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1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture

IFAC World Congress, Prague, July 4, 2005
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Definition

A system:

� � �� � � �

, with

� � �

the behavior .

is the set of independent variables
in dynamical systems
in distributed systems, say , time and space

is the set of dependent variables, the signal space
typically

The behavior

� � �
consists of the trajectories�	 �

that are compatible with the laws of the system,
typically the set of sol’ns of an ODE or PDE.

The behavior consists of the trajectories
that are compatible with the laws of the system,

typically the set of sol’ns of an ODE or PDE.
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Definition

SYSTEM
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Examples

PLANET

SUN

� � 
 � � 
 � � � all


 
 �
satisfying K.1, K.2, and K.3

PLANET
x
y
z
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Examples

Heat diffusion

x

q(x,t)

T(x,t)

� � 
 � ��� and

� � � � 
 � ��� and

� � � sol’ns of the PDE

��� � � � ���� � � � �

Diffusion
q

T
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Examples

Maxwell’s equations

��� �! " #$% &('

�) �* " + ,,- �(.'��� �(. " / '0 � � ) �*. " #$% �213 ,,- �� 54

� � 
 6

(time and space) �� 
 78 � 9;: � 9=< � 9=>
and ? � �� sol’ns of ME’s

EM field

ρ

j

E

B
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Examples

Linear systems

@@� � � A� � <CB � D � E� � <CB � � � � B � D �

� � 
 �

time

� � � 
 F G 
 H
inputs and outputs

� �� � B � D � 	 
 
 F G 
 H 	 I� 	 
 
 �KJ J J

Linear System
u

y
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Properties

Linearity

Examples: ME, linear systems, diffusion.

Shift-invariance

Examples: Kepler, diffusion, ME, linear systems.
Assumed throughout.

Controllability
Def’n in pictures:
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Properties

Controllability
Def’n in pictures:
1-d case:

� � 


or

L

.

desired trajectory

undersired trajectory

time

controlled 

desired future

undesired past
transition 

time
� 7 � � � M

.
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Properties

Controllability
Def’n in pictures:�-d case:

� � 
 �

or

L �

.

O
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R

R
1 O2

O

w1 w2w

� ‘patches’ � 7 � � � M

.

X � 7 � � � M I � M

: Controllability : ‘patchability’.
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Properties

Controllability

Controllability is a typical property of open systems.
Open: some variables are left ‘free’.
Open systems interact with their environment.

In contrast with closed, autonomous systems.	 Y� ‘Initial conditions’ specify the trajectory uniquely.

Examples:
Kepler: closed, not controllable; QM: idem; flows: idem
diffusion: controllable
ME: controllable@@� � � A� � <CB : well-known conditions

Controllability is assumed where needed. For controllable systems,
the compact support or periodic trajectories are ‘representative’ of
the whole behavior. – p.13/63



Dissipative Systems
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Definition

�Z	 � 
 � � 
 � �

is dissipative ( � = supply rate) 	

� M

and � periodic (period

�

)
[

8 � � � �\ � ]

supplySYSTEM

System absorbs supply, netto

If = holds, the system is called conservative

Dissipativity interesting, relevant, for open systems ...
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Examples

electrical terminals

supply = power   

(V,I)

R,L,C,T,G

power= terminals

^`_ a_
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Examples

(F,q)

supply = power    

mechanical terminals

Mechanical components

power= terminals

b_ @@� � _
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Examples

x

q(x,t)

T(x,t)

T   

q  
supply = q =  heat   

Diffusion

Conservative. for compact support: c � � ��� � � �\ � \ � � ]
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Examples

x

q(x,t)

T(x,t)

T   

q  
supply = −q/T       

Diffusion

Dissipative. for compact support � :
c �

� ��� � � �� ��� � � � \ � \ � ]
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Examples

supply = −E  j     E   

j
Maxwell’s eq’ns

Conservative. for compact support sol’ns of ME:

c d 9e: ��� � D � f � � �hg 9=> ��� � D � f � � �\ � \ D\ f\ � � ]
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Examples

u
supply = <u,y>      

y
d/dt x = Ax + Bu,  y= Cx + Du 

Dissipative

i �j k � � i l �nm j k � ] X k M 
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The Storage and the Flux
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Definition

Consider the 1-d system

� o � � 
 � 
 G 
 � o �

.
Each trajectory is a pair

� � � a � � 	 
 
 � a	 
 

.

Define

� � � 
 � 
 � �

, and the manifest behavior by

	 � p �	 
 
 q � � � a � M or

Implies, reasonable conditions, dissipative.

Given a dissipative system , construct a
storage function.

