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1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture
IFAC World Congress, Prague, July 4, 2005
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Systems
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Definition

Asystem: ¥ = (T, W, B),with23 C (W)" the behavior.

The behavior B C (W) consists of the trajectories
w : T — W that are compatible with the laws of the system,
typically the set of sol’ns of an ODE or PDE.
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Definition

Asystem: ¥ = (T, W, B),with3 C (W)" the behavior.

T is the set of independent variables
T = R in dynamical systems
T = R" in distributed systems, say n — 4, time and space

W is the set of dependent variables, the signal space
typically W = RY

The behavior B C (W) consists of the trajectories
w : T — W that are compatible with the laws of the system,
typically the set of sol’ns of an ODE or PDE.
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Definition

SYSTEM
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Examples

q(x,t)

I
= o

T(x,t)

Heat diffusion

T = R?(xzandt), W = R?(gand T'), B sol'ns of the PDE
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Maxwell’s equations

T = R? (time and space) ,

Examples
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W = R (Ea B’a.;and p);

Y — sol’ns of ME’s
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Examples

Linear systems

FrgEessor H Il E. Iq
i Speg uest
EL3 A
i { -
_‘ﬂ =

ditw =A:1;—|—Bu,y = CCB—I-BU, W = (U”y)

T = R( time ), W = R™ X RP inputs and outputs ),
B=(u,y)  R>R"XRP:dx:R > R"...

Linear System
y
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Properties

Linearity

Examples: ME, linear systems, diffusion.

Shift-invariance

Examples: Kepler, diffusion, ME, linear systems.
Assumed throughout.
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Def’n in pictures:

Properties

Controllability

1-dcase: T = R or Z.

undersired trajectory

time

e
—

—_ |

desired trajectory

controlled
transmo/

time

=N
/

w1, wa € °B.

pam—

desired future
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Properties

Controllability

Def’n in pictures:
n-d case: T = R" or Z".

S

w ‘patches’ wq, w2 € *B.

V wi,we € B d w € B : Controllability :< ‘patchability’.
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Properties

Controllability

Controllability is a typical property of open systems.

Open: some variables are left ‘free’.
Open systems interact with their environment.

In contrast with closed, autonomous systems.

Y

:= ‘Initial conditions’ specify the trajectory uniquely.

Examples:
Kepler: closed, not controllable; QM: idem; flows: idem
diffusion: controllable
I\iIlE: controllable

7€ = Ax + Bwu: well-known conditions

Controllability is assumed where needed. For controllable systems,
the compact support or periodic trajectories are ‘representative’ of
the whole behavior. _p.13/6a



Dissipative Systems




Definition

3 (R*, R, ) is dissipative (w = supply rate) :<

T
w € B and w periodic (period T') = / w(t)dt > 0
0

e B
supply

System absorbs supply, netto

If = holds, the system is called conservative
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Definition

3 (R*, R, ) is dissipative (w = supply rate) :<

T
w € B and w periodic (period T') = / w(t)dt > 0
0

e B
supply

System absorbs supply, netto
If = holds, the system is called conservative

Dissipativity interesting, relevant, for open systems ...
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Examples

electrical terminals

supply = power
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Examples

mechanical terminals

<
u supply = power
<

d
power= Zterminals Fk %qk

-p.17/63



Examples

supply = q = heat

Conservative. <> for compact support: [ [ g(z,t) dedt = 0
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Examples

supply = —q/T

Dissipative. << for compact support q:

//Rz f(ll’((a:, t)) dt = 0
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Examples

supply = -E j

Maxwell’s eq’ns

Conservative. << for compact support sol’ns of ME:

/// E(mayaz,t)';(w,y,Z,t)da?dydzdt:()
R4
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Examples

Py = <y

Dissipative <

G(iw) + G (—iw) >0 VwER
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The Storage and the Flux




Definition

Consider the 1-d system X/ = (R, R x R, 28’).
Each trajectory is a pair (w, V) w:R —-> R,V : R — R.
Define 3 = (R, R, 23), and the manifest behavior by

B:={w:R—-R| (w,V) e B'}
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Definition

