IDENTIFICATION of ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems K.U. Leuven On-going joint research with Ivan Markovsky (K.U. Leuven) Paolo Rapisarda (Un. Maastricht) & Bart De Moor (K.U. Leuven) # Problem # System ID # **Case of interest today** Data: an 'observed' vector time-series $$ilde{w}(1), ilde{w}(2), \dots, ilde{w}(T)$$ $w(t) \in \mathbb{R}^{ t w}, T$ finite or infinite A dynamical model from a model class, e.g. a difference equation $$egin{aligned} R_0 oldsymbol{w}(t) + R_1 oldsymbol{w}(t+1) + \cdots + R_L oldsymbol{w}(t+L) \ &= 0 \ \\ &= M_0 oldsymbol{arepsilon}(t) + M_1 oldsymbol{arepsilon}(t+1) + \cdots + M_L oldsymbol{arepsilon}(t+L) \end{aligned}$$ # **Case of interest today** #### We discuss 2 cases: #### 'deterministic' ID $$R_0 \mathbf{w}(t) + R_1 \mathbf{w}(t+1) + \cdots + R_L \mathbf{w}(t+L) = 0$$ $$ilde{w}(1), ilde{w}(2),\ldots, ilde{w}(T)\mapsto \hat{R}(\xi)=\hat{R}_0+\hat{R}_1\xi+\cdots+\hat{R}_{\hat{L}}\xi^{\hat{L}}$$ # **Case of interest today** #### We discuss 2 cases: ## **ID** with latent inputs $$R_0 \mathbf{w}(t) + R_1 \mathbf{w}(t+1) + \dots + R_L \mathbf{w}(t+L)$$ $$= M_0 \mathbf{\varepsilon}(t) + M_1 \mathbf{\varepsilon}(t+1) + \dots + M_L \mathbf{\varepsilon}(t+L)$$ $$ilde{w}(1), ilde{w}(2), \ldots, ilde{w}(T) \mapsto ig(\hat{R}(\xi), \hat{M}(\xi)ig)$$ # Deterministic System ID Basic ideas: look through the window in order to discover the laws. Data: $$ilde{w}(1), ilde{w}(2), \ldots, ilde{w}(T)$$ #### Consider Compute left kernel of \mathcal{H} . Structure of a polynomial module ightharpoonup efficient computation, recursive in 'depth' Δ . # **Identifiability** # Assume $ilde{w} = (ilde{u}, ilde{y})$ generated by behavior ${\mathfrak B}$. Then $$egin{bmatrix} ilde{u}(1) & ilde{u}(2) & ilde{u}(3) & \cdots & ilde{u}(T-\Delta+1) \ ilde{y}(1) & ilde{y}(2) & ilde{y}(3) & \cdots & ilde{y}(T-\Delta+1) \ ilde{u}(2) & ilde{u}(3) & ilde{u}(4) & \cdots & ilde{u}(T-\Delta+2) \ ilde{y}(2) & ilde{y}(3) & ilde{y}(4) & \cdots & ilde{y}(T-\Delta+2) \ dots & dots & dots & dots & dots & dots \ ilde{u}(\Delta) & ilde{u}(\Delta+1) & ilde{u}(\Delta+2) & \cdots & ilde{u}(T) \ ilde{y}(\Delta) & ilde{y}(\Delta+1) & ilde{y}(\Delta+2) & \cdots & ilde{y}(T) \ \end{bmatrix}$$ # has 'correct' kernel & image if - 1. $\Delta > L(\mathfrak{B})$ 2. \mathfrak{B} controllable - 3. $ilde{u}$ is persistently exciting of order $> \Delta + \mathrm{n}(\mathfrak{B})$ From the data to the state trajectory $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ ## If it is possible to pass from the data $$ilde{w}(1), ilde{w}(2), \ldots, ilde{w}(T)$$ # directly to the state trajectory $$ilde{x}(1), ilde{x}(2), \ldots, ilde{x}(T)$$ # Then we can identify the model by solving $$\begin{bmatrix} \tilde{x}(2) & \tilde{x}(3) & \cdots & \tilde{x}(T) \\ \tilde{y}(1) & \tilde{y}(2) & \cdots & \tilde{y}(T-1) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(1) & \tilde{x}(2) & \cdots & \tilde{x}(T-1) \\ \tilde{u}(1) & \tilde{u}(2) & \cdots & \tilde{u}(T-1) \end{bmatrix}$$ #### How does this work? $$ilde{w}(1), ilde{w}(2), \ldots, ilde{w}(T)$$ $$ilde{x}(1), ilde{x}(2), \ldots, ilde{x}(T)$$ Several algorithms. We give 3 of them. Assume $\Delta > L(\mathfrak{B})$, and pers. of exc. as