Is the storage function unique?

The set of storage functions is obviously convex.

Does it has an upper/lower bound?

– p.23/63
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� % � � � �\ � X �8 � � 7 M 
 � �8 � 7
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Examples

electrical terminals

supply = power   

(V,I)

R,L,C,T,G

power= terminals

^`_ a_

Storage function = energy stored in

t

’s and

E

’s
NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.
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Examples

(F,q)

supply = power    

mechanical terminals

Mechanical components

power= terminals

b_ @@� � _

Storage function = energy stored in masses and springs
NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.
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Is energy non-negative?

Is the storage function, in the case the supply is the power,
bounded from below ? Is a negative inductor passive?

(V ,I )1   1

(V ,I )2   2

electrical terminals

supply = power   

Hence the system is dissipative (in the sense of the periodic sol’ns)
regardless of the sign of ).

Is this reasonable? It appears not! But, the answer must lie in
electricity, not in physics!

– p.26/63
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Is energy non-negative?

Is the storage function, in the case the supply is the power,
bounded from below ? Does the inverse square low define a

passive system?

PLANET

SUN

Equations (1 dim., nice numbers):

Dissipative (in the sense of the periodic sol’ns),

but the energy is NOT bounded from below.

Also physics says this is passive!!
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Is energy non-negative?

Is the storage function, in the case the supply is the power,
bounded from below ? Does the inverse square low define a
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Examples

u
supply = <u,y>      

y
d/dt x = Ax + Bu,  y= Cx + Du 

i	 � transfer f’n,

i ��� � � � E � ^� m A ��� 7 <J Equivalent:

1. Dissipative

2.

i �j k � � i l �nm j k � ] X k M 


3.

I � l 	 @@� � l � D l B

4. ...u KYP-lemma, AREineq., ARE, LMI’s, ...
Probably the most used circle of ideas in control!

– p.28/63



Definition

Consider the �-d system

� o � � 
 � � 
 G 
 � � o �
.

Each trajectory is a pair

� � � a � � 	 
 
 � � a	 
 � 
 �
.

Define

� � � 
 � � 
 � �

, and the manifest behavior by

	 � p �	 
 � 
 q � � � a � M or

is a storage/flux function
(case , variables )

Implies, under reasonable conditions, that is dissipative.

Given a dissipative system , construct , i.e.
a storage and a flux .
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, construct

a

, i.e.
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�
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b
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Local dissipation law

Dissipativity	
c c � � ��� � D � f � � �\ � \ D\ f\ � ]

for all � M J

Can this be reinterpreted as:

As the system evolves, some of the supply is locally stored, some
locally dissipated, and some redistributed over space?

– p.30/63
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Local dissipation law

!! Invent storage and flux, locally defined in time and space, such
that in every spatial domain there holds:@@� Storage + Spatial flux Supply.

SUPPLY

DISSIPATION

FLUX

STORAGE

Supply = partly stored + partly radiated + partly dissipated.

– p.31/63



Examples

x

q(x,t)

T(x,t)

T   

q  
supply = q =  heat   

Diffusion

Conservative. for compact support: c � � ��� � � �\ � \ � � ]
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Examples

x

q(x,t)

T(x,t)

T   

q  
supply = −q/T       

Diffusion

Dissipative. for compact support � :
c �

� ��� � � �� ��� � � � \ � \ � ]
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

rate of change in storage + spatial flux supply rate

To be invented:
an ‘extensive’ quantity for the first law: internal energy
an ‘extensive’ quantity for the second law: entropy

– p.34/63



Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Define the following variables:: � � 	 the stored energy density,� � �Z� � � � 	 the entropy density,

b�� � m ��� � 	 the energy flux �

b�� � m v �
��� � 	 the entropy flux,

� � � v �
��� � � � 	 the rate of entropy productionJ
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Local versions of the first and second law:
rate of change in storage + spatial flux supply rate

Conservation of energy:

�� � : � ��� b � � � �

Entropy production:�� � � � ��� b� � � � � � J Since

� � ] �

�� � � � ��� b�� � �J
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Problem:

Build a theory behind ad hoc constructions of

: � b � and

� � b� .

Complete as in the 1-d case....

– p.34/63



Examples

supply = −E  j     E   

j
Maxwell’s eq’ns

$% ,,- �� �! 3 �� ��1 " /'

$% , �,- � �! 3 $% 0 � �) � ) �! 3 ,,- ��1 " / 4

Conservative. for compact support sol’ns of ME:

c d 9e: ��� � D � f � � �hg 9;> ��� � D � f � � �\ � \ D\ f\ � � ]

There simply isn’t a storage function in terms of only

9: � 9 >

!!
– p.35/63



PDE’s and QDF’s
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Linear differential distributed ( �-d) systems

� � 
� � the set of independent variables,

typically � � 

: time and space,� 
� � the set of dependent variables,� the solutions of a linear constant coefficient PDE.

