THE SUM-of-SQUARES PROBLEM

 and
DISSIPATIVE SYSTEMS

Jan C. Willems
K.U. Leuven, Belgium

Based in part on joint work with

Harish Pillai
IIT Bombay, Mumbay

Outline

- Systems
- Dissipative systems
- The storage and the flux
- PDE's and QDF's
- The SOS problem

Motto

1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture

IFAC World Congress, Prague, July 4, 2005

Systems

Definition

A system: $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior.

The behavior $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ consists of the trajectories $w: \mathbb{T} \rightarrow \mathbb{W}$ that are compatible with the laws of the system, typically the set of sol'ns of an ODE or PDE.

Definition

A system: $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior.
\mathbb{T} is the set of independent variables
$\mathbb{T}=\mathbb{R}$ in dynamical systems
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ in distributed systems, say $\mathrm{n}=4$, time and space

Definition

A system: $\boldsymbol{\Sigma}=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior.
\mathbb{T} is the set of independent variables
$\mathbb{T}=\mathbb{R}$ in dynamical systems
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ in distributed systems, say $\mathrm{n}=4$, time and space
\mathbb{W} is the set of dependent variables, the signal space typically $\mathbb{W}=\mathbb{R}^{W}$

Definition

A system: $\boldsymbol{\Sigma}=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior.
\mathbb{T} is the set of independent variables
$\mathbb{T}=\mathbb{R}$ in dynamical systems
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ in distributed systems, say $\mathrm{n}=4$, time and space
\mathbb{W} is the set of dependent variables, the signal space typically $\mathbb{W}=\mathbb{R}^{W}$

The behavior $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ consists of the trajectories $w: \mathbb{T} \rightarrow \mathbb{W}$ that are compatible with the laws of the system, typically the set of sol'ns of an ODE or PDE.

Definition

Examples

$\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{R}^{\mathbf{3}}, \mathfrak{B}=$ all $\mathbb{R} \rightarrow \mathbb{R}^{\mathbf{3}}$ satisfying $K .1, K .2$, and $K .3$

Examples

Heat diffusion

$\mathbb{T}=\mathbb{R}^{2}(x$ and $t), \mathbb{W}=\mathbb{R}^{2}(q$ and $T), \mathfrak{B}$ sol'ns of the PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

Examples

Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$\mathbb{T}=\mathbb{R}^{4}$ (time and space),
$\mathbb{W}=\mathbb{R}^{\mathbf{1 0}}(\vec{E}, \vec{B}, \vec{j}$ and $\rho)$,
$\mathfrak{B}=$ sol'ns of ME's

Examples

Linear systems

$$
\frac{d}{d t} x=A x+B u, y=C x+B u, w=(u, y)
$$

$\mathbb{T}=\mathbb{R}($ time $), \mathbb{W}=\mathbb{R}^{\mathrm{m}} \times \mathbb{R}^{\mathrm{p}}$ inputs and outputs $)$, $\mathfrak{B}=(\boldsymbol{u}, \boldsymbol{y}): \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{m}} \times \mathbb{R}^{\mathrm{p}}: \exists \boldsymbol{x}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}} \ldots$

Properties

Linearity

Examples: ME, linear systems, diffusion.

Shift-invariance

Examples: Kepler, diffusion, ME, linear systems. Assumed throughout.

Properties

Controllability

Def'n in pictures:

1-d case: $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}.

Properties

Controllability

Def'n in pictures: n -d case: $\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ or \mathbb{Z}^{n}.

\boldsymbol{w} 'patches' $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in \mathfrak{B}$.
$\forall \boldsymbol{w}_{1}, w_{2} \in \mathfrak{B} \exists \boldsymbol{w} \in \mathfrak{B}:$ Controllability : \Leftrightarrow 'patchability'.

Properties

Controllability

Controllability is a typical property of open systems.
Open: some variables are left 'free'.
Open systems interact with their environment.
In contrast with closed, autonomous systems.
$: \cong$ 'Initial conditions' specify the trajectory uniquely.
Examples:
Kepler: closed, not controllable; QM: idem; flows: idem
diffusion: controllable
ME: controllable

$$
\frac{d}{d t} x=A x+B u: \text { well-known conditions }
$$

Controllability is assumed where needed. For controllable systems, the compact support or periodic trajectories are 'representative' of the whole behavior.

