IDENTIFICATION of ARMAX SYSTEMS

First the X, then the AR, finally the MA

Jan C. Willems
K.U. Leuven

Oberwolfach Tagung Regelungstheorie March 3, 2005

- p.1/37

On-going joint research with
Ivan Markovsky (K.U. Leuven)
Paolo Rapisarda (Un. Maastricht)
& Bart De Moor (K.U. Leuven)

—p.3/37

System ID

MODEL CLASS

OBSERVED DATA

MATHEMATICAL MODEL

—p.4/37

Case of interest today

Data: an ‘observed’ vector time-series

'IIJ(]_), ﬁ](z), © o o9 TI)(T) w(t) € RY, T finite or infinite

U

A dynamical model from a model class,
e.g. a difference equation

Ryw(t) + Ryw(t+1) +---+ Rrw(t+ L)
=0
or — M0€(t)—|—M1€(t+1)—|—°'°—|—ML€(t+L)

—p.5/37

Case of interest today

We discuss 2 cases:

‘deterministic’ ID

observed obs.erved — observed
variables ~ vara bles ___p variables
MODEL W w: MODEL W,
—>
—>

Row(t) + Riw(t+1)+---+ Rpw(t+ L) =0

w(1),@(2),...,0(T) — R(&) = Ro + Ri& +--- + R; ¢"

—p.6/37

Case of interest today

We discuss 2 cases:

ID with latent inputs

observed o
variables 5 variables

Row(t) + Riw(t+1) +---+ Rrw(t + L)
= Mpope(t) + M1e(t+1)+---+ Mpe(t+ L)

(1), ®(2), ..., (T) — (R(E), M(£))

—p.6/37

Deterministic System ID

- p.7/37

Basic ideas: look through the window in order to
discover the laws.

time

- p.8/37

Data: w(1), w(2),...,w(T)

Consider
 w(1) w(2) e (T —A+1) |
@(2) w(3) - @W(T—A+2)
H = .
@A) BA+1) - @(T) _

Compute left kernel of H.
Structure of a polynomial module
~~ efficient computation, recursive in ‘depth’ A.

- p.8/37

Identifiability

Assume w = (u, y) generated by behavior 3. Then

@(1) @(2) @(3) oo @(T —A+1)]
§(1) §(2) 9(3) oo g(T —A41)
@(2) @(3) a4 - @(T—A+2)
y(2) y(3) y(4) o g(T— A+ 2)
a(A) a(A+1) GA+2) .- a(T)

- y(A) y(A+1) gAa+2) .- y(T)

has ‘correct’ kernel & image if
1. A > L(B) 2. *B controllable

3. u is persistently exciting of order > A -+ n(%3)

—p.9/37

From the data to the state trajectory

~p.10/37

If it is possible to pass from the data
W(1), ®(2),...,5(T)
directly to the state trajectory
(1), 2(2),...,%(T)
Then we can identify the model by solving

A B

B2) &(3) - &T) | _
C D

g(1) 9(2) - YT -1)

(1) #(2)
u(l) u(2)

(T — 1)
a(T — 1)

~p.11/37

How does this work?

w(1),w(2),...,w(T)
U
z(1),z(2),...,2(T)

Several algorithms. We give 3 of them.
Assume A > L(®B), and pers. of exc. as needed.

1. Compute ‘the’ left annihilators of 7 :

(1) @(2) cor (T —A+1)
% (2) @(3) cor W(T — A + 2)

[Nl N2 N3z .- NA] w(3) w(4) oo w(T—-—A+3)] =0
_m(A) B(A+1) - @ (T)

~p.11/37

1. Compute ‘the’ left annihilators of 7 :

(1) @(2) cor (T —A+1)
B (2) w(3) - W(T—A+2)
[Nl No Nz ... NA] B (3) w(4) - WT—A+3)| =0
B(A) BA+1) - & (T)
Then (1) #(2) - T —A+1)]
N2 Ns -+ Na 0| [@(1) @(2) - &(T—A+1)
N3 Ng - 0 O w(2) w(3) - w(T —A+2)
— 5 A B ET6) W) - (T — A+ 3)
Na_1 Na : : : :
| Na o ..~ 0 o [w(A) wW(A+1I) - w(T) |,

w(1) w(2) o W(T—28a+1)] 4
W(2) W(3) coo W(T — 2A + 2) 4
:) : : T
H_ w(A) w(A+1) ... w(T — A) PAST
[Hy] B w(A+1) wA+2) .. w(T-—-A+1) FUTURE
w(A+2) w(A+3) .- wW(T-—A+2) i
'11'2(2.A) 1?;(2A- +1) - . ’lIJ(-T) | 4