needed. $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ # 1. Compute 'the' left annihilators of \mathcal{H} : $$\begin{bmatrix} N_1 & N_2 & N_3 & \cdots & N_{\Delta} \end{bmatrix} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-\Delta+1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-\Delta+2) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T-\Delta+3) \end{bmatrix} = 0$$ $$\vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(T) \end{bmatrix}$$ $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ # 1. Compute 'the' left annihilators of \mathcal{H} : $$\begin{bmatrix} N_1 & N_2 & N_3 & \cdots & N_\Delta \end{bmatrix} \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-\Delta+1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-\Delta+2) \\ \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(T-\Delta+3) \end{bmatrix} = 0$$ $$\vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(T) \end{bmatrix}$$ ## **Then** $$\left[ilde{x}(1) \qquad ilde{x}(2) \qquad \cdots \ ilde{x}(T-\Delta+1) ight]$$ $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ $$\begin{bmatrix} \frac{\mathcal{H}_{-}}{\mathcal{H}_{+}} \end{bmatrix} = \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-2\Delta+1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-2\Delta+2) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(T-\Delta) \end{bmatrix}$$ $$\frac{\tilde{w}(\Delta+1)}{\tilde{w}(\Delta+2)} \frac{\tilde{w}(\Delta+2)}{\tilde{w}(\Delta+3)} \frac{\tilde{w}(T-\Delta+1)}{\tilde{w}(T-\Delta+2)}$$ $$\vdots & \vdots & \vdots \\ \tilde{w}(2\Delta) & \tilde{w}(2\Delta+1) & \cdots & \tilde{w}(T) \end{bmatrix}$$ **PAST** **FUTURE** $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ 2. The intersection of the span of the rows of \mathcal{H}_{-} with the span of the rows of \mathcal{H}_{+} equals $$egin{bmatrix} ilde{x}(\Delta) & ilde{x}(\Delta+1) & \cdots & ilde{x}(T-\Delta) \end{bmatrix} egin{array}{c} \mathsf{PRESENT} \ \mathsf{STATE} \end{array}$$ Nice num. impl. (e.g. via left kernel) → subspace ID-p.11/37 $$\tilde{w} \mapsto \tilde{x} \mapsto \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ ## 3. Solve for G $$\begin{bmatrix} \tilde{w}(1) & \cdots & \tilde{w}(T-2\Delta+1) \\ \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \cdots & \tilde{w}(T-\Delta) \\ \hline \tilde{u}(\Delta+1) & \cdots & \tilde{u}(T-\Delta+1) \\ \vdots & \vdots & \vdots \\ \tilde{u}(2\Delta) & \cdots & \tilde{u}(T) \end{bmatrix} \boldsymbol{G} = \begin{bmatrix} \tilde{w}(1) & \cdots & \tilde{w}(T-2\Delta+1) \\ \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \cdots & \tilde{w}(T-\Delta) \\ \hline 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \\ \end{bmatrix}$$ $$\left[egin{array}{ccccc} ilde{y}(\Delta+1) & \cdots & ilde{y}(T-\Delta+1) \ dots & dots & dots \ ilde{y}(2\Delta) & \cdots & ilde{y}(T) \end{array} ight]G = \left[egin{array}{ccccc} ilde{x}(\Delta) & \cdots & ilde{x}(T-\Delta) \ \end{array} ight]$$ Computes $ilde{x}!