=$ all finite strings with symbols from \mathbb{A}.
yields the system $\Sigma=(\mathbb{N}, \mathbb{A}, \mathfrak{L})$.

Examples: All words appearing in the Webster dictionary All LATEX documents.

Examples

Thermodynamics: a theory of open systems

Thermodynamics is the only theory of a general nature of which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases - the second law of thermodynamics - holds, I think, the supreme position among the laws of nature.

Arthur Eddington

Examples

Thermodynamics: a theory of open systems

time-axis: \mathbb{R}
Q: Variables of interest? A: $Q_{h}, T_{h}, Q_{c}, T_{c}, W$
\sim signal space: $\mathbb{W}=\mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}$
Behavior \mathfrak{B} : a suitable family of trajectories.
But, there are some universal laws that restrict the \mathfrak{B} 's that are 'thermodynamic'.

Examples

Thermodynamics: a theory of open systems

First and second law:

$$
\oint\left(Q_{h}-Q_{c}-W\right) d t=0 ; \quad \oint\left(\frac{Q_{h}}{T_{h}}-\frac{Q_{c}}{T_{c}}\right) d t \leq 0
$$

These laws deal with ‘open’ systems.

> But not with input/output systems!

\mathfrak{L}^{\bullet} : Linear time-invariant differential systems

More structure

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

is said to be linear
if \mathbb{W} is a vector space, and \mathfrak{B} a linear subspace of $\mathbb{W}^{\mathbb{T}}$.

More structure

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

is said to be time-invariant
if $\mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or \mathbb{Z}_{+}and if \mathfrak{B} satisfies

$$
\boldsymbol{\sigma}^{t} \mathfrak{B} \subseteq \mathfrak{B} \text { for all } t \in \mathbb{T}
$$

σ^{t} denotes the shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$.

More structure

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

is said to be differential
if $\mathbb{T}=\mathbb{R}$, or \mathbb{R}_{+}, etc., and if \mathfrak{B} is the solution set of a (system of) ODE's.
a difference system if, etc.
or equivalently(!), completeness, or equivalently(!)
\mathfrak{B} is closed - topology of pointwise conv.

More structure

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

is said to be symmetric
w.r.t. the transformation group $\left\{T_{g}, g \in \mathfrak{G}\right\}$ on $\mathbb{W}^{\mathbb{T}}$
if $\boldsymbol{T}_{\boldsymbol{g}} \boldsymbol{\mathfrak { B }}=\boldsymbol{\mathfrak { B }}$ for all $\boldsymbol{g} \in \mathfrak{G}$.

Examples:

1. time-invariance, time-reversibility
2. permutation symmetry, rotation symmetry, translation symmetry, Euclidean symmetry,
3. etc., etc.
$\boldsymbol{R} \in \mathbb{R}^{\bullet \times{ }^{w}}[\boldsymbol{\xi}] \quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the
linear, time-invariant, differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

$\boldsymbol{R} \in \mathbb{R}^{\bullet \times{ }^{w}}[\xi] \quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the
linear, time-invariant, differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

NOTATION

\mathfrak{L}^{\bullet} : all such systems (with any - finite - number of variables)
$\mathfrak{L}^{\mathrm{W}}$: with W variables
$\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ (no ambiguity regarding \mathbb{T}, \mathbb{W})
$\boldsymbol{R} \in \mathbb{R}^{\bullet \times{ }^{w}}[\xi] \quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines the
linear, time-invariant, differential system: $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

NOMENCLATURE

Elements of \mathfrak{L}^{\bullet} : linear differential systems
$\boldsymbol{R}\left(\frac{d}{d t}\right) w=0:$ a kernel representation of the corresponding $\quad \Sigma \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

Overview

Starting from this vantage point, a rich theory has been developed

1. Modeling by tearing, zooming, and linking
2. Controllability and stabilizability
3. Control by interconnection:
from stabilization to LQ and \mathcal{H}_{∞}-control
4. Observability, observers and the like
5. SYSID, the MPUM, subspace ID
6. System representations
7. PDE's
8. etc., etc., ...

Controllability

Controllability

Take any two trajectories $w_{1}, w_{2} \in \mathfrak{B}$.

