ALGORITHMS FOR EXACT
AND APPROXIMATE IDENTICATION
FROM FINITE TIME SERIES

&

a & Jan C. Willems
an] 1y

S o K.U. Leuven

2 |

B2

Kyoto University May 17, 2005

On-going joint research with
Ivan Markovsky (K.U. Leuven)
Paolo Rapisarda (Un. Maastricht)
& Bart De Moor (K.U. Leuven)

- p.2/33

~p.3/33

SYSID

MODEL CLASS

OBSERVED DATA

MATHEMATICAL MODEL

—p.4/33

SYSID

This is a very rich area. It involves

H Algorithms:

Numerical data —— model parameters

® ‘Philosophical’ issues:
How to deal with uncertainty
Role of stochasticity

How to deal with ‘open’ systems, etc.

B Important area for applications, because of its

relevance in modeling

~p.5/33

Case of interest today

Data: an ‘observed’ vector time-series

w(l),w(2),...,w(T) w(t) €RY,T finite

U

A dynamical model from a model class,

e.g. a difference equation
Row(t) + Ryw(t+1) +---+ Rrw(t + L)
=0
or = Mye(t)+ Mie(t+1)+:--+Mpe(t+ L)

~p.6/33

Case of interest today

We discuss mainly the case:

‘deterministic’ ID

observe d obs?rved —P observed
variables @~ vara bles variables
MODEL :w wv: MODEL Ew,
—

Ryw(t) + Ryiw(t+1)+---+ Rrw(t+ L) =0

D(1), @(2), ..., D(T) — R(E) = Ro + Ri& + -+ + R; €L

- p.7/33

Exact
Deterministic

3

\

Case of interest today

—= Approximate

Deterministic

N
/

— Exact . -
Stochastic

Approximate
Stochastic

- p.7/33

Case of interest today

Towards the end, some remarks on ID with latent inputs

observed
observed

variables _____ 5 | variables

v: MODEL | W,

e
ot latent
e variables

Row(t) + Riyw(t+1) +---+ Rrw(t + L)
— M()E,‘(t) —|— M1€(t —|— 1) —|— ° o —I— MLEI(t —|— L)

(1), ®(2), ..., B(T) — (R(E), M(£))

- p.7/33

w(1),w(2),...,w(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

time

-p.8/33

w(1),w(2),...,w(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

time

-p.8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

Is there a recursion, same for all these windows?

-p.8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

The windows lead linea recta to the Hankel matrix

(1) B(2) - @) - w(T —A)
B (2) B(3) - wWE+1) - W(T —A+1)
W (3) W(4) - wE+2) - W(T —A+2)

BA 1) BAL2) - WELA) - @ (T)

-p.8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

The windows lead linea recta to the Hankel matrix

(1) W(2) - @) - w(t— A)
B (2) W(3) - wE+1) - wWE—A+1)
W (3) W(4) - WE+2) - WE—A+2)

BA+1) BA+2) e BEFA) - & (T)

-p.8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

The windows lead linea recta to the Hankel matrix

(1) B(2) e B (t) o @(t— A)
W (2) W(3) - WwE+1) - BE—A+1)
W (3) W(4) - WE+2) - Dt — A+ 2)

BA+1) BA+2) - BE+A) - & (T)

-p.8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

The windows lead linea recta to the Hankel matrix

(1) ®(2) - W) .- @t — A)
W (2) W(3) -+ wE+1) -+ WE—A+1)
W (3) W(4) - WE+2) - W(E— A+ 2)

BA+1) BA+2) - BE+A) - @ (T)

Are there left annihilitors, or approximate, or up to a stochastic

interpretation, same for all these columns? ~p8/33

B(1), @(2), . . , B(T)

Basic idea: look through the window (with A > L) in order to

discover the system laws.

But first, some language: What do we mean by

a model, a model class, an unfalsified model, etc.?

-p.8/33

- p.9/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’
A family of (vector) time series

Recall notation 5 (1,7
:= all ‘prefixes’ w(1),w(2), - ,w(T) ofw € B

—p.10/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’

® ‘B is unfalsified by w :=w (1), w(2),...,w(T)
<= W E %HOJ]

-p.10/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’

Hm ‘B is unfalsified by w & w € B,
B ‘Y, is more powerful than 5, : & 5, C B,

Every model is prohibition.
The more a model forbids, the better it is.