Dissipative Systems

Definition

$\Sigma:\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \mathfrak{B}\right)$ is dissipative ($w=$ supply rate) $: \Leftrightarrow$
$w \in \mathfrak{B}$ and w periodic (period $T) \Rightarrow \int_{0}^{T} w(t) d t \geq 0$

System absorbs supply, netto
If = holds, the system is called conservative

Definition

$\Sigma:\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \mathfrak{B}\right)$ is dissipative ($w=$ supply rate) $: \Leftrightarrow$
$w \in \mathfrak{B}$ and w periodic $($ period $T) \Rightarrow \int_{0}^{T} w(t) d t \geq 0$

System absorbs supply, netto
If = holds, the system is called conservative
Dissipativity interesting, relevant, for open systems ...

Examples

power $=\sum_{\text {terminals }} \boldsymbol{I}_{\mathrm{k}} \boldsymbol{V}_{\mathrm{k}}$

Examples

Examples

Conservative. \Leftrightarrow for compact support: $\quad \iint_{\mathbb{R}^{2}} q(x, t) d x d t=0$

Examples

Dissipative. \Leftrightarrow for compact support \boldsymbol{q} :

$$
\iint_{\mathbb{R}^{2}} \frac{q(x, t)}{T(x, t)} d x d t \leq 0
$$

Examples

Conservative. \Leftrightarrow for compact support sol'ns of ME:

$$
\iiint \int_{\mathbb{R}^{4}} \vec{E}(x, y, z, t) \cdot \vec{j}(x, y, z, t) d x d y d z d t=0
$$

Examples

Dissipative \Leftrightarrow

$$
G(i \omega)+G^{\top}(-i \omega) \geq 0 \quad \forall \omega \in \mathbb{R}
$$

The Storage and the Flux

Definition

Consider the 1-d system $\Sigma^{\prime}=\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathfrak{B}^{\prime}\right)$. Each trajectory is a pair $(\boldsymbol{w}, \boldsymbol{V}) \quad \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}, \boldsymbol{V}: \mathbb{R} \rightarrow \mathbb{R}$. Define $\Sigma=(\mathbb{R}, \mathbb{R}, \mathfrak{B})$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R} \mid(\boldsymbol{w}, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

Definition

Consider the 1-d system $\Sigma^{\prime}=\left(\mathbb{R}, \mathbb{R} \times \mathbb{R}, \mathfrak{B}^{\prime}\right)$.
Each trajectory is a pair $(\boldsymbol{w}, \boldsymbol{V}) \quad \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}, \boldsymbol{V}: \mathbb{R} \rightarrow \mathbb{R}$. Define $\Sigma=(\mathbb{R}, \mathbb{R}, \mathfrak{B})$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R} \mid(\boldsymbol{w}, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

\boldsymbol{V} is a storage function $: \Leftrightarrow \quad \forall(w, \boldsymbol{V}) \in \mathfrak{B}^{\prime}:$

$$
V\left(t_{1}\right) \leq V\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} w(t) d t \quad \forall t_{0}, t_{1} \in \mathbb{R}, t_{0} \leq t_{1}
$$

$$
\frac{d}{d t} V \leq w
$$

Implies, reasonable conditions, $\Sigma=(\mathbb{R}, \mathbb{R}, \mathfrak{B})$ dissipative.

Definition

Define $\Sigma=(\mathbb{R}, \mathbb{R}, \boldsymbol{B})$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R} \mid(\boldsymbol{w}, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

$$
\frac{d}{d t} V \leq w
$$

Implies, reasonable conditions, $\Sigma=(\mathbb{R}, \mathbb{R}, \mathfrak{B})$ dissipative.

- Given a dissipative system $\Sigma=(\mathbb{R}, \mathbb{R}, \mathfrak{B})$, construct a storage function.
- Is the storage function unique?
- The set of storage functions is obviously convex.
- Does it has an upper/lower bound?

Examples

Storage function = energy stored in L 's and C 's NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.

Examples

Storage function = energy stored in masses and springs
NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.

Is energy non-negative?

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Is a negative inductor passive?
electrical terminals

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Is a negative inductor passive?
electrical terminals

Equations:

$$
\begin{gathered}
I_{1}+I_{2}=0, L \frac{d}{d t} I_{1}=V_{1}-V_{2} \\
\text { power }=V_{1} I_{1}+V_{2} I_{2} \leadsto \frac{d}{d t} \frac{1}{2} L I_{1}^{2}=\text { power }
\end{gathered}
$$

Hence the system is dissipative (in the sense of the periodic sol'ns) regardless of the sign of L).