—p.11/37

w(1) w(2) o W(T—-2A+1)] 4
W(2) W(3) coo W(T — 2A + 2) 4
:) : : T
H_ w(A) w(A+1) ... w(T — A) PAST
[Hy] B w(A+1) wA+2) .. w(T-—-A+1) FUTURE
w(A+2) wW(A+3) .- w(T-—A+2) i
15(é£\) qb(2zi-+-1) .. 15(13 | 4

2. The intersection of the span of the rows of H _
with the span of the rows of H | equals

~ = ~ PRESENT
| #A) FA+1) ... FT-—A) | PRESED

Nice num. impl. (e.g. via left kernel) ~~» subspace ID-»~

3. Solve for G

w(1) - W(T —2A+1) | w(l) .-+ W(T —2A+1) |
B(A) oo W(T — A) - B(A) --- W(T — A)
W(A+1) -0 @(T—A+1) 0o .- 0
@(2A) ... arT) o0 .- 0
G(A+1) - GT—-A+1)
: 5 . G =| &a) ... HT-A) |
y(24a) .- y(T)

12

Computes x! ‘oblique projection

—p.11/37

- A B
w|—>R0r[]
C D

These algorithms, compute the left kernel of H,, etc.
allow approximate implementations. For the state
algorithms, this is worked out very well (subspace ID).

SWD X — [;5(1) #(2) .- &(T)]

~s XTed _— {{f;red(]_) :'Ered(z) .. CEred(cp)}
followed by LS solution of

@red(z) iﬁred(3) v, ired (T)
y(1) g(@2) ---y9(T—-1)

A B éred(l) ired(2) @red(T_ 1)
c D|| a@) @@ --- W(T-1)

—p.12/37

Performance

Data set name T m p 1
1 Data of the western basin of Lake Erie 57 5 2 1
2 Data of Ethane-ethylene column 9% 5 3 1
3 Data of a 120 MW power plant 200 5 3 2
4 Heating system 801 1 1 2
5 Data from an industrial dryer 867 3 3 1
6 Data of a hair dryer 1000 1 1 5
7 Data of the ball-and-beam setup in SISTA 1000 1 1 2
8 Wing flutter data 1024 1 1 5
9 Data from a flexible robot arm 1024 1 1 4
10 Data of a glass furnace (Philips) 1247 3 6 1
11 Heat flow density through a two layer wall | 1680 2 1 2
12 Simulation of a pH neutralization process | 2001 2 1 &6
13 Data of a CD-player arm 2048 2 2 1
14 Data from an industrial winding process 2500 5 2 2
15 Liquid-saturated heat exchanger 4000 1 1 2
16 Data from an evaporator 6305 3 3 1
17 Continuous stirred tank reactor 7500 1 2 1
18 Model of a steam generator 9600 4 4 T{¥

Performance

Compare the misfit on the last 30% of the outputs and
the execution time for computing the ID model from the

first 70% of the data.

100
S0 ‘
0
1

Misfit
11 12 13 H
— stlsl

[Jpem
I subid| -

I |

8 9 10 11 12 13 14 15 16 17 18

x1

y1

-p.13/37

Performance

Execution time

14 |5 6 17 18 19
50 I I I T T T T T T T T T T T T
B sils
3 40+ | C_Ipem i
= B subid
30f -
C;
20t -
“Tladall |H _
. R | (I | -H J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

X2

—p.13/37

Performance

-p.13/37

Latency minimization

—p.14/37

Why latent variables?

observed obs.erved — observed
variabless ~ ~vana bles —p variables
MODEL LW w: | MODEL PW,
—>
—>
b d
versus variables ahrered
w: | MODEL W,
—
aten

Row(t) + Ryw(t+ 1)+ .-+ Rrw(t + L)
= Mpope(t) + M1e(t+ 1)+ -+ Mpe(t+ L)

= p.15/37

Why latent variables?

As far as the w-behavior is concerned, this gives
nothing new (<= elimination theorem).

So, what is the rationale for using latent variables ¢ ?

- p.15/37

Why latent variables?

Data w(t1),w(t; +1),...,w(tzs) with w(t) € R
The model
Row(t) + Riw(t+ 1)+ -+ Rrw(t+ L) =0

~» either w = input, free, B = R
or w = output, ~ B = sums of ‘exponentials’
~~ very restrictive.
Assuming unobserved inputs:

Row(t) + -+ Rrw(t + L) = Moe(t) + -« + Myge(t + L)

gives better possibilities, e.g. for prediction.