$ \cong 'oblique projection $$\tilde{w}\mapsto R \text{ or } \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$ These algorithms, compute the left kernel of \mathcal{H} , etc. allow approximate implementations. For the state algorithms, this is worked out very well (subspace ID). $$ightarrow \left| ilde{oldsymbol{X}}^{ ext{red}} ight| = \left| ilde{oldsymbol{x}}^{ ext{red}}(1) \ \ ilde{oldsymbol{x}}^{ ext{red}}(2) \ \ \cdots \ \ ilde{oldsymbol{x}}^{ ext{red}}(T) ight|$$ followed by LS solution of $$\begin{bmatrix} \tilde{x}^{\mathrm{red}}(2) \, \tilde{x}^{\mathrm{red}}(3) \cdots \, \tilde{x}^{\mathrm{red}}(T) \\ \tilde{y}(1) \quad \tilde{y}(2) \quad \cdots \, \tilde{y}(T-1) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}^{\mathrm{red}}(1) \, \tilde{x}^{\mathrm{red}}(2) \cdots \, \tilde{x}^{\mathrm{red}}(T-1) \\ \tilde{u}(1) \quad \tilde{u}(2) \cdots \quad \tilde{u}(T-1) \end{bmatrix}$$ | # | Data set name | T | m | $oldsymbol{p}$ | l | |----|--------------------------------------------|------|---|----------------|----------------| | 1 | Data of the western basin of Lake Erie | 57 | 5 | 2 | 1 | | 2 | Data of Ethane-ethylene column | 90 | 5 | 3 | 1 | | 3 | Data of a 120 MW power plant | 200 | 5 | 3 | 2 | | 4 | Heating system | 801 | 1 | 1 | 2 | | 5 | Data from an industrial dryer | 867 | 3 | 3 | 1 | | 6 | Data of a hair dryer | 1000 | 1 | 1 | 5 | | 7 | Data of the ball-and-beam setup in SISTA | 1000 | 1 | 1 | 2 | | 8 | Wing flutter data | 1024 | 1 | 1 | 5 | | 9 | Data from a flexible robot arm | 1024 | 1 | 1 | 4 | | 10 | Data of a glass furnace (Philips) | 1247 | 3 | 6 | 1 | | 11 | Heat flow density through a two layer wall | 1680 | 2 | 1 | 2 | | 12 | Simulation of a pH neutralization process | 2001 | 2 | 1 | 6 | | 13 | Data of a CD-player arm | 2048 | 2 | 2 | 1 | | 14 | Data from an industrial winding process | 2500 | 5 | 2 | 2 | | 15 | Liquid-saturated heat exchanger | 4000 | 1 | 1 | 2 | | 16 | Data from an evaporator | 6305 | 3 | 3 | 1 | | 17 | Continuous stirred tank reactor | 7500 | 1 | 2 | 1 | | 18 | Model of a steam generator | 9600 | 4 | 4 | 1 p.13/ | Compare the misfit on the last 30% of the outputs and the execution time for computing the ID model from the first 70% of the data. ## **Misfit** ## **Execution time** Latency minimization # Why latent variables? $$R_0 \mathbf{w}(t) + R_1 \mathbf{w}(t+1) + \cdots + R_L \mathbf{w}(t+L) = 0$$ #### versus $$egin{aligned} R_0 oldsymbol{w}(t) + R_1 oldsymbol{w}(t+1) + \cdots + R_L oldsymbol{w}(t+L) \ &= M_0 oldsymbol{arepsilon}(t) + M_1 oldsymbol{arepsilon}(t+1) + \cdots + M_L oldsymbol{arepsilon}(t+L) \ &= M_0 oldsymbol{arepsilon}(t) + M_1 oldsymbol{arepsilon}(t+1) + \cdots + M_L oldsymbol{arepsilon}(t+L) \end{aligned}$$ # Why latent variables? As far as the w-behavior is concerned, this gives nothing new (\Leftarrow elimination theorem). So, what is the rationale for using latent variables ε ? # Why latent variables? Data $$ilde{w}(t_1), ilde{w}(t_1+1), \ldots, ilde{w}(t_2)$$ with $ilde{oldsymbol{w}}(oldsymbol{t}) \in \mathbb{R}$ #### The model $$R_0w(t) + R_1w(t+1) + \cdots + R_Lw(t+L) = 0$$ $$ightharpoonup$$ either $w=\mathsf{input}$, free, $\mathfrak{B}=\mathbb{R}^{\mathbb{T}}$ or w= output, $op \mathfrak{B}\cong$ sums of 'exponentials' op very restrictive. ## **Assuming unobserved inputs:** $$R_0 \mathbf{w}(t) + \cdots + R_L \mathbf{w}(t+L) = M_0 \mathbf{\varepsilon}(t) + \cdots + M_L \mathbf{\varepsilon}(t+L)$$ gives better possibilities, e.g. for prediction. # **Latency minimization** ## Define