Controllability

Take any two trajectories $w_{1}, w_{2} \in \mathfrak{B}$.

Controllability:

Controllability

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_{1}, w_{2} \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $\boldsymbol{T} \geq \mathbf{0}$ such that

$$
w(t)=\left\{\begin{array}{cc}
w_{1}(t) & t<0 \\
w_{2}(t-T) & t \geq T
\end{array}\right.
$$

Controllability $: \Leftrightarrow$
legal trajectories must be 'patch-able', 'concatenable'.

State Controllability

Special case: classical Kalman definitions for
$\frac{d}{d t} x=f(x, u)$.

controllability: variables = state or (input, state)
This is a special case of our controllability:

State Controllability

Special case: classical Kalman definitions for
$\frac{d}{d t} x=f(x, u)$.

controllability: variables = state or (input, state)
If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman's definition addresses a rather special situation.

Tests

Given a system representation, derive algorithms in terms of the parameters for controllability.

Consider the system $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ defined by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Under what conditions on $\boldsymbol{R} \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a controllable system?

Theorem: $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$ defines a controllable system

$$
\operatorname{rank}(\boldsymbol{R}(\lambda))=\stackrel{\Leftrightarrow}{\text { constant over } \lambda \in \mathbb{C} .}
$$

Tests

Notes:

- If $R\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ has R of full row rank, then controllability $\Leftrightarrow \boldsymbol{R}(\boldsymbol{\lambda})$ is of full row rank $\forall \boldsymbol{\lambda} \in \mathbb{C}$.

Equivalently, \boldsymbol{R} is right-invertible as a polynomial matrix (\Leftrightarrow 'left prime').

Tests

Notes:

- $\frac{d}{d t} x=A x+B u, w=x$ or (x, u) is controllable iff

$$
\operatorname{rank}\left(\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]\right)=\operatorname{dim}(x) \forall \lambda \in \mathbb{C}
$$

Popov-Belevich-Hautus test for controllability.

Of course,

$$
\Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{llll}
B & A B & \cdots & A^{\operatorname{dim}(x)-1} B
\end{array}\right]\right)=\operatorname{dim}(x)
$$

Tests

Notes:

- When is

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

controllable? $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}[\boldsymbol{\xi}]$, not both zero.
Controllable $\Leftrightarrow \operatorname{rank}([p(\lambda)-q(\lambda)]=1 \forall \lambda \in \mathbb{C}$.
Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc.

Generalizable.

Stabilizability

The system $\Sigma=\left(\mathbb{T}, \mathbb{R}^{W}, \mathfrak{B}\right)$ is said to be stabilizable if, for all $\boldsymbol{w} \in \mathfrak{B}$, there exists $\boldsymbol{w}^{\prime} \in \mathfrak{B}$ such that

$$
w(t)=w^{\prime}(t) \text { for } t<0 \quad \text { and } \quad w^{\prime}(t) \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

Stabilizability $: \Leftrightarrow$
legal trajectories can be steered to a desired point.

Stabilizability

Consider the system defined by

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0
$$

Under which conditions on $\boldsymbol{R} \in \mathbb{R}^{\bullet \times w}[\boldsymbol{\xi}]$ does it define a stabilizable system?

Theorem: $\quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ defines a stabilizable system \Leftrightarrow $\operatorname{rank}(R(\lambda))=$ constant over $\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}$.

Image representations

Representations of $\mathfrak{L}^{\bullet}: \quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

called a 'latent variable' representation of the behavior of the w-variables.
'Elimination th'm' $\Rightarrow \in \mathfrak{L}^{\bullet}$.

Image representations

Representations of $\mathfrak{L}^{\bullet}: \quad \boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$
called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

called a 'latent variable' representation of the behavior of the \boldsymbol{w}-variables.
'Elimination th'm' $\Rightarrow \in \mathfrak{L}^{\bullet}$.
Missing link:

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$. Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

Image representations

Theorem: (Controllability and image representations):
The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. \mathfrak{B} is controllable
2. \mathfrak{B} admits an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

3. etc., etc.

Numerical test

- Image representation leads to an effective numerical test.
- \exists similar results \& algorithms for time-varying systems.
- ヨ partial results for nonlinear systems.