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Is a negative inductor passive?
electrical terminals

Hence the system is dissipative (in the sense of the periodic sol'ns) regardless of the sign of L).

Is this reasonable? It appears not! But, the answer must lie in electricity, not in physics!

Is energy non-negative?

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Does the inverse square low define a passive system?

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Does the inverse square low define a passive system?

Equations (1 dim., nice numbers):

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} q+\frac{1}{q^{2}}=F \\
\frac{1}{2}\left(\frac{d}{d t} q\right)^{2}-\frac{1}{q}=F \frac{d}{d t} q
\end{gathered}
$$

Is energy non-negative?

Is the storage function, in the case the supply is the power, bounded from below? Does the inverse square low define a passive system? Equations (1 dim., nice numbers):

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} q+\frac{1}{q^{2}}=F \\
\frac{1}{2}\left(\frac{d}{d t} q\right)^{2}-\frac{1}{q}=F \frac{d}{d t} q
\end{gathered}
$$

Dissipative (in the sense of the periodic sol'ns),
but the energy $\frac{1}{2}\left(\frac{d}{d t} q\right)^{2}-\frac{1}{q}$ is NOT bounded from below.
Also physics says this is passive!!

Examples

$G:=$ transfer f'n, $G(s)=D+C(I s-A)^{-1} B$. Equivalent:

1. Dissipative
2. $G(i \omega)+G^{\top}(-i \omega) \geq 0 \forall \omega \in \mathbb{R}$
3. $\exists \boldsymbol{Q}=\boldsymbol{Q}^{\top}: \frac{d}{d t} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \leq \boldsymbol{y}^{\top} \boldsymbol{u}$
4. ...
$~$ KYP-lemma, AREineq., ARE, LMI's, ...
Probably the most used circle of ideas in control!

Definition

Consider the n -d system $\Sigma^{\prime}=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R} \times \mathbb{R}^{\mathrm{n}}, \mathfrak{B}^{\prime}\right)$. Each trajectory is a pair $(\boldsymbol{w}, \boldsymbol{V}) \quad \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}}, \boldsymbol{V}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$. Define $\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \mathfrak{B}\right)$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid(w, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

Definition

Consider the n -d system $\Sigma^{\prime}=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R} \times \mathbb{R}^{\mathrm{n}}, \mathfrak{B}^{\prime}\right)$.
Each trajectory is a pair $(\boldsymbol{w}, \boldsymbol{V}) \quad \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}}, \boldsymbol{V}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{n}}$.
Define $\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \mathfrak{B}\right)$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R} \mid(\boldsymbol{w}, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

V is a storage/flux function : \Leftrightarrow
$\forall(w, V) \in \mathfrak{B}^{\prime}:($ case $\mathrm{n}=4$, variables $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{t})$
$\left(\frac{\partial}{\partial x} F_{x}+\frac{\partial}{\partial y} F_{y}+\frac{\partial}{\partial z} F_{z}+\frac{\partial}{\partial t} S\right)(x, y, z, t) \leq w(x, y, z, t)$
$\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{t} \in \mathbb{R} . \quad$ Generally:

$$
\nabla \cdot V \leq w \quad \nabla \cdot:=\frac{\partial}{\partial x_{1}}+\cdots+\frac{\partial}{\partial x_{\mathrm{n}}}
$$

Definition

Define $\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \mathfrak{B}\right)$, and the manifest behavior by

$$
\mathfrak{B}:=\left\{\boldsymbol{w}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R} \mid(\boldsymbol{w}, \boldsymbol{V}) \in \mathfrak{B}^{\prime}\right\}
$$

\boldsymbol{V} is a storage/flux function : \Leftrightarrow

$$
\forall(w, V) \in \mathfrak{B}^{\prime}:(\text { case } \mathrm{n}=4, \text { variables } \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{t})
$$

$$
\left(\frac{\partial}{\partial x} F_{x}+\frac{\partial}{\partial y} F_{y}+\frac{\partial}{\partial z} F_{z}+\frac{\partial}{\partial t} S\right)(x, y, z, t) \leq w(x, y, z, t)
$$

$\forall x, y, z, t \in \mathbb{R}$.
Implies, under reasonable conditions, that Σ is dissipative.