the 'latency': latency $$(ilde{w}, \mathfrak{B}) := \min \| | ilde{arepsilon} ||_{\ell^2}$$ with the minimum taken over all $\tilde{\varepsilon}$ such that $$R_0\tilde{\boldsymbol{v}}(t) + \cdots + R_L\tilde{\boldsymbol{v}}(t+L) = M_0\tilde{\boldsymbol{\varepsilon}}(t) + \cdots + M_L\tilde{\boldsymbol{\varepsilon}}(t+L)$$ i.e. min. over all $\tilde{\varepsilon}$ that 'explain' $\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T)$. → system ID: search for the optimal model, in the sense of minimal latency, in a given model class. # **Latency minimization** - How do we compute the latency, the optimal $\tilde{\varepsilon}$'s? - Algorithms for minimization over the R's, M's in the model class. The latency minimization is a deterministic Kalman filtering problem The latency is actually equal to the prediction error! → deterministic interpretation, system ID toolbox, etc. Stochastic System ID # Why stochastic interpretation? $$R_0 \mathbf{w}(t) + \cdots + R_L \mathbf{w}(t+L) = M_0 \mathbf{\varepsilon}(t) + \cdots + M_L \mathbf{\varepsilon}(t+L)$$ In this model we can, of course, consider ε as a stochastic disturbance. If we consider also u as a stochastic process, then also w becomes stochastic. This has the virtue to make the system ID problem to a statistical one, leading to questions of maximum likelihood estimation (very related to prediction error). It allows evaluation of the algorithms in terms of their behavior as $T \to \infty$. Nice statistical questions emerge, as consistency, asymptotic efficiency, etc. → deep theory of ARMAX systems -p.18/37 # Why stochastic interpretation? It is difficult to argue that stochastic unobserved disturbances offer a realistic explanation of the lack of fit between observations and the deterministic part. This lack of fit is more likely a result of low order, linear models for nonlinear systems, neglected dynamics, approximation, in addition to unmeasured inputs, which may or may not be stochastic. Stochastic methods offer the user a 'certificate' under which the algorithms work well. # ARMAX Systems ## **Processes** In the remainder of this talk 'pro <mark>'process'</mark> n means: a vector of real stoch. processes on \mathbb{Z} (or \mathbb{N}), (jointly) gaussian, zero mean, stationary, and ergodic. **'White noise'** means: a process $oldsymbol{arepsilon}$ with the $$arepsilon(t)$$'s i.i.d. and $\mathbb{E}\Big(arepsilon(0)arepsilon^ op(0)\Big)=I$ means: 'independence'. ## **Processes** In the remainder of this talk <mark>'process'</mark> m means: a vector of real stoch. processes on \mathbb{Z} (or \mathbb{N}), (jointly) gaussian, zero mean, stationary, and ergodic. A (stochastic) system means: := a collection of processes = the 'behavior' # **ARMAX** # Consider the difference eq'ns $$W(\sigma)w=E(\sigma)arepsilon$$ (ARMAX) with E,E real polynomial matrices; $$\sigma=$$ the 'shift': $(\sigma f)(t):=f(t+1).