Consider the 1-d system X/ = (R, R x R, 28’).
Each trajectory is a pair (w, V) w:R —-> R,V : R — R.
Define 3 = (R, R, 23), and the manifest behavior by

B:={w:R—-R| (w,V) e B'}

V is a storage function : < V(w,V) € B’ :

t1

V(tl) < V(to) -+ w(t) dt| Vig,t1 € R, tg < 11
to

d
Implies, reasonable conditions, 3 = (R, R, 23) dissipative.
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Definition

Define 3 = (R, R, 28), and the manifest behavior by

B:={w:R—R| (w,V) e B’}

d
Implies, reasonable conditions, 3 = (R, R, 283) dissipative.

® Given a dissipative system 3 = (R, R, 28), construct a
storage function.

°

Is the storage function unique?

°

The set of storage functions is obviously convex.

°

Does it has an upper/lower bound?
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Examples

electrical terminals

supply = power

power: Zterminals Ik‘/l-{

Storage function = energy stored in L’s and C’s
NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.
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Examples

mechanical terminals

<
ﬂ supply = power
<

(F,q)

d
power= Zterminals Fk Eqk

Storage function = energy stored in masses and springs
NOT UNIQUE, when viewed from external terminals!
Lower bound: available storage. Upper bound: required supply.
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Is energy non-negative?
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Is a negative inductor passive?
electrical terminals

(Vplp) M

supply = power
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Is a negative inductor passive?
electrical terminals

(Vi) M

(V2,1)

supply = power

Equations:

d
I1-I-Iz=0,L£11=V1—V2

d1
power = V317 + Vols ~» EQLI% — power

Hence the system is dissipative (in the sense of the periodic sol’'ns)
regardless of the sign of L).
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Is a negative inductor passive?
electrical terminals

(Vplp) M

(V2,1)

Hence the system is dissipative (in the sense of the periodic sol’'ns)
regardless of the sign of L).

supply = power

Is this reasonable? It appears not! But, the answer must lie in
electricity, not in physics!
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Is energy non-negative?
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Does the inverse square low define a
passive system?

/I:ANET

SUN
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Does the inverse square low define a
passive system?

/I:ANET

SUN

Equations (1 dim., nice numbers):

d2

1
——q+ 5 =F
dt?2 q2
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Is energy non-negative?

Is the storage function, in the case the supply is the power,

bounded from below ? Does the inverse square low define a
passive system? Equations (1 dim., nice numbers):

Dissipative (in the sense of the periodic sol’ns),
1 1

2
but the energy 5 (%q) ~ 4 is NOT bounded from below.

2

Also physics says this Is passive!!
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Examples

Py = <y

G :=transfer n,G(s) = D + C(Is — A)~1B. Equivalent:
1. Dissipative

2. G(iw) + G (—iw) >0 Vw ER

3. 3Q=0Q": %wTQw <y'lu

4. ..

~» KYP-lemma, AREineq., ARE, LMI’s, ...
Probably the most used circle of ideas in control!
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Definition

Consider the n-d system X/ = (R*, R x R®, 8’).
Each trajectory is a pair (w, V) w:R —- R*,V : R* —» R".
Define 3 = (R*, R, ), and the manifest behavior by

B:={w:R*" > R| (w,V) € B’}
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Definition

Consider the n-d system X/ = (R*, R x R®, 8’).
Each trajectory is a pair (w, V) w:R —- R*,V : R* —» R".
Define 3 = (R*, R, ), and the manifest behavior by

B:={w:R*" > R| (w,V) € B’}

V is a storage/flux function : <
V(w,V) € B’ : (case n = 4, variables x, y, z, t)

(%Fw T (’%Fy aaze + %S) (2, y,2,t) < w(x,y,2,1)

Va,y,z,t € R. Generally:

V.- V<K V. :=
— 3m1+ +8:1:n
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Definition

Define X = (R", R, 23), and the manifest behavior by
B:={w:R*" >R | (w,V) € B}

V is a storage/flux function : <
V(w,V) € B’ : (case n = 4, variables x, y, z, t)

(2F:+ 2Fy + 2F: + 55) (@9, 2,1) < w(z,y, 2,1)

Va,y,z,t € R.
Implies, under reasonable conditions, that 3. is dissipative.