Let and consider

Define the associated behavior

holds

Notation for n-D linear differential systems:

or

– p.37/63



Linear differential distributed ( �-d) systems

� � 
� � the set of independent variables,

typically � � 

: time and space,� 
� � the set of dependent variables,� the solutions of a linear constant coefficient PDE.

Let

� M 
� ) � �� # �g g g � � � � � and consider

� ,,�� s �g g g � ,,���� � � ]J �;� �

Define the associated behavior

� p � M �� � 
� � 
 � � q �;� �

holds

r J

Notation for n-D linear differential systems:� 
� � 
 � � � M � �� � or

M � �� J
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Image representation

� ���� s �g g g � ���� � � � ]
is called a kernel representation of the associated

M � � �.

Another representation: image representation

Elimination thm

Do all behaviors of linear constant coefficient PDE’s admit an image
representation???

admits an image representation iff it is ‘controllable’.

– p.38/63
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential and

the vector potential
generate exactly the solutions to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!

– p.39/63



Are Maxwell’s equations controllable ?

The following equations
in the scalar potential

¡	 
 G 
 � 


and

the vector potential

9A	 
 G 
 � 
 �
generate exactly the solutions to Maxwell’s equations:

�� " + ,,- �£¢ + � ¤'� . " � ) �£¢'�21 " $% , �,- � � ¢ + $% 0 � � � �¥¢ 3 $% 0 � � ¦ ��� � ¢ § 3 $% ,,- � ¤'

& " + $% ,,- �� � ¢ + $% � � ¤ 4

Proves controllability. Illustrates the interesting connection

controllability

I

potential!
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Observability

Observability of the image representation

� � ���� s �g g g � ���� � �
is defined as:

�

can be deduced from � ,
i.e.

���� s �g g g � ���� � should be injective.

Not all controllable systems admit an observable im. repr’n.
For , they do. right co-prime factorization of .
For , exceptionally so.

The latent variable in an im. repr’n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.

– p.40/63
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Notation

Where convenient, use multi-index notation:

� � ��� 7 �J J J � � � � �� � � � 7 �g g g � � � � � © � � © 7 �J J J � © � � � ª � � ª 7 �J J J � ª � � �

@@� � ���� s �J J J � ���� � � @ «@� « � � «s��� «ss �J J J � � «���� «�� �\ � � \ � 7\ � � J J J \ � � �
etc.
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QDF’s

The quadratic map acting on � 	 
 � 
�

and its derivatives,
defined by

�¬ ­¯® ° \ ­
\ � ­ �

l± ­ ® ° \ °
\ � ° �

is called quadratic differential form (QDF) on

� ² � 
 � � 
� �

.± ­ ® ° M 
� ³ �Z´ WLOG:

± ­ ® ° � ± l°® ­ .

Introduce the -variable polynomial matrix

Denote the QDF as . QDF’s are parameterized by
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 � © � ª � J
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Dissipative distributed systems

We henceforth consider only controllable linear differential systems
and QDF’s for supply rates.

, controllable, is

dissipative with respect to the supply rate (a QDF)

for all of compact support, i.e., for all .

and ‘compact support’.
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M � � �, controllable, is

dissipative with respect to the supply rate µ (a QDF)

c� µ � � � \ � ]

for all � M

of compact support, i.e., for all � M ¶

.

	 � � ²
and ‘compact support’.
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Storage and Flux
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MAIN RESULT (stated for �· ¸

)

Thm: � � 
	 � � D � f´ �	 space/time;

M � �º¹ , controllable.

Then » ¼ » � ½ � � � \ � \ D\ f ¾ \ � ]
for all � M ¶

an image representation of ,

and QDF’s , the storage, and the flux,

such that the local dissipation law

holds for all that satisfy
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Hidden variables

The local law involves

possibly unobservable, - i.e., hidden!

latent variables (the

�
’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative) with

respect to m 9e:g 9 > � the rate of energy supplied.