—p.15/37

Latency minimization

Define the ‘latency’:

latency (w, B) := minimum ||€|| e
with the minimum taken over all € such that
Row(t) ++++ + Rpw(t + L) = Moé(t) + - - + Mré(t + L)
i.e. min. over all € that ‘explain’ @w(1), @(2),...,w(T).

~+ system ID: search for the optimal model, in the
sense of minimal latency, in a given model class.

~p.16/37

Latency minimization

m How do we compute the latency, the optimal £’s?

m Algorithms for minimization over the R’s, M’s in
the model class.

The latency minimization is a deterministic Kalman
filtering problem

The latency is actually equal to the prediction error!

~~» deterministic interpretation, system ID toolbox, etc.

- p.16/37

Stochastic System ID

~p.17/37

Why stochastic interpretation?

Row(t) +---+ Rrpw(t + L) = Mpe(t) +--- + Mre(t + L)

In this model we can, of course, consider € as a
stochastic disturbance. If we consider also u as a
stochastic process, then also w becomes stochastic.

This has the virtue to make the system ID problem to a
statistical one, leading to questions of maximum
likelihood estimation (very related to prediction error).
It allows evaluation of the algorithms in terms of their
behavior as I’ — oc©. Nice statistical questions
emerge, as consistency, asymptotic efficiency, etc.
~> deep theory of ARMAX systems

5.18/37

Why stochastic interpretation?

It is difficult to argue that stochastic unobserved
disturbances offer a realistic explanation of the lack of
fit between observations and the deterministic part.

This lack of fit is more likely a result of low order, linear
models for nonlinear systems, neglected dynamics,
approximation, in addition to unmeasured inputs, which
may or may hot be stochastic.

Stochastic methods offer the user a ‘certificate’ under
which the algorithms work well.

—p.18/37

ARMAX Systems

—p.19/37

Processes

In the remainder of this talk means:

a vector of real stoch. processes on Z (or N),
(jointly) gaussian, zero mean, stationary, and ergodic.

‘White noise’ means: a process € with

the £(t)’s i.i.d. and]E(s(O)eT(O)) — T

1 means: ‘independence’.

~p.20/37

Processes

In the remainder of this talk means:

a vector of real stoch. processes on Z (or N),
(jointly) gaussian, zero mean, stationary, and ergodic.

A (stochastic) system means:

:= a collection of processes = the ‘behavior’

~p.20/37

ARMAX

Consider the difference eg’ns

W(o)w = E(o)e

with I/, E real polynomial matrices;

o =the ‘shift’: (o f)(t) := f(t + 1).

(ARMAX)

ARMAX

Consider the difference eg’ns

W(o)w = E(o)e (ARMAX)

The stochastic system consisting of all processes w
satisfying (ARMAX) with £ white noise

is called the ARMAX system (W, E).

—p.21/37

ARMAX

Consider the difference eg’ns

W(o)w = E(o)e (ARMAX)

Example: the difference eq’ns

with Y, U, E real polynomial matrices, Y square, det(Y) # O;

Under ‘generic’ conditions, u is free: Vu dy ... ,
U IS an ‘exogeneous’ input; ¥y an ‘endogenous’ output.

—p.21/37

AR-MA-X

Refine the ARMAX notation, by factoring out A, to:

A, R, M real polynomial matrices,
A square,det(A) # 0,
R left prime.

—p.22/37

AR-MA-X

Refine the ARMAX notation, by factoring out A, to:

We call A the AR-part
M the MA-part
R the X-part

G = P71Q (R =[P Q]) =tf fn of the ‘deterministic part'.

7 a ‘classification up to equivalence issue’ for (R, A, M).

—p.22/37

AR-MA-X system ID

Estimate R, A, M from observed

~p.23/37

AR-MA-X system ID

In the stochastic case, the subspace algorithms

w(1) w(2) oo (T —2A +1) | 4
w(2) w(3) oo (T — 2A + 2) 4
:) : : T
H- w(A) w(A+1) - w(T — A) PAST
[Hy] B w(A+1) w(A+2) .- w(T-A+1) FUTURE
w(A+2) wWA+3) --- W(T-A+2) i
'u~1(2.A) 'u")(ZA. +1) - y ’lIJ(.T) | X

require, e.g. for consistency, I' — o0, which is fine,
but also A — o0, which is unfortunate!

—p.23/37

AR-MA-X system ID

Estimate R, A, M from observed
w(l),w(2)...,w(T)

Divide et impera algorithm:

Today, we explain the ‘X-part’: how to compute

w— R

—p.23/37

S
T
i~

—p.24/37

Assume that 0 = [Z] ,and & L . Then

A(a)(P(a)g n Q(a)a) — R(0)® = M(o)e

=
+ oo

R(o)w = » H(t) o'e

t=—o00

= (since ¢ | u)

R(o)w u.