_"-.‘ r
&
Sir Karl Popper (190221994

Karl Popper
(1902-1994)

—p.10/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’
Hm ‘B is unfalsified by w & w € B,
m ‘B, is more powerful than 8, : & B, C B,

B A model class: a family, B, of models

—p.10/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’
Hm ‘B is unfalsified by w & w € B,
m ‘B, is more powerful than 8, : & B, C B,
B A model class: a family, B, of models

B The MPUM ‘most powerful unfalsified model’
inB forw, denoted B :
1. 8. € B
2. w € By n,1)
3. B cBandw € Bnm =B, CB

—p.10/33

The MPUM

B A model:= a subset 28 C (R")Y, the ‘behavior’
Hm ‘B is unfalsified by w & w € B,
m ‘B, is more powerful than 8, : & B, C B,
B A model class: a family, B, of models

B The MPUM ‘most powerful unfalsified model’
inB forw, denoted 5.

B Given w and B, does 5. exist?

—p.10/33

The MPUM

Unfalsified

Falsified

OBSERVED DATA

—p.10/33

The model class

—p.11/33

The model class £¥

Our model class (a family of subsets of (R¥)").

It is an exceedingly familiar one. First, £".

B C (IRW)N belongs to £¥ : &

- p.12/33

The model class £¥

B C (RY)" belongs to £¥ : <&

B %Y is linear, shift-invariant, and closed
shift-invariant : <> o8 C ‘B

o =the ‘shift’: (of)(t) := f(t+1).

- p.12/33

B The model class £¥

B C (RY)" belongs to £¥ : <&
B %Y is linear, shift-invariant, and closed

B d matrices Ry, R1, ..., Ry, such that *5 consists of all w
that satisfy

Row(t) + Riw(t+1)+ -+ Rrw(t+ L) =0
In obvious polynomial matrix notation

R(oc)w =0

- p.12/33

B The model class £¥

B C (RY)" belongs to £¥ : <&
B %Y is linear, shift-invariant, and closed

]
' R(oc)w =0
H Including input/output partition

P(o)y = Q(o)u, w=[y]

det(P) # 0, minputs, p outputs (= # of equations)

- p.12/33

The model class £¥

B C (RY)" belongs to £¥ : <&

B %Y is linear, shift-invariant, and closed
O
R(oc)w =0

P(o)y = Q(o)u, w = [y]

® 3 matrices A, B, C, D such that
B consists of all w’s generated by
ocr = Ax + Bu,y = Cx + Du, w=|[y]

- p.12/33

The module structure

Let 23 € £V. Define its annihilators by
d
Ny :={n € R'[¢] | n' (_)B = 0}
Note: s is a R[£] sub-module of R¥[£]. Means:

ni,ne € R'[§],p € R[§]
= N1+ N2 € Ny,png € Mg

~p.13/33

The module structure

Let B € L£¥. Define its annihilators by
d
Ny := {n € R7[¢] | nT(a)% = 0}

Note: i is a R[£] sub-module of R [£]. In fact,

£W one-to-one

sub-modules of R" [£]

Consequence: since sub-module is finitely generated, *5 is
determined by finite number of generators.

For example, the rows of R, but this is non-unique.

~p.13/33

The model class £7

We now define our model class £ .
It consists of all 28 € £" such that
d matrices Ry, R1,..., Ry,
with restricted lag: L < L
such that 25 consists of all w that satisfy

Row(t) + Ryw(t+ 1)+ -+ Rpw(t+ L) = 0.

Polynomial matrix in
R(o)w =0
has degree(R) < L.

—p.14/33

The MPUM in £

For infinite observation interval, T' = oo, the MPUM for w in £¥

always exists.

In fact, it equals

*

- = span({w, ow, o?w, ... })clesure

- effective computational algorithms to go from w to the

corresponding R.

-p.15/33

The MPUM in £

For finite observation interval, 7' < oo, the MPUM in £¥ is not

very useful.

We hence restrict attention to the MPUM in 2}1

Also here the MPUM may not exist. Example:

=[] B

has no MPUM in £7. What is the issue?

-p.15/33

The MPUM in £

The MPUM in £‘L’ ~~ left kernel of the Hankel matrix (‘windows’)

[@(1) w(2) .- @ (T — L)
(2) #(3) - W(T —L4+1)
@(3) #(4) - W(T —L4+2)

BL+1) BLA2) - @ (T)

This must have a ‘module-like’ structure, i.e.