$ #### **ARMAX** # Consider the difference eq'ns $$W(\sigma)w=E(\sigma)arepsilon$$ (ARMAX) The stochastic system consisting of all processes w satisfying (ARMAX) with ε white noise is called the ARMAX system (W, E). #### **ARMAX** # Consider the difference eq'ns $$W(\sigma)w=E(\sigma)arepsilon$$ (ARMAX) **Example: the difference eq'ns** $$Y(\sigma)y + U(\sigma)u = E(\sigma)\varepsilon$$ (ARMAX) with Y, U, E real polynomial matrices, Y square, $\det(Y) \neq 0$; Under 'generic' conditions, u is free: $\forall u \; \exists \; y \; ... \; ,$ u is an 'exogeneous' input; y an 'endogenous' output. ## AR-MA-X # Refine the ARMAX notation, by factoring out A, to: $$A(\sigma)\Big(R(\sigma)w\Big)=M(\sigma)arepsilon$$ A,R,M real polynomial matrices, A square, $det(A) \neq 0$, $oldsymbol{R}$ left prime. #### AR-MA-X # Refine the ARMAX notation, by factoring out A, to: $$A(\sigma)\Big(R(\sigma)w\Big)=M(\sigma)arepsilon$$ We call $oldsymbol{A}$ the <code>AR-part</code> $oldsymbol{M}$ the $oldsymbol{\mathsf{MA-part}}$ $oldsymbol{R}$ the <code>X-part</code> $G=P^{-1}Q \ \ (R=[\ P\ \ Q\])$ = tf f'n of the 'deterministic part'. \exists a 'classification up to equivalence issue' for (R,A,M). # **AR-MA-X system ID** # Estimate R,A,M from observed $$ilde{w}(1), ilde{w}(2) \dots, ilde{w}(T)$$ # **AR-MA-X system ID** # In the stochastic case, the subspace algorithms $$\begin{bmatrix} \frac{\mathcal{W}(1)}{\mathcal{H}_{+}} \end{bmatrix} = \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(T-2\Delta+1) \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(T-2\Delta+2) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(\Delta) & \tilde{w}(\Delta+1) & \cdots & \tilde{w}(T-\Delta) \end{bmatrix} = \begin{bmatrix} \uparrow \\ \uparrow \\ \uparrow \\ \hline \tilde{w}(\Delta+1) & \tilde{w}(\Delta+2) & \cdots & \tilde{w}(T-\Delta+1) \\ \tilde{w}(\Delta+2) & \tilde{w}(\Delta+3) & \cdots & \tilde{w}(T-\Delta+2) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{w}(2\Delta) & \tilde{w}(2\Delta+1) & \cdots & \tilde{w}(T) \end{bmatrix}$$ require, e.g. for consistency, $T o \infty$, which is fine, but also $\Delta o \infty$, which is unfortunate! # **AR-MA-X system ID** Estimate R,A,M from observed $$ilde{w}(1), ilde{w}(2) \dots, ilde{w}(T)$$ Divide et impera algorithm: $$ilde{w}\mapsto R\mapsto A\mapsto M$$ Today, we explain the 'X-part': how to compute $$ilde{w}\mapsto R$$ $ilde{w}\mapsto R$ # Assume that $ilde{w}=\left|egin{smallmatrix} ilde{u} \ ilde{y} \end{smallmatrix} ight|$, and $rac{ ilde{u}\perparepsilon}{ar{u}\perparepsilon}$. Then $$A(\sigma)\Big(P(\sigma) ilde{y}+Q(\sigma) ilde{u}\Big)=R(\sigma) ilde{w}=M(\sigma)arepsilon$$ \Rightarrow $$R(\sigma) ilde{w} = \sum_{t=-\infty}^{+\infty} H(t) \,\, \sigma^t arepsilon$$ \Rightarrow (since $arepsilon \perp ilde{u}$) $$R(\sigma) ilde{w} \perp ilde{u}.$$ #### Basic idea: the linear combinations of the rows of the observed #### that are orthogonal to the rows of the observed determine R. ## $ilde{w}\mapsto R$ $$egin{bmatrix} ilde{u}(1) & ilde{u}(2) & ilde{u}(3) & \cdots & ilde{u}(t) & \cdots \ ilde{u}(2) & ilde{u}(3) & ilde{u}(4) & \cdots & ilde{u}(t+1) & \cdots \ ilde{u}(3) & ilde{u}(4) & ilde{u}(5) & \cdots & ilde{u}(t+2) & \cdots \ ilde{:} & ilde{:$$ \exists an ∞ number of such 'orthogonalizing' linear combinations. What special structure do they have, so that they are determined by a finite number of them, \cong R? Is there a way to limit the number of rows? A module can be thought of as 'a vector space over a ring'. A mathematician's favorite ex.: the module $\mathbb{Z} + \sqrt{2}\,\mathbb{Z} + \sqrt{5}\,\mathbb{Z}$ over the ring \mathbb{Z} A system theorist's favorite ex.: the module $\mathbb{R}^{\mathrm{n}}[oldsymbol{\xi}]$ over the ring $\mathbb{R}[oldsymbol{\xi}]$ $\mathbb{R}^n[\xi]$:= the n-dimensional vectors of polynomials with real coefficients, in the indeterminate ξ . A submodule of $\mathbb{R}^n[m{\xi}]$ is a subset that is also a module over $\mathbb{R}[m{\xi}]$. E.g., for given polynomial vectors $v_1, v_2, \ldots, v_{ ext{k}}$, all sums $$p_1v_1+p_2v_2+\cdots+p_{\mathtt{k}}v_{\mathtt{k}}$$ p's polynomials. The submodule 'generated by' $v_1, v_2, \ldots, v_{\mathtt{k}}$. Fact: Every submodule of $\mathbb{R}^n[\xi]$ is of this form: 'finitely generated'. Fact: Number of generators $\leq n$. (mimimum =: the dimension) A submodule of $\mathbb{R}^n[m{\xi}]$ is a subset that is also a module over $\mathbb{R}[m{\xi}]$. A submodule of $\mathbb{R}^n[\xi]$ is said to be slim if it does not contain other submodules of the same dimension $$\Leftrightarrow V = [\,v_1\,v_2\,\cdots\,v_{\scriptscriptstyle k}\,]$$ right prime. slim: not slim: $$oldsymbol{p}(oldsymbol{\xi}) \ \mathbb{R}[oldsymbol{\xi}].$$ Submodules of $\mathbb{R}^n[\xi]$ are of great importance in system theory: linear time-inv. diff. systems $\overset{1:1}{\longleftrightarrow}$ submodules of $\mathbb{R}^n[oldsymbol{\xi}]$ controllable LTIS 1:1 ←→ slim submodules Submodules of $\mathbb{R}^n[\xi]$ are of great importance in system theory: The 'left' or 'right' kernel of any Hankel matrix \cong a submodule of $\mathbb{R}^{\operatorname{coldim}(H)}[\xi]$ or $\mathbb{R}^{\operatorname{rowdim}(H)}[\xi]$: \sim effectively not ∞ -dimensional, but $\leq \operatorname{rowdim}(H)$ - or $\operatorname{coldim}(H)$ -dimensional! Let $$w=\left[egin{array}{c} u \ y \end{array} ight]$$ be a process. Say, ${ t w}$ -dimensional. $$n \in \mathbb{R}^{\scriptscriptstyle{ orall}}[oldsymbol{\xi}]$$ is an $egin{array}{c} oldsymbol{\mathsf{orthogonalizer}} \end{array}$ (for w w.r.t u) if $$n^{\top}(\sigma)w\perp u$$. i.e. a linear combination of the components of the process $oldsymbol{w}$ and its shifts which becomes independent of the process $oldsymbol{u}$. Let $w=\left[egin{array}{c} u \ y \end{array} ight]$ be a process. Say, ${ t w}$ -dimensional. $n \in \mathbb{R}^{\scriptscriptstyle{ orall}}[oldsymbol{\xi}]$ is an $egin{array}{c} oldsymbol{\mathsf{orthogonalizer}} \end{array}$ (for w w.r.t u) if $$n^{\top}(\sigma)w\perp u$$. Ex.: the transpose of the rows of $\,R$, since $$A(\sigma)ig(R(\sigma)wig)=M(\sigma)arepsilon$$ $\perp u.$ ⇒ every element of the module generated by these. Is this all? Are there no other orthogonalizers? Let $w=\left|egin{smallmatrix}u\\y\end{smallmatrix}\right|$ be a process. Say, ${ t w}$ -dimensional. #### Theorem: - 1. The orthogonalizers for ${\boldsymbol w}$ w.r.t. ${\boldsymbol u}$ form a submodule of $\mathbb{R}^{\mathbb{W}}[{\boldsymbol \xi}]$. - 2. In fact, a slim one. - 3. If $w = \begin{bmatrix} u \\ y \end{bmatrix}$ and u is 'persistently exciting', then it is precisely the submodule generated by the transposes of the rows of R. Let $w=\left|egin{smallmatrix}u\\y\end{smallmatrix}\right|$ be a process. Say, ${\tt w}$ -dimensional. #### Theorem: - 1. The orthogonalizers for w w.r.t. u form a submodule of $\mathbb{R}^w[\xi]$. - 2. In fact, a slim one. - 3. If $w = \begin{bmatrix} u \\ y \end{bmatrix}$ and u is 'persistently exciting', then it is precisely the submodule generated by the transposes of the rows of R. **Proof**: 1. is easy. 2. uses ergodicity! 