Basic idea: the linear combinations of the rows of the observed

w(l) w(2) w(3) --- w(t)
W(2) w(3) wa) --- wt+1)
@(3) w(4) W) - @(t+2)

that are orthogonal to the rows of the observed

[a(l) @(2) @(3) --- a(t) i
w(2) @(3) @@) --- a(t+1)
W(3) @(4) @(d) - a(t+2)

determine R.

—p.25/37

w(1) w(2) w(3) --- W (t)
w(2) w(3) w) .-+ w(t+1)
W(3) W(4) W(5) .- B(t+2)

[a(l) @(2) a(3) --- a(t)
a(2) @(3) @@) --- a(t+1)
@W(3) w(4) ad) .- a(t+2)

4 an oo number of such ‘orthogonalizing’ linear combinations.

What special structure do they have, so that they are determined

by a finite number of them, = R ?

Is there a way to limit the number of rows?

—p.25/37

—p.26/37

Modules

A module can be thought of as ‘a vector space over a ring’.

A mathematician’s favorite ex.:
the module Z + v/2 Z + /5 Z over the ring Z
A system theorist’s favorite ex.:
the module R*[£] over the ring R[£]

R"[£]:= the n-dimensional vectors of polynomials
with real coefficients, in the indeterminate &.

—p.27/37

Modules

A submodule of R"[£] is a subset that is also a module over R[£].

E.g., for given polynomial vectors vy, v2, ..., Uy, all sums
P1V1 + P2U2 + + ¢+ + DyUx
Pp’s polynomials. The submodule ‘generated by’ v1, V2, ..., V.

Fact: Every submodule of R" [£] is of this form: “finitely generated’.

Fact: Number of generators < n. (mimimum =: the dimension)

—p.27/37

Modules

A submodule of R"[£] is a subset that is also a module over R[£].

A submodule of R*[£] is said to be slim if it does not contain
| other submodules of the same dimension

< V = [vy vg -+ vy | right prime.

slim: * not slim: p(€) RIE].

—p.27/37

Modules

Submodules of R™[£] are of great importance in system theory:

ek

linear time-inv. diff. systems VALY submodules of R”[£]

1

1:
controllable LTIS <i> slim submodules

ek

~p.27/37

Modules

Submodules of R" £] are of great importance in system theory:

The ‘left’ or ‘right’ kernel of any Hankel matrix

H(1) H(2) H(3) ax H(t")
* H(2) H(3) H(4) --- H@#' +1)
H#) H@W' +1) H@E +2) ... H@E +t'—1)

™~ asubmodule of ReCdiIM(H)[£] op Rrowdim(H)[£].

~ effectively not co-dimensional, but

< rowdim(H)- or coldim (H)-dimensional!

—p.27/37

The orthogonalizers

—p.28/37

The orthogonalizers

Let w = m be a process. Say, w-dimensional.

n € R"[¢]is an (for w w.r.t u) if
n'(o)w L u.

I.e. a linear combination of the components of the
process w and its shifts which becomes independent
of the process u.

~p.29/37

The orthogonalizers

Y
n € R"[£] is an | orthogonalizer | (for w w.r.t u) if

n'(o)w L u.

Let w = [} be a process. Say, w-dimensional.

Ex.: the transpose of the rows of R, since
A(o)(R(o)w) = M(o)e L u.

—> every element of the module generated by these.
Is this all? Are there no other orthogonalizers?

~p.29/37

The orthogonalizers

Let w = m be a process. Say, w-dimensional.

Theorem:

1. The orthogonalizers for w w.r.t. u form a
submodule of R” [£].

2. In fact, a slim one.

3. fw = m and u is ‘ persistently exciting’, then it

Is precisely the submodule generated by the
transposes of the rows of .

~p.29/37

The orthogonalizers

Let w = m be a process. Say, w-dimensional.

Theorem:

1. The orthogonalizers for w w.r.t. u form a
submodule of R” [£].

2. In fact, a slim one.

3. fw = m and u is ‘ persistently exciting’, then it

Is precisely the submodule generated by the
transposes of the rows of .

Proof: 1. is easy. 2. uses ergodicity! 3. a bit of module theory.