Controllable part

The 'controllable part' of $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ can be defined in many equivalent ways. Most expedient:

$$
\mathfrak{B}_{\text {controllable }}:=\text { largest controllable } \mathfrak{B}^{\prime} \in \mathfrak{L}^{\mathrm{w}}, \mathfrak{B}^{\prime} \subseteq \mathfrak{B}
$$

Two systems

$$
P_{1}\left(\frac{d}{d t}\right) w_{1}=Q_{1}\left(\frac{d}{d t}\right) w_{2} \quad P_{2}\left(\frac{d}{d t}\right) w_{1}=Q_{2}\left(\frac{d}{d t}\right) w_{2}
$$

have the same controllable part iff they have the same transfer function

$$
P_{1}^{-1} Q_{1}=: G_{1}=G_{2}:=P_{2}^{-1} Q_{2}
$$

Transfer function: determines the controllable part only.
Limited description. Limitation of tf. f'n manipulations.

Polynomial representations

Representations with $\mathbb{R}[\boldsymbol{\xi}]$-matrices of $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

1. $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \quad$ by definition
2. WLOG: R full row rank, in which case uniqueness up to pre-multiplication by unimodular
3. \boldsymbol{R} left prime over $\mathbb{R}[\boldsymbol{\xi}](\exists S: R S=\boldsymbol{I}) \Leftrightarrow \boldsymbol{B}$ controllable
4. $\boldsymbol{w}=\boldsymbol{M}\left(\frac{d}{d t}\right) \ell \Leftrightarrow \boldsymbol{B}$ controllable
5. if controllable,

WLOG: M right prime over $\mathbb{R}[\xi] \quad(\exists N: N M=I)$ 'observable image representation': $\exists N: \ell=N\left(\frac{d}{d t}\right) w$.

Representations with rational symbols

Let $G \in \mathbb{R}^{\bullet{ }^{\bullet}}(\xi)$. What does $G\left(\frac{d}{d t}\right) w=0$ mean?

Representations with rational symbols

Let $G \in \mathbb{R}^{\bullet \times w}(\xi)$.

What does $G\left(\frac{d}{d t}\right) w=0$ mean?

Joint work with

Yutaka Yamamoto

Representations with rational symbols

The behavior defined by $G\left(\frac{d}{d t}\right) w=0$ is defined as that of

$$
Q\left(\frac{d}{d t}\right) w=0
$$

with $G=P^{-1} Q$ a left co-prime factorization over $\mathbb{R}[\xi]$ of G.
Equivalently, the output nulling behavior of

$$
\frac{d}{d t} x=A x+B w, 0=C x+D w
$$

(A, B) contr., (A, C) obs., tf. f'n G.

Representations with rational symbols

The behavior defined by $G\left(\frac{d}{d t}\right) w=0$ is defined as that of

$$
Q\left(\frac{d}{d t}\right) w=0
$$

with $G=P^{-1} Q$ a left co-prime factorization over $\mathbb{R}[\xi]$ of G.
Representations with $\mathbb{R}(\boldsymbol{\xi})$-matrices of $\mathfrak{B} \in \mathfrak{L}^{\bullet}$.

1. WLOG, with G (strictly) proper, etc.
2. \boldsymbol{G} left prime over ring of stable rational f'ns $\Leftrightarrow \boldsymbol{B}$ stabilizable
3. $w=G\left(\frac{d}{d t}\right) \ell \Leftrightarrow \boldsymbol{B}$ controllable
4. if controllable, WLOG: G right prime over stable rational f'ns ‘observable im. repr’on': $\exists F$ stable rational $: \ell=F\left(\frac{d}{d t}\right) w$.

Kucera-Youla parametrization

YK parametrization

Kucera and Youla asked the question:
Given a system, parametrize all the stabilizing controllers. How do we deal with this question?

YK parametrization

Kucera and Youla asked the question:
Given a system, parametrize all the stabilizing controllers. How do we deal with this question?

Control=Interconnection

YK parametrization

Control = Interconnection . We only consider 'full control'.

$$
\text { Plant: } R\left(\frac{d}{d t}\right) w=0 \quad \text { Controller: } C\left(\frac{d}{d t}\right) w=0
$$

Given R, parametrize all C 's that lead to stability. Stability:= 'Hurwitz stability' $: \Leftrightarrow \boldsymbol{w}(\boldsymbol{t}) \rightarrow \mathbf{0}$ for $t \rightarrow \infty$.