- Given a dissipative system $\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}, \boldsymbol{\mathfrak { B }}\right)$, construct V, i.e. a storage S and a flux F.

Local dissipation law

Dissipativity : \Leftrightarrow

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^{3}} w(x, y, z, t) d x d y d z d t \geq 0 \quad \text { for all } w \in \mathfrak{B}
$$

Local dissipation law

Dissipativity : \Leftrightarrow

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^{3}} w(x, y, z, t) d x d y d z d t \geq 0 \quad \text { for all } w \in \mathfrak{B}
$$

Can this be reinterpreted as:

As the system evolves, some of the supply is locally stored, some locally dissipated, and some redistributed over space?

Local dissipation law

!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

$$
\frac{d}{d t} \text { Storage }+ \text { Spatial flux } \leq \text { Supply }
$$

Supply $=$ partly stored $\boldsymbol{+}$ partly radiated $\boldsymbol{+}$ partly dissipated.

Examples

Conservative. \Leftrightarrow for compact support: $\quad \iint_{\mathbb{R}^{2}} q(x, t) d x d t=0$

Examples

Dissipative. \Leftrightarrow for compact support \boldsymbol{q} :

$$
\iint_{\mathbb{R}^{2}} \frac{q(x, t)}{T(x, t)} d x d t \leq 0
$$

Examples

Can these 'global' versions be expressed as 'local' laws?

$$
\text { rate of change in storage }+ \text { spatial flux } \leq \text { supply rate }
$$

To be invented:
an 'extensive' quantity for the first law: internal energy an 'extensive' quantity for the second law: entropy

Examples

Can these 'global' versions be expressed as 'local' laws?
Define the following variables:

$$
\begin{array}{rlrl}
E & =T & & : \text { the stored energy density } \\
S & =\ln (T) & & : \text { the entropy density } \\
F_{E} & =-\frac{\partial}{\partial x} T & : \text { the energy flux } \\
F_{S} & =-\frac{1}{T} \frac{\partial}{\partial x} T & : \text { the entropy flux, } \\
D_{S} & =\left(\frac{1}{T} \frac{\partial}{\partial x} T\right)^{2}: \text { the rate of entropy production. }
\end{array}
$$

Examples

Can these 'global' versions be expressed as 'local' laws?
Local versions of the first and second law: rate of change in storage + spatial flux \leq supply rate
Conservation of energy:

$$
\frac{\partial}{\partial t} E+\frac{\partial}{\partial x} F_{E}=q
$$

Entropy production:

$$
\begin{gathered}
\frac{\partial}{\partial t} S+\frac{\partial}{\partial x} F_{S}=\frac{q}{T}+D_{S} . \quad \text { Since } \quad\left(D_{S} \geq 0\right) \Rightarrow \\
\frac{\partial}{\partial t} S+\frac{\partial}{\partial x} F_{S} \geq \frac{q}{T}
\end{gathered}
$$

Examples

Can these 'global' versions be expressed as 'local' laws?

Problem:

Build a theory behind ad hoc constructions of E, F_{E} and S, F_{S}.
Complete as in the 1-d case....

Examples

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Conservative. \Leftrightarrow for compact support sol'ns of ME:

$$
\iiint \int_{\mathbb{R}^{4}} \vec{E}(x, y, z, t) \cdot \vec{j}(x, y, z, t) d x d y d z d t=0
$$

There simply isn't a storage function in terms of only $\vec{E}, \vec{j}!!$

PDE's and QDF's

Linear differential distributed (n-d) systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$, the set of independent variables,
typically $\mathrm{n}=4$: time and space,
$\mathbb{W}=\mathbb{R}^{w}$, the set of dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient PDE.

Linear differential distributed (n-d) systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$, the set of independent variables,
typically $\mathrm{n}=4$: time and space,
$\mathbb{W}=\mathbb{R}^{\mathbb{W}}$, the set of dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient PDE.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 . \quad(*)
$$

Define the associated behavior

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}
$$

Notation for n -D linear differential systems:

$$
\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}, \quad \text { or } \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{w}
$$

Image representation

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0
$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$.

Image representation

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathfrak{n}}^{W}$. Another representation: image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

Elimination thm $\quad \Rightarrow \quad \operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}!$ Do all behaviors of linear constant coefficient PDE's admit an image representation???