® Given a dissipative system X = (R™, R, B), construct V/, i.e.
a storage S and a flux F'.
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Local dissipation law

Dissipativity : <=

fR fR3 w(x,y,z,t) dedydzdt > 0 forallw € B.
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Local dissipation law

Dissipativity : <=

fR ng w(x,y,z,t) dedydzdt > 0 forallw € B.

Can this be reinterpreted as:

As the system evolves, some of the supply is locally stored, some
locally dissipated, and some redistributed over space?
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Local dissipation law

I Invent storage and flux, locally defined in time and space, such
that in every spatial domain there holds:

SUPPLY

% Storage + Spatial flux < Supply.
ﬁ Al

Z
STORAGE

FLUX

vy

DISSIPATION

Supply = partly stored + partly radiated + partly dissipated.
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Examples

supply = q = heat

Conservative. <> for compact support: [ [ g(z,t) dedt = 0
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Examples

supply = —q/T

Dissipative. << for compact support q:

//Rz f(ll’((a:, t)) dt = 0
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX ——== E/ %94 //SE»: FLUX

sedd

STORAGE

rate of change in storage + spatial flux < supply rate

To be invented:
an ‘extensive’ quantity for the first law: internal energy
an ‘extensive’ quantity for the second law: entropy
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Define the following variables:

E =T : the stored energy density,
S = In(T) : the entropy density,
o
Fp=——T : the energy flux,
ox
F 19 T the ent fl
= — —— : the entropy flux,
S T 0 Py
10 ., .
Dg = (=—"T)“ : the rate of entropy production.
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Local versions of the first and second law:
rate of change in storage + spatial flux < supply rate
Conservation of energy:

9 E + 9 Frp =
ot ox E=9
Entropy production:
o0 o0 q
—S 4+ —Fg = — + Dg. Since (Dsg>0) =

ot ox T
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Examples

Can these ‘global’ versions be expressed as ‘local’ laws?

Problem:

Build a theory behind ad hoc constructions of F/, Fip and S, Fg.

Complete as in the 1-d case....
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Examples

o

~V.E+V.3 = 0
€Oat + J ’
52 , a -
60—8t2E+€0C V X V X FE -l— aﬂ =

Conservative. << for compact support sol’ns of ME:

/// E(wayaz,t)';(w,y,Z,t)dwdydzdt:()
R4

There simply isn’t a storage function in terms of only E , f!!
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PDE’s and QDF’s




Linear differential distributed (n-d) systems

T = IR", the set of independent variables,
typically n — 4: time and space,
W = RR", the set of dependent variables,

B3 — the solutions of a linear constant coefficient PDE.
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Linear differential distributed (n-d) systems

T = IR", the set of independent variables,
typically n — 4: time and space,
W = RR", the set of dependent variables,
83 — the solutions of a linear constant coefficient PDE.
Let R € R**¥[&1, -+ , &,], and consider

R(p2, ) w=0. (%

Oxq’ ’ Oay

Define the associated behavior
B = {w € € (R*,R") | (*) holds }.

Notation for n-D linear differential systems:

(R*,R",*B) € £, orB € £'.
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Image representation

R(a . i)w:()

is called a kernel representation of the associated *5 € £.
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Image representation

[5) [5)
R(a—ml,...,awn)w_o

is called a kernel representation of the associated *5 € £.
Another representation: image representation

_ 0 0
W—M(awl,'°°,a—wn)£
iminati i 9 ... 20 o
Eliminationthm = 1m (M <8w1, ,awn)> c L

Do all behaviors of linear constant coefficient PDE’s admit an image
representation???
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Image representation

[5) [5)
R(a—ml,...,awn)w_o

is called a kernel representation of the associated *5 € £.
Another representation: image representation

_ 0 0
W—M(awl,'°',a—wn)£
iminati i 9 ... 20 o
Eliminationthm = 1m (M <8w1, ,awn)) c L

Do all behaviors of linear constant coefficient PDE’s admit an image
representation???