YK parametrization

Given R, parametrize all C such that $\left[\begin{array}{l}R \\ C\end{array}\right]$ induces, via kernel repr., a stable system.

Given $\mathfrak{B} \in \mathfrak{L}^{\text {w }}$, parametrize $\mathcal{K} \in \mathfrak{L}^{w}$, such that $\mathfrak{B} \cap \mathcal{K}$ is stable.

YK parametrization

 repr., a stable system.

Given $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, parametrize $\mathcal{K} \in \mathfrak{L}^{\mathrm{w}}$, such that $\mathfrak{B} \cap \mathcal{K}$ is stable.

Assume \mathfrak{B} controllable. Known: If (and only if) \mathfrak{B} is controllable, $\exists \mathfrak{B}^{\prime} \in \mathfrak{L}^{\mathrm{w}}$ such that $\mathfrak{B} \oplus \mathfrak{B}^{\prime}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.

This \mathfrak{B}^{\prime} is, evidently, also controllable.
What does this say in terms of (f.r.r.) kernel repr. $R\left(\frac{d}{d t}\right) w=0$ and
$\boldsymbol{R}^{\prime}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ of \mathfrak{B} and \mathfrak{B}^{\prime} ? Obviously:
$\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$
unimodular.

YK parametrization

Given R, parametrize all C such that $\left[\begin{array}{l}R \\ C\end{array}\right]$ induces, via kernel repr., a stable system.
Any C can therefore be written as

$$
C=\left[\begin{array}{ll}
\boldsymbol{F} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{R} \\
\boldsymbol{R}^{\prime}
\end{array}\right] \quad \text { i.e. } \quad C=\boldsymbol{F} \boldsymbol{R}+D \boldsymbol{R}^{\prime}
$$

When does this C stabilize? Controlled system:

$$
\left[\begin{array}{cc}
I & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{l}
R \\
R^{\prime}
\end{array}\right]\left(\frac{d}{d t}\right) w=0
$$

Stable $\Leftrightarrow D$ is Hurwitz (assume D square).

YK parametrization

Given R, parametrize all C such that $\left[\begin{array}{l}R \\ C\end{array}\right]$ induces, via kernel repr., a stable system.

Parametrization through $\mathbb{R}[\boldsymbol{\xi}]$:

- Given R, controllable. Compute R^{\prime} such that $\left[\begin{array}{l}R \\ R^{\prime}\end{array}\right]$ is unimodular.
- C stabilizes $\Leftrightarrow \quad C=F R+D R^{\prime}, F$ free,D Hurwitz.

YK parametrization

YK with rational functions

$$
\text { Plant: } G\left(\frac{d}{d t}\right) w=0 \quad \text { Controller: } C\left(\frac{d}{d t}\right) w=0
$$

G, C rational. Given G, parametrize all C 's that yield stability. Stability= 'internal stability':= all tf f'ns of additive noise structure ‘stable’ (in particular proper).

Btw, without the noise this means Hurwitz + 'regular' interconnection (cfr. Trentelman).

YK parametrization

Parametrization with polynomials:

- R controllable. R^{\prime} such that $\left[\begin{array}{c}R \\ R^{\prime}\end{array}\right]$ is unimodular.
- C stabilizes $\Leftrightarrow \quad C=F R+D R^{\prime}, F$ free,D Hurwitz.

Parametrization with rational functions:

- \mathfrak{B}, stabilizable. $\boldsymbol{G}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ stable rational left prime repr.
- Compute G^{\prime} stable rational such that $\left[\begin{array}{c}G \\ G^{\prime}\end{array}\right]$ is unimodular over the stable rational functions.
- C stabilizes $\Leftrightarrow \quad C=F G+D G^{\prime}$, with F, D stable rational.

Note: nicer over stable rational: paprametrization invloves only stable rational rina!

PDE's

PDE's

Much of the theory also holds for PDE's.

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$, the set of independent variables, often $\mathrm{n}=4$,
$\mathbb{W}=\mathbb{R}^{\mathrm{W}}$, the set of dependent variables,
$\mathfrak{B}=$ sol'ns of a linear constant coefficient system of PDE's.