Image representation

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathfrak{n}}^{W}$. Another representation: image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) \ell
$$

Elimination thm $\quad \Rightarrow \quad \operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}!$ Do all behaviors of linear constant coefficient PDE's admit an image representation???
$\mathfrak{B} \in \mathfrak{L}_{n}^{W}$ admits an image representation iff it is 'controllable'.

Are Maxwell's equations controllable?

Are Maxwell's equations controllable ?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Observability

Observability of the image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

is defined as: $\quad \ell$ can be deduced from w,
i.e. $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ should be injective.

Observability

Observability of the image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

is defined as: $\quad \ell$ can be deduced from w,
i.e. $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)$ should be injective.

Not all controllable systems admit an observable im. repr'n. For $\mathrm{n}=1$, they do. \Leftrightarrow right co-prime factorization of G. For $n>1$, exceptionally so.

The latent variable ℓ in an im. repr'n may be 'hidden'.

Example: Maxwell's equations do not allow a potential representation with an observable potential.

Notation

Where convenient, use multi-index notation:
$x=\left(x_{1}, \ldots, x_{n}\right)$,
$\xi=\left(\xi_{1}, \cdots, \xi_{n}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right), \eta=\left(\eta_{1}, \ldots, \eta_{\mathrm{n}}\right)$,
$\frac{d}{d x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{\mathrm{n}}}\right), \frac{d^{k}}{d x^{k}}=\left(\frac{\partial^{k_{1}}}{\partial x_{1}^{k_{1}}}, \ldots, \frac{\partial^{k_{\mathrm{n}}}}{\partial x_{\mathrm{n}}^{k_{\mathrm{n}}}}\right)$,
$d x=d x_{1} d x_{2} \ldots d x_{\mathrm{n}}$,
etc.

QDF's

The quadratic map acting on $w: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{w}}$ and its derivatives, defined by

$$
w \mapsto \sum_{k, \ell}\left(\frac{d^{k}}{d x^{k}} w\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d x^{\ell}} w\right)
$$

is called quadratic differential form (QDF) on $\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$. $\mathbf{\Phi}_{k, \ell} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}} ;$ WLOG: $\boldsymbol{\Phi}_{\boldsymbol{k}, \ell}=\mathbf{\Phi}_{\ell, k}^{\top}$.

QDF's

The quadratic map acting on $w: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{w}}$ and its derivatives, defined by

$$
w \mapsto \sum_{k, \ell}\left(\frac{d^{k}}{d x^{k}} w\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d x^{\ell}} w\right)
$$

is called quadratic differential form (QDF) on $\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$. $\mathbf{\Phi}_{k, \ell} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}} ;$ WLOG: $\boldsymbol{\Phi}_{k, \ell}=\boldsymbol{\Phi}_{\ell, k}^{\top}$.

Introduce the 2 n -variable polynomial matrix Φ

$$
\Phi(\zeta, \eta)=\sum_{k, \ell} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

Denote the QDF as Q_{Φ}. QDF's are parameterized by $\mathbb{R}[\zeta, \eta]$.

Dissipative distributed systems

We henceforth consider only controllable linear differential systems and QDF's for supply rates.

Dissipative distributed systems

We henceforth consider only controllable linear differential systems and QDF's for supply rates.
$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$, controllable, is

$$
\text { dissipative with respect to the supply rate } Q_{\Phi} \text { (a QDF) }
$$

\Leftrightarrow

$$
\int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) d x \geq 0
$$

for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support, i.e., for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.
$\mathfrak{D}:=\mathfrak{C}^{\infty}$ and 'compact support'.

\exists Storage and Flux

MAIN RESULT (stated for $\mathrm{n}=4$)

$\underline{\text { Thm }}: \mathrm{n}=4: x, y, z ; t:$ space/time; $\boldsymbol{\mathfrak { B }} \in \mathfrak{L}_{4}^{\mathrm{w}}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right] d t \geq \mathbf{0} \quad$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$
1

MAIN RESULT (stated for $\mathrm{n}=4$)

$\underline{\text { Thm }}: \mathrm{n}=4: x, y, z ; t:$ space/time; $\boldsymbol{\mathfrak { B }} \in \mathfrak{L}_{4}^{\mathrm{w}}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right] d t \geq \mathbf{0} \quad$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$
II
\exists an image representation $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$ of \mathfrak{B},

MAIN RESULT (stated for $\mathrm{n}=4$)

Thm: $\mathrm{n}=4: x, y, z ; t:$ space/time; $\mathfrak{B} \in \mathfrak{L}_{4}^{\mathrm{W}}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right] d t \geq \mathbf{0} \quad$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$

$$
\mathbb{I}
$$

\exists an image representation $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$ of \mathfrak{B}, and QDF's S, the storage, and F_{x}, F_{y}, F_{z}, the flux,

MAIN RESULT (stated for $\mathrm{n}=4$)

Thm: $\mathrm{n}=4: x, y, z ; t:$ space/time; $\mathfrak{B} \in \mathfrak{L}_{4}^{\mathrm{w}}$, controllable.