B € £ admits an image representation iff it is ‘controllable’.
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Are Maxwell’s equations controllable ?
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential ¢ : R X R®> — R and

the vector potential A : R X R3 — R3
generate exactly the solutions to Maxwell’s equations:

— 8 g
F = ——A-V
5 ?,
B = VX K,
J = sowA — €0c®V?2A + e9c?V (V . A) + €0av¢7
0 -
= —e0-V-A—¢eoV?3p.
P eoat €0 o)

Proves controllability. Illlustrates the interesting connection

controllability < d potential!
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Observability

Observability of the image representation

sz(a . "’)e

ox’ > Ox,

is defined as: £ can be deduced from w,
i.e. M (i .o, 0 ) should be injective.

oxq’ > Ox,
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Observability

Observability of the image representation

_ 0 0
w —M(a—wl"“ ’a—mn>£
is defined as: £ can be deduced from w,
- 0 o .. ]
i.e. M (a—ml, s, 3—%) should be injective.

Not all controllable systems admit an observable im. repr’n.
Forn = 1, they do. < right co-prime factorization of G.
Forn > 1, exceptionally so.

The latent variable £ in an im. repr’'n may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation with an observable potential.
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Notation

Where convenient, use multi-index notation:

r = (X1,...,2p),

52(519'” 7€n)7C:(Cla---acn)an:("719-°°a"7n)a

d _ (8 0\ d* _ [ 9™ o*=
de 8:1:1"°°’8:1:n Y dxk 8%?1’...,633511 )

dxr = dxidxs . ..dx,,

etc.
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QDF’s

The quadratic map acting on w : R® — RY and its derivatives,
defined by

is called quadratic differential form (QDF) on €°° (R®, R").
Dpo € R¥X¥: WLOG: Dp o = (I)Zk'
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QDF’s

The quadratic map acting on w : R® — RY and its derivatives,
defined by

is called quadratic differential form (QDF) on €°° (R®, R").
Dpo € R¥X¥: WLOG: Dp o = (I)Zk'

Introduce the 2n-variable polynomial matrix ®
®(¢,m) =) Pre¢tn’.
k.l

Denote the QDF as () 3. QDF’s are parameterized by R [{, 7] .
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Dissipative distributed systems

We henceforth consider only controllable linear differential systems
and QDF’s for supply rates.
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Dissipative distributed systems

We henceforth consider only controllable linear differential systems
and QDF’s for supply rates.

B € L, controllable, is

dissipative with respect to the supply rate Q% (a QDF)

Jr» Qo (W) dz >0

for all w € B of compact support, i.e., forallw € B N 2.

?) := ¢°° and ‘compact support’.
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Storage and Flux




MAIN RESULT (stated for n = 4)

Thm:n = 4 : x,y, z;t : space/time; 5 € £, controllable.

Then [, |[os Qs (w) dxdydz| dt > 0 forallw € BND

r
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MAIN RESULT (stated for n = 4)

Thm:n = 4 : x,y, z;t : space/time; 5 € £, controllable.

Then [, |[os Qs (w) dxdydz| dt > 0 forallw € BND

r

. : _ 8 8 8 8
- an image representation w = M ((%, By’ B2 a::) £ of B,
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MAIN RESULT (stated for n = 4)

Thm:n = 4 : x,y, z;t : space/time; 5 € £, controllable.

Then [, |[os Qs (w) dxdydz| dt > 0 forallw € BND

r

. : _ 8 8 8 8
- an image representation w = M ((%, By’ B2 a::) £ of B,

and QDF’s S, the storage,and F,, F,, F, the flux,
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MAIN RESULT (stated for n = 4)

Thm:n = 4 : x,y, z;t : space/time; 5 € £, controllable.

Then [, |[os Qs (w) dxdydz| dt > 0 forallw € BND

r

Ox’ Oy’ 0z Ot
and QDF’s S, the storage,and F,, F,, F, the flux,

such that the /ocal dissipation law

- an image representation w = M ( o 0 0 8) £ of 5,

55 () + 5o Fx () + 2. F, (£) + 5 F (£) < Qs (w)

: & & 8
holds for all (w, £) that satisfy w = M <8w’ 59> 53 Bt) £.
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Hidden variables

The local law involves
possibly unobservable, - i.e., hidden!
latent variables (the £’s).