PDE's

Much of the theory also holds for PDE's.

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$, the set of independent variables, often $\mathrm{n}=4$,
$\mathbb{W}=\mathbb{R}^{W}$, the set of dependent variables,
$\mathfrak{B}=$ sol'ns of a linear constant coefficient system of PDE's.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 . \quad(*)
$$

Define the associated behavior

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}
$$

Notation for n -D linear differential systems:

$$
\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}, \quad \text { or } \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}
$$

Example

Maxwell's eq'ns, diffusion eq'n, wave eq'n, . . .

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

Example

Maxwell's eq'ns, diffusion eq'n, wave eq'n, . . .

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{3}$ (time and space) $\mathrm{n}=4$, $w=(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density),
$\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}, \mathrm{w}=10$,
$\mathfrak{B}=$ set of solutions to these PDE's.
Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables. ‘open' system.

Submodule theorem

$\boldsymbol{R} \in \mathbb{R}^{\bullet} \times \bullet\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$, but not vice-versa.
¿i \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$??
Is there a mathematical 'object' that characterizes a $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$?
Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\boldsymbol{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\} .
$$

Proposition:
$\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \xi_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.

Submodule theorem

$\left.\boldsymbol{R} \in \mathbb{R}^{\bullet} \times \boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$, but not vice-versa.
¿i \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{n}^{w}$??
Is there a mathematical 'object' that characterizes a $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$?
Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\boldsymbol{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\} .
$$

Proposition:
$\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \xi_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{w}\left[\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.
Theorem:

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{n}} \stackrel{\text { bijective }}{\rightleftharpoons} \text { submodules of } \mathbb{R}^{w}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]
$$

Elimination theorem

Motivation: In many problems, we want to eliminate variables. For example, first principle modeling

$~$ model containing both variables the model aims at ('manifest' variables), and auxiliary variables introduced in the modeling process ('latent' variables).
$¿$ Can these latent variables be eliminated from the equations?

Elimination theorem

This leads to the following important question, first in polynomial matrix language. Consider

$$
R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w_{1}=R_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w_{2}
$$

Obviously, the behavior of the $\left(w_{1}, w_{2}\right)$'s is described by a system of PDE's. ¿ Is the behavior of the w_{1} 's alone also ?

Elimination theorem

In the language of behaviors:
Let $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}+\mathrm{w}_{2}}$. Define
$\mathfrak{B}_{1}=\left\{w_{1} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{w_{1}}\right) \mid \exists w_{2}\right.$ such that $\left.\left(w_{1}, w_{2}\right) \in \mathfrak{B}\right\}$.
Does this 'projection' \mathfrak{B}_{1} belong to $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{1}}$?

Theorem: It does!
\mathfrak{L}^{\bullet} is closed under projection !!

The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

$$
F(x)=y
$$

Given: $\quad \boldsymbol{F}: \mathbb{X} \rightarrow \mathbb{Y}, \quad y \in \mathbb{Y} ; \quad$ Unknown: $\quad x \in \mathbb{X}$.
¿ Does there exists a sol'n x ?
Examples:
1.
2.
3.

The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

$$
F(x)=y
$$

Given: $\quad \boldsymbol{F}: \mathbb{X} \rightarrow \mathbb{Y}, \quad y \in \mathbb{Y} ; \quad$ Unknown: $\quad x \in \mathbb{X}$.
¿ Does there exists a sol'n x ?
Examples:

1. $\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}, y \in \mathbb{R}^{\mathrm{n}_{2}}, x \in \mathbb{R}^{\mathrm{n}_{1}}$
2.
3.

The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

$$
F(x)=y
$$

Given: $\quad \boldsymbol{F}: \mathbb{X} \rightarrow \mathbb{Y}, \quad y \in \mathbb{Y} ; \quad$ Unknown: $\quad x \in \mathbb{X}$. ¿ Does there exists a sol'n x ?

Examples:
1.
2. ODE's:

$$
F\left(\frac{d}{d t}\right) x=y
$$

with $F \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi], y \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{2}}\right), x \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{1}}\right)$.
Or over distributions, $y \in \mathfrak{D}^{\prime}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{2}}\right), x \in \mathfrak{D}^{\prime}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{1}}\right)$.