Then $\int_{\mathbb{R}}\left[\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right] d t \geq \mathbf{0} \quad$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$

$$
\mathbb{I}
$$

\exists an image representation $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$ of \mathfrak{B}, and QDF's S, the storage, and F_{x}, F_{y}, F_{z}, the flux,
such that the local dissipation law

$$
\frac{\partial}{\partial t} S(\ell)+\frac{\partial}{\partial x} \boldsymbol{F}_{x}(\ell)+\frac{\partial}{\partial y} \boldsymbol{F}_{y}(\ell)+\frac{\partial}{\partial z} \boldsymbol{F}_{z}(\ell) \leq Q_{\Phi}(w)
$$

holds for all (w, ℓ) that satisfy $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$.

Hidden variables

The local law involves possibly unobservable, - i.e., hidden! latent variables (the ℓ 's).

This gives physical notions as stored energy, entropy, etc., an enigmatic physical flavor.

Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservative) with respect to $-\overrightarrow{\boldsymbol{E}} \cdot \vec{j}$, the rate of energy supplied.

Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservative) with respect to $-\overrightarrow{\boldsymbol{E}} \cdot \vec{j}$, the rate of energy supplied.

Introduce the stored energy density, S, and the energy flux density (the Poynting vector), $\overrightarrow{\boldsymbol{F}}$,

$$
\begin{aligned}
& S(\vec{E}, \vec{B}):=\frac{\varepsilon_{0}}{2} \vec{E} \cdot \vec{E}+\frac{\varepsilon_{0} c^{2}}{2} \vec{B} \cdot \vec{B} \\
& \vec{F}(\vec{E}, \vec{B}):=\varepsilon_{0} c^{2} \vec{E} \times \vec{B}
\end{aligned}
$$

Local conservation law for Maxwell's equations:

$$
\frac{\partial}{\partial t} S(\vec{E}, \vec{B})+\nabla \cdot \vec{F}(\vec{E}, \vec{B})=-\vec{E} \cdot \vec{j}
$$

Involves \vec{B}, \quad unobservable from $\overrightarrow{\boldsymbol{E}}$ and \vec{j}.

Outline of the proof

Using controllability and image representations, we may assume, WLOG: $\mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$

To be shown

Global dissipation : \Leftrightarrow

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\hat{\mathbb{1}} \\
\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{gathered}
$$

\Leftrightarrow : Local dissipation

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
& \mathbb{I} \text { (Parseval) } \\
& \Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
& \mathbb{I} \quad \text { (Parseval) } \\
& \Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}}
\end{aligned}
$$

i. (Factorization equation \cong SOS)

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

$\int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) \geq 0$ for all $w \in \mathfrak{D}$

I (Parseval)

$\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}^{\mathrm{n}}$
I. (Factorization equation \cong SOS)
$\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)$
I) (easy)
$\exists \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)$
$\int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0$ for all $w \in \mathfrak{D}$
I (Parseval)
$\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}^{\mathrm{n}}$
I. (Factorization equation \cong SOS)
$\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)$
I (easy)
$\exists \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)$
If (clearly)
$\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w)$ for all $w \in \mathfrak{C}^{\infty}$

Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : \Leftrightarrow

$$
\begin{gathered}
\int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\hat{\mathbb{I}} \\
\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{gathered}
$$

\Leftrightarrow : Local dissipation

Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : \Leftrightarrow

$$
\begin{gathered}
\int_{\mathbb{R}^{\mathbf{n}}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\hat{\mathbb{I}} \\
\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{gathered}
$$

\Leftrightarrow : Local dissipation

However, ... this argument is valid only for $n=1$...

SOS

The factorization equation

Consider

$$
\begin{equation*}
X^{\top}(-\xi) X(\xi)=\boldsymbol{Y}(\xi) \tag{FE}
\end{equation*}
$$

with $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ given, and X the unknown. Solvable??