This gives physical notions as stored energy, entropy, etc., an
enigmatic physical flavor.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative) with
respectto — FE -3, the rate of energy supplied.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative) with
respectto — FE -3, the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F’,

—E-E - B - B,
2 2

S <E, E) :

—

F (E’, E) := eoc’E x B.

Local conservation law for Maxwell’s equations:

5S(E,B)+V-F(E,B)=-E.j.

—

Involves B, unobservablefrom FE and ).
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Outline of the proof

Using controllability and image representations, we may assume,
WLOG: B = ¢ (R*, R")

To be shown

Global dissipation : <=

Qs (w) > Oforallw € D
Rn

()
F¥: V-Qu(w) <Qs(w) forallw € €°

<: Local dissipation
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Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > Oforallw € R*
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Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > Oforallw € R*

{L |(Factorization equation = SOS)

3D: ®(=¢,€) =DT (=€) D(¢)
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9 ¥

/ Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > Oforallw € R*

)

(Factorization equation = SOS)

3D: ®(=¢,€) =DT (=€) D(¢)

$ (easy)

&+n)' T n) =2 n) — DT (¢)D(n)




/ Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > Oforallw € R*

)

(Factorization equation = SOS)

3D: ®(=¢,€) =DT (=€) D(¢)

$ (easy)

I3T: (C+n) T(En)=2(n) — D" () D(n)

$ (clearly)

F¥: V:Qu(w) <Qsp(w) forallw € €




Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <=

Qs (w) > Oforallw € D
Rn

)
F¥: V:Qu(w) <Qsp(w) forallw € €

<: Local dissipation
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Outline of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <=

Qs (w) > Oforallw € D
Rn

)
F¥: V:Qu(w) <Qsp(w) forallw € €

<: Local dissipation

However, ... this argument is valid only forn = 1...
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S0S




The factorization equation

Consider

X' (=8 X (8 =Y (&) (FE)

with Y € R**®[&] given, and X the unknown. Solvable??
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The factorization equation

Consider

X' (=8 X (8 =Y (&) (FE)

with Y € R**®[&] given, and X the unknown. Solvable??

= the SOS problem
XT (&)X (&)=Y () (SOS)

with Y € R**®[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?
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The factorization equation

Consider

X' (=8 X (8 =Y (&) (FE)

with Y € R**®[&] given, and X the unknown. Solvable??

= the SOS problem
XT (&)X (&)=Y () (SOS)

with Y € R**®[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: write the real polynomial Y as a sum of squares

2 2 2
Y=:B1—|—aj2—|—--°-|—513k. - p.52/63



X' ()X (&)=Y (& (SOS)

Y given polynomial matrix; X the unknown, £ = (&1, ¢ ,&n).

For n =1 and Y € R [¢], solvable (with X € R?[¢]) iff

Y (a) >0 forall o € R.
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X' ()X (&)=Y (& (SOS)

Y given polynomial matrix; X the unknown, £ = (&1, ¢ ,&n).

For n =1 and Y € R [¢], solvable (with X € R?[¢]) iff

Y (a) >0 forall o € R.

For n =1 andY € R®*°®[£], it is well-known (but non-trivial)
that (SOS) is solvable (with X € R®*® [£] 1) iff

Y(a)=Y'"(a)>0 foralla € R.
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X' ()X (&)=Y (& (SOS)

Y given polynomial matrix; X the unknown, £ = (&1, ¢ ,&n).

For n =1 andY € R®*°[£], itis well-known (but non-trivial)
that (SOS) is solvable (with X € R®*® [£] 1) iff

Y(a)=Y' (o) >0 foralla € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (o) >0 foralla € R?,

this equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®*®[£]. The Motzkin polynomial
w2y4 + w4y2 + 1 — 3a32y2 IS non-neg., but not factorizable.
Cases where non-negativity << SOS:

orn = 1, or degree = 2, orn = 2 and degree = 4.
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X' ()X (&)=Y (& (SOS)

Y given polynomial matrix; X the unknown, £ = (&1, ¢ ,&n).