[No Ni -+ Ni_q 0] in left kernel

— [0 No -+ Ni_o NL_l} in left kernel

—p.15/33

The MPUM in £

Proposition: the MPUM in £/ exits if

([®() @@ - @T-1) |)
w(2) w3) - w(T —L+1)
rank | |w(3) w(4) oo w(T —L+2)
\|&L) @@L+1) --- @T—1) |
([®w) w2 - W(T—L) w(T—L+1)])
w(2) w(3) oo @W(T—-L+1) @(T—L+2)
= rank | |[®(3) w(4) oo W(T—-L4+2) @(T—1L+3)
\[&1L) @@L+1) - BT -1) &(T) |

We henceforth assume this to be the case.

-p.15/33

Computation of this MPUM

—p.16/33

Recursive computation

We need to compute the left kernel of

[(1) w(2) -+ wW(T-—-L-—1) ®(T —1)
w(2) w(3) -+ wWT-L) w(T—L+1)
= w(3) w(4) - WT—-L+1) ®(T —L+2)
_m(L'+ 1) WL+2) - BT —1) @ (T) |

Suffices to compute a set of generators of the sub-module of
annihilators of the MPUM. Also, we would like to do this
computation

recursively and approximately .

- p.17/33

Recursive in T

Idea derived from the case I' = oc.
Assume time-series dataD = {dy,d2,--- ,dn}, dx € (RV)N.
! Compute the MPUM in £ ~» polynomial matrix Ry.
1. Rg =1
2. from Ry — Ry
B Compute ex11 := Ry(0)dxy1-
B Compute E 1 corresponding to the MPUM of ey 1
B Ry, 1 = Ex 1R
3. Rp = RN

Reduces pbm to the computation of the MPUM for one time series .

-p.18/33

Recursive in T

MPUM with one time-series, d, time-axis —N
d=(---,d(t), -+ ,d(—1),d(0))
Use the previous algorithm with the time-series data
d_y=(--,d(—k—1),d(—k)), —k€N
1. Ry, given,say = |
2. fromR_x — R_x4q:
Me 1 :=R_ y(071)d_xi11.Looksas (++- ,0,---,0, %)
B Compute E/_x 1 the MPUM of e _x_ 1. Very simple!
BR y11=FE_ 1R

3. R{d} = Ry

-p.18/33

Recursive in T

In order to apply this to

w = (w(1),w(2),...,w(T))

we miss an initial condition. This may be circumvented by considering

instead the extended time-series

oLl Lol G 190) 1790

and discarding certain of the relations obtained.

Can be implemented usin approximate linear algebra computations.

~p.18/33

Recursive in annihilators

We need to compute a ‘module basis’ of the left kernel of

(1) w(2) -+ w(T-L-—1) (T —L1)
w(2) w(3) .- w(T-—L) w(T—L+1)
w(3) w(4) oo @W(T—L+1) @(T—L+2)

BLA+1) BLE2) - BT —1) @ (T)

-p.19/33

Recursive in annihilators

Consider the Hankel matrices

(1) w(2) cir (T —A—2) @(T—A—1)
w(2) w(3) oo W(T—-—A=-1) ®(T - A)
i w(3) w(4) (T — A) w(T — A + 1)
B(A) BA+1) - BT —1) @(T)

and let A varyfrom1toL + 1.

-p.19/33

Recursive in annihilators

Basic idea.

Step 1: Compute (SVD)! basis | g for left kernel of
B(1) @B(@2) - BT —1) BT

and its orthogonal complement -

Keep R as valid zero-th order laws, and replace w by
W' = Sow = (W'(1), @' (2),...,d"(T)),d (t) € R"

This has no more zero-th order laws.

-p.19/33

Recursive in annihilators

Step 2: (SVD)! Ry = [ng n1], ng, N1 € RIX¥ in left kernel

@'(1) @'(2) --- @(T—2) & (T-—1)
@'(2) @'(3) --- wW(T—1) @& (T)

Organize R, as the polynomial row vector

€ =no+mg=[r(&) ra€) - m@)]

n[€]

Compute (Bézout) C' € R("' —1)X¥' [£] sych that orel

is unimodular.

Keep 1 as a valid first order law, and replace 1w’ by

B = C(o)® = (@” (1), 5" (2),..., " (T — 1)) ,@”(t) € R¥ 1

etc.