The factorization equation

Consider

$$
\begin{equation*}
X^{\top}(-\xi) X(\xi)=Y(\xi) \tag{FE}
\end{equation*}
$$

with $Y \in \mathbb{R}^{\bullet \times} \times[\xi]$ given, and X the unknown. Solvable??
\cong the SOS problem

$$
\begin{equation*}
X^{\top}(\xi) X(\xi)=Y(\xi) \tag{SOS}
\end{equation*}
$$

with $Y \in \mathbb{R}^{\bullet \times} \cdot[\xi]$ given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

The factorization equation

Consider

$$
\begin{equation*}
X^{\top}(-\xi) X(\xi)=Y(\xi) \tag{FE}
\end{equation*}
$$

with $\left.Y \in \mathbb{R}^{\bullet \times} \times \xi\right]$ given, and X the unknown. Solvable??
\cong the SOS problem

$$
\begin{equation*}
X^{\top}(\xi) X(\xi)=Y(\xi) \tag{SOS}
\end{equation*}
$$

with $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: write the real polynomial Y as a sum of squares

$$
\boldsymbol{Y}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{\mathrm{k}}^{2}
$$

$X^{\top}(\xi) X(\xi)=Y(\xi) \quad(\mathbf{S O S})$

\boldsymbol{Y} given polynomial matrix; X the unknown, $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$.
For $n=1$ and $Y \in \mathbb{R}[\xi]$, solvable (with $X \in \mathbb{R}^{2}[\xi]$) iff

$$
Y(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

$X^{\top}(\xi) X(\xi)=Y(\xi) \quad(\mathbf{S O S})$

\boldsymbol{Y} given polynomial matrix; X the unknown, $\xi=\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.
For $\mathrm{n}=1$ and $Y \in \mathbb{R}[\xi]$, solvable (with $X \in \mathbb{R}^{2}[\xi]$) iff

$$
Y(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

For $\mathrm{n}=1$ and $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$, it is well-known (but non-trivial) that (SOS) is solvable (with $X \in \mathbb{R}^{\bullet \bullet}[\xi]$!) iff

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

$X^{\top}(\xi) X(\xi)=Y(\xi) \quad(\mathbf{S O S})$

\boldsymbol{Y} given polynomial matrix; X the unknown, $\xi=\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.
For $\mathrm{n}=1$ and $Y \in \mathbb{R}^{\bullet \bullet \bullet}[\xi]$, it is well-known (but non-trivial) that (SOS) is solvable (with $X \in \mathbb{R}^{\bullet \bullet} \times[\xi]$!) iff

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

For $\mathrm{n}>1$ and under the symmetry and positivity condition

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}^{\mathrm{n}}
$$

this equation can nevertheless in general not be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \bullet \bullet}[\xi]$. The Motzkin polynomial $x^{2} y^{4}+x^{4} y^{2}+1-3 x^{2} y^{2}$ is non-neg., but not factorizable.
Cases where non-negativity \Leftrightarrow SOS:
or $\mathrm{n}=1$, or degree $=2$, or $\mathrm{n}=2$ and degree $=4$.

$X^{\top}(\xi) X(\xi)=Y(\xi) \quad(\mathbf{S O S})$

Y given polynomial matrix; X the unknown, $\xi=\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.
For $\mathrm{n}=1$ and $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$, it is well-known (but non-trivial) that (SOS) is solvable (with $X \in \mathbb{R}^{\bullet \bullet}[\xi]$!) iff

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

For $\mathrm{n}>1$ and under the symmetry and positivity condition

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}^{\mathrm{n}}
$$

this equation can nevertheless in general not be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \bullet} \cdot[\xi]$. But it can be solved over the matrices of rational functions, i.e., for $X \in \mathbb{R}^{\bullet \times \bullet}(\xi)$.