Introduce the stored energy density, , and

the energy flux density (the Poynting vector ), ,

Local conservation law for Maxwell’s equations:

Involves unobservable from and .
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the energy flux density (the Poynting vector ),
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Outline of the proof

Using controllability and image representations, we may assume,
WLOG: � � ² � 
 � � 
� �

To be shown

Global dissipation :

c� µ � � � ]
for all � M

IÃ 	 g Ä � � � µ � � � for all � M � ²

	 Local dissipation
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c� µ � � � ]

for all � M

(Parseval)± �nm j k � j k � ]

for all k M 
 �

(Factorization equation SOS)

(easy)

(clearly)

for all
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation :

c� µ � � � ]

for all � M

IÃ 	 g Ä � � � µ � � � for all � M � ²

	 Local dissipation

However, ... this argument is valid only for ...
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SOS
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The factorization equation

Consider Å � m � � � � � � Æ � � �

(FE)

with

Æ M 
� ) � �� �

given, and the unknown. Solvable??

the SOS problem

(SOS)

with given, and the unknown.

Under what conditions on does there exist a solution ?

Scalar case: write the real polynomial as a sum of squares

– p.52/63



The factorization equation

Consider Å � m � � � � � � Æ � � �

(FE)

with

Æ M 
� ) � �� �

given, and the unknown. Solvable??

Y� the SOS problem Å � � � � � � � Æ � � �
(SOS)

with

Æ M 
� ) � �� �

given, and the unknown.

Under what conditions on

Æ
does there exist a solution ?

Scalar case: write the real polynomial as a sum of squares

– p.52/63



The factorization equation

Consider Å � m � � � � � � Æ � � �

(FE)

with

Æ M 
� ) � �� �

given, and the unknown. Solvable??

Y� the SOS problem Å � � � � � � � Æ � � �
(SOS)

with

Æ M 
� ) � �� �

given, and the unknown.

Under what conditions on

Æ
does there exist a solution ?

Scalar case: write the real polynomial

Æ

as a sum of squares
Æ � � {# � � {{ �g g g � � {ÇJ – p.52/63



Å � � � � � � � Æ � � �

(SOS)

Æ

given polynomial matrix; the unknown,

� � � � 7 �g g g � � � �J

For � � v

and

Æ M 
 �� �

, solvable (with

M 
 � �� �
) iffÆ ��È � ]

for all È M 
J

For and under the symmetry and positivity condition

for all

this equation can nevertheless in general not be solved over the
polynomial matrices, for . But it can be solved
over the matrices of rational functions, i.e., for .
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

!! Solve Ë � Ë �7 � Ë �� �g g g � Ë �_ � Ë given

A polynomial with for
all can in general not be expressed as a SOS
of polynomials, with the ’s .
But a rational function (and hence a polynomial)

with for all
, can be expressed as a SOS of ( )

rational functions, with the ’s .
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 �
can in general not be expressed as a SOS

of polynomials, with the ËÌ ’s

M 
 �� 7 �g g g � � � � .
But a rational function (and hence a polynomial)Ë M 
 � � 7 �g g g � � � � � with Ë �È 7 �J J J � È � � ] � for all�È 7 �J J J � È � � M 
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Í � w �

)
rational functions, with the Ë Ì ’s
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Outline of the proof

solvability of the factorization eq’n± �nm j k � j k � ]

for all k M 
 �
(Factorization equation)

I 	 ± �nm � � � � � l �nm � � � � �

over the rational functions, i.e., with a matrix with elements in
 � � 7 �g g g � � � � J

The need to introduce rational functions in this factorization
equation and an image representation of (to reduce the pbm to

) are the causes of the unavoidable presence of (possibly
unobservable, i.e., ‘hidden’) latent variables in the local dissipation
law.
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Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable in various
(non-observable) image representations of .

2. of in the factorization equation

3. (in the case ) of the solution of

For conservative systems, , whence ,
but, when , the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.

Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for

[the internal energy] and [the flux] ... It is sometimes claimed that

this problem can be resolved using the theory of gravitation ... as yet

nobody has done such a delicate experiment ... So we will follow the

rest of the world - besides, we believe that it [our choice] is probably

perfectly right.

The Feynman Lectures on Physics,

Volume II, page 27-6.

– p.58/63
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Conclusions
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What to take home

�-d dissipative systems have storage functions (LQ case)

The proof = Hilbert’s 17-th problem)

Observable storage f’ns are exceptional.

SOS the construction of an observable storage function

very simple, flexible, general, behavioral def’ns of

controllability and observability

Systems = behaviors

inputs and outputs OK in signal processing,

not in physics, not for interconnections

Physicists and mathematicians should pay (more) attention to

open systems
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Motto

– p.61/63



1. Get the physics right

2. The rest is mathematics

Once you get used to writing ,

the rest is easy

R.E. Kalman, Opening lecture

IFAC World Congress, Prague, July 4, 2005
– p.62/63



Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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