~p.19/33

Recursive in annihilators

Both recursions can be combined, leading to very efficient ways of
finding an MPUM.

This is effective for exact data (or in finite field case).

-p.19/33

Behavior of the algorithm for I’ large

—p.20/33

Consistency

Typical way of evaluate SYSID algorithms:

Assume that
W(1),@(2),...,o(T)

is generated by an element of the model class.

Does the algorithm return the model that generated the data

for large T', orin the limitas T' — oo (consistency)?

- p.21/33

Identifiability

The MPUM in £ for

B(1), B(2), - -, B(T)
returns B if

1. w € (1,1
2. L is sufficiently large
3. B is controllable

4. the input component in w is persistently exciting of

sufficiently high order

The left kernel of the Hankel matrix is then module-like.

—p.22/33

Identifiability

Assume w = (u, y) generated by behavior 3. Then

@(1) @(2) @(3) cvr (T —A+1)]
g(1) §(2) g(3) o g(T—A+1)
@(2) @(3) @(4) oo @(T — A + 2)
§(2) y(3) y(4) o g(T—A+2)
a(A) a(A+1) a(A+2) .- @(T)
g(Aa) y(Aa+1) gA+2) --- y(T)

has ‘correct’ kernel & image if

1. A > lag(*B)

2. ‘B controllable

3. . is persistently exciting of order > A + n(B)

—p.22/33

Identifiability

(1) w(2) @(3) v @(T —L(B))]
g(1) 7(2) y(3) (T — L(B))
@(2) @(3) @(4) oo @(T —L(B) +1)
y(2) y(3) y(4) - g(T —L(B) + 1)
a(L(B)+1) a(l(B)+2) a(L(B)+3) --- u(T)
gL(B)+1) FELME®B)+2) FELEB)+3) --- y(T)

kernel det. laws of the system (has rank m(23)(L(28) + 1) + n(%) if

@(1) @(2) oo (T —L(B) —n(B) —1)]
@(2) i(3) oo @(T —L(B) — n(B))
G(L(B) +0(B) +1) @L(B) +n(B)+2) - a(T)

hasrank m(B)(L(2B) +n(B) + 1).

—p.22/33

From the data to the state trajectory

—p.23/33

If it is possible to pass from the data
W(1), w(2),...,5(T)
directly to the state trajectory
#(1), %(2),...,&(T)
Then we can identify the model by solving

A B

c D| |a)) @) --- W(T-1)

B2) #8) - HT) | _
§1) §2) - T -1)

[@(1) #2) --- (T —1)

These algorithms go to (A, B, C, D) instead of to R or to
(P, Q). They have realization algorithms as a special case.

—p.24/33

How does this work?

w(1), w(2),...,w(T)

U

5(1),8(2), .. ., 3(T)

Several algorithms. We give 3 of them.
Assume contr., A > L(*8), and pers. of exc. as needed.

—p.24/33

1. Compute ‘the’ left annihilators of :

(1) @(2) cor (T —A+1)
@ (2) @ (3) cor W(T — A+ 2)
[Nl N2 N3 .- NA] w(3) w(4) oo W(T—A4+3)] =0

B(A) BAF1) - &(T)

—p.24/33

1. Compute ‘the’ left annihilators of :

(1) @(2) cor (T —A+1)
W (2) W(3) - (T —A+2)
[Nl No Nz ... NA] W (3) wA4) - WT—-—A+3)| =0
B(A) BAF1) - @ (T)
Then (1) #(2) - T —A+1)]
| N2 Ns - Na 0| [@(1) @(2) - &(T—A+1)
Ns Na --- 0 0] |4(2) w(3) - (T — A+ 2)
— ; S 1) w(4) - W(T — A+ 3)
Na_1 Na 0 0 : : : :
| Na o .- 0 o [w(A) w(A+1I) - w(T)

—p.24/33

W(T —2A +1) | 4
(T — 2A + 2) 4
: 0
W(T — A) PAST

’lI)(T — A + 1) FUTURE
D(T — A + 2) $
. . . ¢
11'1(2.A) 1I;(2A. +1) - @ (T) | 4

—p.24/33

~ ~ A B
a4 7
C D

w(1) w(2) o W(T—28+1) | 4

w(2) w(3) oo (T — 2A + 2) 4
: : : : T
H_ w(A) w(A+1) --. w(T — A) PAST
l’H+] B w(A+1) w(A+2) --- W(T-—A+1) FUTURE
w(A+2) W(A+3) --- W(T—A+2) J
4
113(2.A) 1I;(2A. +1) - . QD(.T) | 4