~p.29/37

S
T
i~

—p.30/37

Find (a module basis for) the linear combinations of

the rows of
 @(1) w(2) w(3) .- w(t) |
@(2) w(3) w@) --- W+ 1)
W(3) w(3) W) .- w4+ 2)

that are orthogonal to the rows of

a(l) a(2) @@3) --- at)
@(2) @(3) @@) --- at+1)

~p.31/37

Find the linear combinations of the rows of

that are orthogonal to the rows of

U :

w(l) w(2) w(3) w(t)
®(2) w(3) w(4) W(t+ 1)
@(3) w(3) w(5) B (t + 2)
u(l) a(2) u(3) u(t)
u(2) a(3) u(4)

a(t+ 1)

I! Compute the left kernel of WU .

- p.31/37

Find the linear combinations of the rows of

B(1) B(2) W) --- @(t)
B(2) W(3) w(4) --- w(t+1)
W = B(3) @(3) w(5) .-+ w(t+2)

that are orthogonal to the rows of

a(l) @(2) @(3) --- @)
U :=| u@2) a@B) a4) --- at+1)

¢¢, Can we limit the number of rows that are needed ??
Yes, provided we assume a known bound on the lags.

~p.31/37

It is easy to prove that this, applied to a finite
time-series, yields a consistent algorithm.

Note: no stability needed P for R = [P Q |.

- p.32/37

w— A M

Once we have R, we can compute the process
a = R(o)w

This is an ARMA process.
Our thinking in modules proceeds by estimating A.

- p.33/37

w— A M

Once we have R, we can compute the process
a = R(o)w

This is an ARMA process.
Our thinking in modules proceeds by estimating A.

Then compute

There are very effective algorithms for estimating /M.

- p.33/37

A simulation

—p.34/37

A simulation

The system is

A(0)P(0) y = A(0)Q(0) u + M(a)e,

P'(o) Q' (o)

| where the polynomials A, P, (Q, and M are selected as follows:
A(¢) =14£40.5¢%, Q&) =1—-1.26+0.662—0.7¢%, M () = 140.5¢,

P(¢) =1 — 0.8713¢ — 1.539£2 4 1.371£3 + 0.6451£% — 0.5827¢°.

~p.35/37

A simulation

The inputs © and € are zero mean, gaussian, white, with variances
1 and 0.2, respectively. The initial condition, under which y is

obtained from u and &, is a random vector.

The time horizon for the simulation is 7' = 1000 and the

simulated time series (u, vy) is used for estimation.

The experiment is repeated N — 5 times with different

realizations of u and € in each run.

- p.35/37

A simulation

-1 -0.5 0 0.5 1 1.5

Roots of P/, Q’, P*®) and Q) fork = 1,..., N.

—p.35/37

A simulation

-1 -0.5 0 0.5 1 1.5

Roots of M and M® fork =1,..., N.

—p.35/37

A simulation

0 0.‘5 'i 115 é 225 3
Bode plots of Q /P (solid line) and Q) / P() (dashed line).

—p.35/37

A simulation

0 0.‘5 'i 115 é 225 3
Bode plots of M /P’ (solid line) and M) / P(1) (dashed line).

—p.35/37

A simulation

-10
0

é 1‘0 1‘5 2‘0 2‘5
Autocorrelation of P'(0)y — Q’(o)w (solid line) and ~ (dashed line).

—p.35/37

Conclusion

For system ID, linear algebra on the Hankel matrix of
the data, with a limited depth (A), contains the laws of
the system.

We have shown this through

state construction directly from data, and
through the identification of the ‘X’ part
by means of the orthogonalizers.

- p.36/37

Thank you
Thank you

- p.37/37

	
	
	small hfill yb {System ID}
	small hfill yb {Case of interest today}
	small hfill yb {Case of interest today}
	
	small hfill yb {$hw mapsto R $}
	small hfill yb {Identifiability}
	
	small hfill yb {$hw mapsto 	ilde {x}mapsto {	iny �mat A&B\C&Demat }$}
	small hfill yb {$hw mapsto R 	ext { or } {	iny �mat A&B\C&Demat }$}
	small hfill yb {Performance}
	
	small hfill yb {Why latent variables?}
	small hfill yb {Latency minimization}
	
	small hfill yb {Why stochastic interpretation?}
	
	small hfill yb {Processes}
	small hfill yb {ARMAX }
	small hfill yb {AR-MA-X}
	small hfill yb {AR-MA-X system ID }
	
	small hfill yb {�oldmath $hw mapsto R$}
	
	small hfill yb {Modules}
	
	small hfill yb {The orthogonalizers}
	
	small hfill yb {�oldmath $hw mapsto R$}
	small hfill yb {�oldmath $hw mapsto R$}
	small hfill yb {�oldmath $hw mapsto A,M$}
	
	small hfill yb {A simulation}
	small hfill yb {Conclusion}
	