The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

$$
F(x)=y
$$

Given: $\quad \boldsymbol{F}: \mathbb{X} \rightarrow \mathbb{Y}, \quad y \in \mathbb{Y} ; \quad$ Unknown: $\quad x \in \mathbb{X}$. ¿ Does there exists a sol'n x ?

Examples:
1.
2.
3. PDE's:

$$
F\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y
$$

$$
\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right], \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{2}}\right)
$$

$x \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$, or over distributions.

The Fundamental Principle for PDE's

$$
\boldsymbol{F}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y
$$

Given: $\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right], \quad \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{2}}\right)$, Unknown: $x \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$.
¿ Does there exists a sol'n x ?

Obvious necessary condition:

$$
\begin{array}{r}
\left(n \in \mathbb{R}^{n_{1}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]\right) \wedge\left(\mathrm{n}^{\top}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right) F\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)=0\right) \\
\Rightarrow n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) y=0
\end{array}
$$

Theorem (Fundamental principle): This is a n.a.s.c.

The Fundamental Principle for PDE's

$$
F\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y
$$

Given: $\quad \boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right], \quad \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{2}}\right)$, Unknown: $x \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$.
¿ Does there exists a sol'n x ?
Theorem (Fundamental principle): This is a n.a.s.c.
Since the n 's form a (finitely generated) $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$-module, this is a finite condition!

Example:

Take $0 \neq \boldsymbol{F} \in \mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$. PDE $\quad \boldsymbol{F}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y$. Always solvable!

The elimination theorem

There exist effective algorithms for $\left(R_{1}, R_{2}\right) \mapsto R$. \sim Computer algebra, Gröbner bases.

It follows from all this that $\mathfrak{L}_{\mathrm{n}}^{0}$ has very nice properties. In particular, it is closed under:

- Intersection:
$\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{W}}\right)$
- Addition:
$\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$
- Projection: $\left(\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}}\right) \Pi_{w_{1}}$: projection
- Action of a linear differential operator:

$$
\left(\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}}, P \in \mathbb{R}^{w_{2} \times w_{1}}\left[\xi_{1}, \cdots, \xi_{n}\right]\right) \Rightarrow\left(P\left(\frac{d}{d t}\right) \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{2}}\right) .
$$

- Inverse image of a linear differential operator:

$$
\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{w_{2}}, P \in \mathbb{R}^{w_{2} \times{ }_{w_{1}}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]\right) \Rightarrow\left(P\left(\frac{d}{d t}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\boldsymbol{w}_{1}} .
$$

Elimination theorem

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations ?
Eliminate $\overrightarrow{\boldsymbol{B}}$ from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0
$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$.
Another representation: image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell .
$$

'Elimination' thm $\quad \Rightarrow \quad \operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}!$

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$.
Another representation: image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

'Elimination' thm $\quad \Rightarrow \quad \operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$!
Which linear diff. systems admit an image representation???
$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ admits an image representation iff it is 'controllable'.

Controllability for PDE's

Controllability def'n in pictures:

$$
\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in \mathfrak{B}
$$

Controllability for PDE's

$\exists \boldsymbol{w} \in \mathfrak{B}$ 'patches' $w_{1}, w_{2} \in \mathfrak{B}$.

Controllability : \Leftrightarrow 'patch-ability'.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi, \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi .
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection controllability $\Leftrightarrow \exists$ potential!

Conclusion

The flexibility and generality of the behavioral approach in modeling, for system representations, for passive control, dealing with PDE's, etc. is evident.

Exemplified by the notion of controllability.

Conclusion

The flexibility and generality of the behavioral approach in modeling, for system representations, for passive control, dealing with PDE's, etc. is evident.

Exemplified by the notion of controllability.

Nature and Nature's laws lay hid in night
God said, 'Let Newton be' and all was light

Conclusion

The flexibility and generality of the behavioral approach in modeling, for system representations, for passive control, dealing with PDE's, etc. is evident.

Exemplified by the notion of controllability.

> Nature and Nature's laws lay hid in night God said, 'Let Newton be' and all was light

Mathematical Systems Theory lay bound by might Ratio said, 'Let Behaviors be' and all was right

Details \& copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Details \& copies of the lecture frames are available from/at Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