For n =1 andY € R®*°[£], itis well-known (but non-trivial)
that (SOS) is solvable (with X € R®*® [£] 1) iff

Y(a)=Y' (o) >0 foralla € R.
For n > 1 and under the symmetry and positivity condition
Y(a)=Y' (o) >0 foralla € R?,

this equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®*®[£]. But itcan be solved
over the matrices of rational functions, i.e., for X € R®**® (&).
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

Il Solve p = p%

5

—|—---—|—p12§, P given
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Hilbert’s 17-th

This factorizability is a consequence of Hilbert’s 17-th pbm!

I! Solve pzpf pg—I—---—l—pﬁ, P given

A polynomial p € R[&7,: - , &), withp (a1,...,an) > 0 for
all (a1,...,a,) € R" can in general not be expressed as a SOS
of polynomials, with the p;’s € R[£7, -« , &,

But a rational function (and hence a polynomial)

D E R(gla" ) 9€n) , With p(a17°°°aan) 2 0, forall
(a1y...,0q) € R®, can be expressed as a SOS of (k = 2")
rational functions, with the p;’s € R (&1,--+ , &n).
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Outline of the proof

—> solvability of the factorization eq’n

¢ (—itw,tw) > O0forallw € R”

{L | (Factorization equation)

ID: ®(—¢¢) =D" (=€) D(¢)

over the rational functions, i.e., with ) a matrix with elements in

R(£1,"° 9€n)°
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Outline of the proof

—> solvability of the factorization eq’n

¢ (—itw,tw) > O0forallw € R”

{L | (Factorization equation)

ID: ®(—¢¢) =D" (=€) D(¢)

over the rational functions, i.e., with ) a matrix with elements in

R(ﬁh’" 9€n)°

The need to introduce rational functions in this factorization
equation and an image representation of *35 (to reduce the pbm to
&) are the causes of the unavoidable presence of (possibly
unobservable, i.e., ‘hidden’) latent variables in the local dissipation
law.
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Uniqueness
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations of *5.

2. of D in the factorization equation
¢ (_Sa S) =D"' (_5) D (‘S)

3. (in the case n > 1) of the solution W of

(&+n)' T(n) =@(n) — DT (€)D(n)
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Uniqueness

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations of *5.

2. of D in the factorization equation
¢ (_Sv S) =D"' (_5) D (5)

3. (in the case n > 1) of the solution W of

(&+n)' T(n) =@(n) — DT (€)D(n)

For conservative systems, ® (—&, &) = 0, whence D = 0,
but, when n > 1, the third source of non-uniqueness remains.
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Uniqueness

The non-uniqueness is very real, even for EM fields.
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Uniqueness

The non-uniqueness is very real, even for EM fields. Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for u
[the internal energy] and S [the flux] ... It is sometimes claimed that
this problem can be resolved using the theory of gravitation ... as yet
nobody has done such a delicate experiment ... So we will follow the
rest of the world - besides, we believe that it [our choice] is probably
perfectly right.

The Feynman Lectures on Physics,

Volume Il, page 27-6.
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Conclusions
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What to take home

® n-d dissipative systems have storage functions (LQ case)
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SOS = the construction of an observable storage function
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a1 very simple, flexible, general, behavioral def’ns of
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Observable storage f’ns are exceptional.

SOS = the construction of an observable storage function

a1 very simple, flexible, general, behavioral def’ns of
controllability and observability

Systems = behaviors
inputs and outputs OK in signhal processing,

not in physics, not for interconnections
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What to take home

n-d dissipative systems have storage functions (LQ case)
The proof = Hilbert’s 17-th problem)

Observable storage f’ns are exceptional.

SOS = the construction of an observable storage function

a1 very simple, flexible, general, behavioral def’ns of
controllability and observability

Systems = behaviors
inputs and outputs OK in signhal processing,

not in physics, not for interconnections

Physicists and mathematicians should pay (more) attention to
open systems
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Motto
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1. Get the physics right

2. The rest is mathematics

Once you get used to writing w € 5,

the rest is easy

R.E. Kalman, Opening lecture
IFAC World Congress, Prague, July 4, 2005
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Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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