3. a bit of module theory. $ilde{w}\mapsto R$ # Find (a module basis for) the linear combinations of the rows of $$egin{bmatrix} ilde{w}(1) & ilde{w}(2) & ilde{w}(3) & \cdots & ilde{w}(t) & \cdots \ ilde{w}(2) & ilde{w}(3) & ilde{w}(4) & \cdots & ilde{w}(t+1) & \cdots \ ilde{w}(3) & ilde{w}(3) & ilde{w}(5) & \cdots & ilde{w}(t+2) & \cdots \ dots & dots & dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ & dots \ dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & \ dots & &$$ # that are orthogonal to the rows of $$ilde{w}\mapsto R$$ #### Find the linear combinations of the rows of # that are orthogonal to the rows of !! Compute the left kernel of $WU^{ op}$. $$ilde{w}\mapsto R$$ #### Find the linear combinations of the rows of # that are orthogonal to the rows of **22 Can we limit the number of rows that are needed ??** Yes, provided we assume a known bound on the lags. It is easy to prove that this, applied to a finite time-series, yields a consistent algorithm. Note: no stability needed P for $R = [P \ Q]$. $ilde{w}\mapsto A,M$ # Once we have $oldsymbol{R}$, we can compute the process $$ilde{a} = R(\sigma) ilde{w}$$ This is an ARMA process. Our thinking in modules proceeds by estimating $oldsymbol{A}$. $ilde{w}\mapsto A,M$ Once we have $oldsymbol{R}$, we can compute the process $$ilde{a} = R(\sigma) ilde{w}$$ This is an ARMA process. Our thinking in modules proceeds by estimating $oldsymbol{A}$. Then compute $$ilde{m} = A(\sigma)$$ There are very effective algorithms for estimating M. #### The system is $$\underbrace{A(\sigma)P(\sigma)}_{P'(\sigma)}y = \underbrace{A(\sigma)Q(\sigma)}_{Q'(\sigma)}u + M(\sigma)\varepsilon,$$ where the polynomials A, P, Q, and M are selected as follows: $$A(\xi) = 1 + \xi + 0.5\xi^2, \quad Q(\xi) = 1 - 1.2\xi + 0.6\xi^2 - 0.7\xi^3, \quad M(\xi) = 1 + 0.5\xi,$$ $$P(\xi) = 1 - 0.8713\xi - 1.539\xi^2 + 1.371\xi^3 + 0.6451\xi^4 - 0.5827\xi^5.$$ The inputs u and ε are zero mean, gaussian, white, with variances 1 and 0.2, respectively. The initial condition, under which y is obtained from u and ε , is a random vector. The time horizon for the simulation is T=1000 and the simulated time series $\left(u,y\right)$ is used for estimation. The experiment is repeated N=5 times with different realizations of u and arepsilon in each run. Roots of $P', Q', \hat{P}^{(k)}$, and $\hat{Q}^{(k)}$, for $k=1,\ldots,N$. Roots of M and $\hat{M}^{(k)}$, for $k=1,\ldots,N$. Bode plots of Q/P (solid line) and $\hat{Q}^{(1)}/\hat{P}^{(1)}$ (dashed line). Bode plots of M/P' (solid line) and $\hat{M}^{(1)}/\hat{P}^{(1)}$ (dashed line). Autocorrelation of $P'(\sigma)y-Q'(\sigma)u$ (solid line) and $\hat{\ }$ (dashed line). ## Conclusion For system ID, linear algebra on the Hankel matrix of the data, with a limited depth (Δ), contains the laws of the system. We have shown this through state construction directly from data, and through the identification of the 'X' part by means of the orthogonalizers.