Hilbert's 17-th

This factorizability is a consequence of Hilbert's 17-th pbm!

$$
\text { !! Solve } \quad p=p_{1}^{2}+p_{2}^{2}+\cdots+p_{\mathrm{k}}^{2}, p \text { given }
$$

Hilbert's 17-th

This factorizability is a consequence of Hilbert's 17-th pbm!

$$
\text { !! Solve } \quad p=p_{1}^{2}+p_{2}^{2}+\cdots+p_{\mathrm{k}}^{2}, p \text { given }
$$

A polynomial $p \in \mathbb{R}\left[\xi_{1}, \cdots, \xi_{n}\right]$, with $p\left(\alpha_{1}, \ldots, \alpha_{n}\right) \geq 0$ for all $\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}$ can in general not be expressed as a SOS of polynomials, with the p_{i} 's $\in \mathbb{R}\left[\xi_{1}, \cdots, \xi_{n}\right]$.
But a rational function (and hence a polynomial)
$p \in \mathbb{R}\left(\xi_{1}, \ldots, \xi_{n}\right)$, with $p\left(\alpha_{1}, \ldots, \alpha_{n}\right) \geq 0, \quad$ for all $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{\mathrm{n}}$, can be expressed as a SOS of $\left(\mathrm{k}=2^{\mathrm{n}}\right)$ rational functions, with the p_{i} 's $\in \mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.

Outline of the proof

\Rightarrow solvability of the factorization eq'n

$$
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}}
$$

I) (Factorization equation)

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

over the rational functions, i.e., with D a matrix with elements in $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{n}\right)$.

Outline of the proof

\Rightarrow solvability of the factorization eq'n

$$
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{n}
$$

I (Factorization equation)

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

over the rational functions, i.e., with D a matrix with elements in $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.

The need to introduce rational functions in this factorization equation and an image representation of \mathfrak{B} (to reduce the pbm to \mathfrak{C}^{∞}) are the causes of the unavoidable presence of (possibly unobservable, i.e., 'hidden') latent variables in the local dissipation law.

Uniqueness

Uniqueness

Non-uniqueness of the storage function stems from 3 sources

Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable ℓ in various (non-observable) image representations of \mathfrak{B}.
2. of D in the factorization equation

$$
\Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

3. (in the case $n>1$) of the solution Ψ of

$$
(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)
$$

Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable ℓ in various (non-observable) image representations of \mathfrak{B}.
2. of D in the factorization equation

$$
\Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

3. (in the case $n>1$) of the solution Ψ of

$$
(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)
$$

For conservative systems, $\Phi(-\xi, \xi)=0$, whence $D=0$, but, when $\mathrm{n}>1$, the third source of non-uniqueness remains.

Uniqueness

The non-uniqueness is very real, even for EM fields.

Uniqueness

The non-uniqueness is very real, even for EM fields. Cfr.

The ambiguity of the field energy
... There are, in fact, an infinite number of different possibilities for u [the internal energy] and S [the flux] ... It is sometimes claimed that this problem can be resolved using the theory of gravitation ... as yet nobody has done such a delicate experiment ... So we will follow the rest of the world - besides, we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics, Volume II, page 27-6.

Conclusions

What to take home

- n -d dissipative systems have storage functions (LQ case)

What to take home

- n -d dissipative systems have storage functions (LQ case)
- The proof $=$ Hilbert's 17 -th problem)

What to take home

- n -d dissipative systems have storage functions (LQ case)
- The proof $=$ Hilbert's 17-th problem)
- Observable storage f'ns are exceptional. SOS \cong the construction of an observable storage function

What to take home

- n -d dissipative systems have storage functions (LQ case)
- The proof $=$ Hilbert's 17 -th problem)
- Observable storage f'ns are exceptional. SOS \cong the construction of an observable storage function
- \exists very simple, flexible, general, behavioral def'ns of controllability and observability

What to take home

- n -d dissipative systems have storage functions (LQ case)
- The proof $=$ Hilbert's 17 -th problem)
- Observable storage f'ns are exceptional. SOS \cong the construction of an observable storage function
- \exists very simple, flexible, general, behavioral def'ns of controllability and observability
- Systems = behaviors inputs and outputs OK in signal processing, not in physics, not for interconnections

What to take home

- n -d dissipative systems have storage functions (LQ case)
- \quad The proof $=$ Hilbert's 17-th problem)
- Observable storage f'ns are exceptional. SOS \cong the construction of an observable storage function
- \exists very simple, flexible, general, behavioral def'ns of controllability and observability
- Systems = behaviors inputs and outputs OK in signal processing, not in physics, not for interconnections
- Physicists and mathematicians should pay (more) attention to open systems

Motto

1. Get the physics right
2. The rest is mathematics

Once you get used to writing $\boldsymbol{w} \in \mathfrak{B}$,
the rest is easy

R.E. Kalman, Opening lecture

IFAC World Congress, Prague, July 4, 2005

Thank you

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

