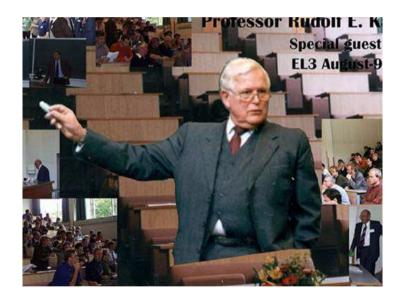
Open Problem Session When is a linear system optimal?

Jan C. Willems K.U. Leuven

Oberwolfach Tagung Regelungstheorie

March 1, 2005

Re: the title



Plagiarism is the greatest form of compliment

Notation

Consider the QDF

$$w \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{\mathrm{w}}) \mapsto \sum\limits_{\mathrm{k},\ell} \; (rac{d^{\,\mathrm{k}}}{dt^{\,\mathrm{k}}}w)^ op \Phi_{\mathrm{k},\ell}(rac{d^{\,\mathrm{k}}}{dt^{\,\ell}}w)$$

$$\Phi_{\mathtt{k},\ell} = \Phi_{\ell,\mathtt{k}}^{ op} \in \mathbb{R}^{\mathtt{w} imes \mathtt{w}}$$
. Introduce

$$\Phi(\zeta,\eta):=\sum_{\mathrm{k},\ell}\;\Phi_{\mathrm{k},\ell}\zeta^{\,\mathrm{k}}\eta^{\,\ell},$$

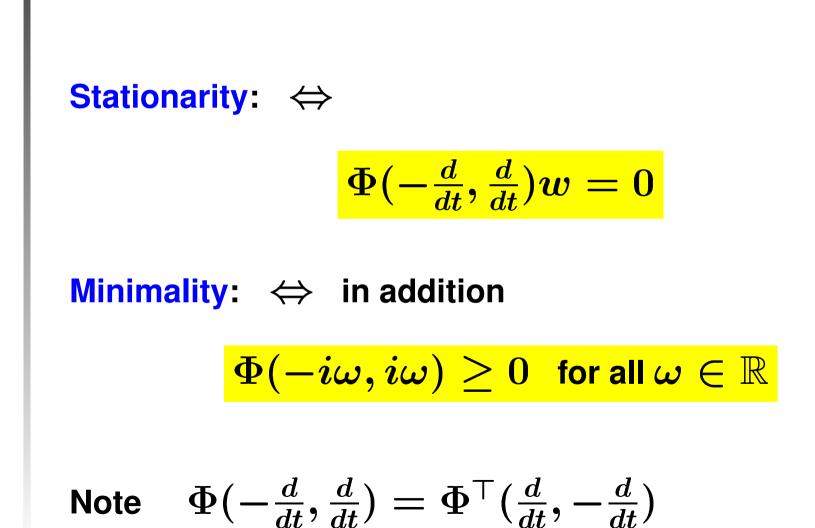
and denote the QDF by $\,\,{\sf Q}_{\Phi}(w).$

 Q_{Φ} is like a Lagrangian.

Optimality

$$w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$$
 is an optimal trajectory if
 $\int_{-\infty}^{+\infty} \left(\mathsf{Q}_{\Phi}(w + \Delta) - \mathsf{Q}_{\Phi}(w) \right) dt \ge 0$
for all $\Delta \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ with compact support.

Optimal behavior



Importance

Opens up the possibility of describing a behavior very effectively by a single function Q_{Φ} :

The behavior consists of the trajectories $w:\mathbb{R} o\mathbb{R}^{ imes}$ than minimize, or render stationary, $\int_{-\infty}^{+\infty}Q_{\Phi}(w)\,dt.$

Open Problem

Consider

$$R(\frac{d}{dt})w=0.$$

Denote its *behavior* by \mathfrak{B} .

Open Problem: *When is* **B** *an optimal behavior?*

i.e., Given \mathfrak{B} , ¿ $\exists \ \Phi, \$ with $\Phi(-i\omega,i\omega)\geq 0 \$ for all $\omega\in \mathbb{R}$, such that

$$\Phi(-rac{d}{dt},rac{d}{dt})w=0$$

has also the given behavior \mathfrak{B} ?

Open Problem

Consider

$$R(\frac{d}{dt})w=0.$$

Denote its *behavior* by \mathfrak{B} .

Open Problem: *When is* **B** *an optimal behavior*?

Sufficient: $[R(\xi) = R^{\top}(-\xi)] \wedge [R(i\omega) \ge 0 \text{ for all } \omega \in \mathbb{R}].$ Necessary (autonomous case) and Sufficient: Given $\exists U$ unimodular, such that UR has these properties.

But, we are looking for conditions on $\mathfrak{B}!$

		1
W	=	Ι

The scalar case w = 1 is easy, but not uninteresting.

$$R(rac{d}{dt})w=0, \qquad R\in \mathbb{R}[m{\xi}]$$

is stationary iff $R(\xi) = R(-\xi)$, i.e., R is even.

		1
M	_	
		-

The scalar case w = 1 is easy, but not uninteresting.

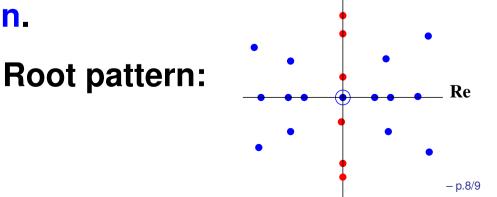
$$R(rac{d}{dt})w=0, \qquad R\in \mathbb{R}[m{\xi}]$$

is stationary iff $R(\xi)=R(-\xi)$, i.e., R is even.

Equivalently, iff \mathfrak{B} is

1. time-reversible := $[w(t) \in \mathfrak{B}] \Leftrightarrow [w(-t) \in \mathfrak{B}]$

2. and of even dimension.



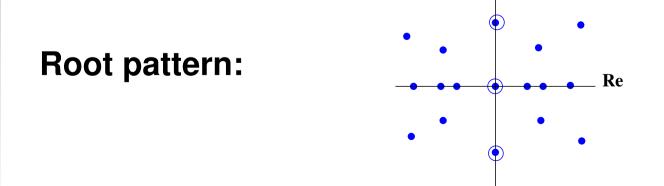
		1
M	_	
		-

The scalar case w = 1 is easy, but not uninteresting.

$$R(rac{d}{dt})w=0, \qquad R\in \mathbb{R}[m{\xi}]$$

is stationary iff $R(\xi)=R(-\xi)$, i.e., R is even.

optimal behavior iff imaginary roots even multiplicity.



Time-reversible, even dimension, non-oscillatory.

Conclusion

Optimality \Rightarrow **non-constant trajectories unbounded.**

If, as young Leibniz claimed,

ours is the best of all possible worlds,

there was a Big Bang, and it will end as a Supernova...

Conclusion

Optimality \Rightarrow **non-constant trajectories unbounded.**

If, as young Leibniz claimed,

ours is the best of all possible worlds,

there was a Big Bang, and it will end as a Supernova...

What $\mathfrak{B} \in \mathfrak{L}^{W}$ are optimal?

Please hand in solutions by noon on Thursday!

Conclusion

Optimality \Rightarrow **non-constant trajectories unbounded.**

If, as young Leibniz claimed,

ours is the best of all possible worlds,

there was a Big Bang, and it will end as a Supernova...

What $\mathfrak{B} \in \mathfrak{L}^{W}$ are optimal?

Please hand in solutions by noon on Thursday!

Thank you