2. The intersection of the span of the rows of H _

with the span of the rows of H . equals

- - ~ PRESENT
| #A) FA+1) ... FT—4) | PRESED

Nice num. impl. (e.g. via left kernel) ~~» subspace ID 2433

3. Solve for GG

w(1) e (T —2A+1) | @w(1) .- W(T —2A41) |
B(A) e W(T — A) - B(A) oo @(T — A)
(A +1) -+ AT —A+1) 0o .- 0
@(24) .- arT o0 .. 0
[§(A4+1) - GT—A+1)]
: : : G = [x(A) (T — A)]
y(24a) - y(T)

Computes ! = ‘oblique projection

—p.24/33

w — R or

A B
C D

These algorithms, compute the left kernel of 7, etc. allow
approximate implementations. For the state algorithms, this is

worked out very well (subspace ID).

~

svo X =|&(1) &2 - &) |

~> Xred — [iired(l) {i,red(z) ired(T)]

followed by LS solution of

fiéred(2) éred(g) v @red (T)
g(1) 9(@2) ---9(T-1)

A B
C D

:‘i::red(l) ired(2) v ired(T _ 1)
a(l) a(2) --- @(T—1)

- p.25/33

Performance

Data set name T m p 1
1 Data of the western basin of Lake Erie 57 5 2 1
2 Data of Ethane-ethylene column 9% 5 3 1
3 Data of a 120 MW power plant 200 5 3 2
4 Heating system 801 1 1 2
5 Data from an industrial dryer 867 3 3 1
6 Data of a hair dryer 1000 1 1 5
7 Data of the ball-and-beam setup in SISTA 1000 1 1 2
8 Wing flutter data 1024 1 1 5
9 Data from a flexible robot arm 1024 1 1 4
10 Data of a glass furnace (Philips) 1247 3 6 1
11 Heat flow density through a two layer wall | 1680 2 1 2
12 Simulation of a pH neutralization process | 2001 2 1 &6
13 Data of a CD-player arm 2048 2 2 1
14 Data from an industrial winding process 2500 5 2 2
15 Liquid-saturated heat exchanger 4000 1 1 2
16 Data from an evaporator 6305 3 3 1
17 Continuous stirred tank reactor 7500 1 2 1
18 Model of a steam generator 9600 4 4 T

Performance

Compare the misfit on the last 30% of the outputs and
the execution time for computing the ID model from the first 70% of

the data.
Misfit
1 12 13 "
—stlsl
[Tpem
B subid| -

y1

100

1 ‘ ‘ LI|]|

, Al 111 i\
1 3

456789101112131415161718

- p.26/33

Performance

Execution time

14 |5 6 17 18 19

50

B stls

9 40F | C__Jpem

g I subid
30

fJQU'Hﬂ'BHML'H'” LLI

Q
>

0 11 12 13 14 15 16 17 18

- p.26/33

Performance

~p.26/33

Latency minimization

— p.27/33

Why latent variables?

observed obs.erved — observed
variables ~ vara bles ___p variables
MODEL W w: MODEL W,
—>
—>

3::?:1:121 observed
Ve rs u s 4.> > vara bles
v: MODEL S w,
—
—
aten

R()’w(t) -|— le(t —|— 1) —|— ° o —|— RLw(t -|— L)
— Moé‘(t) —|— Mlé‘(t —|— 1) —|— oo —|— MLE:(t —|— L)

—p.28/33

Why latent variables?

For the w-behavior, this gives nothing new
(<= elimination theorem).

So, what is the rationale for using latent variables ¢ ?

- p.28/33

Why latent variables?

Data w(t1),w(t1 +1),...,w(t2) with w(t) € R
The model
Row(t) + Riw(t+1)+---+ Rpw(t+ L) =0

~» either w = input , free, B = R
or w — output, ~~ B = sums of ‘exponentials’
~~ very restrictive.
Assuming unobserved inputs:

Row(t) + -+ Rrw(t+ L) = Mpe(t) + -+ + Mre(t + L)
gives better possibilities, e.g. for prediction.

~p.28/33

Latency minimization

Define the ‘latency’:

latency (W, B) := minimum ||€|| e
with the minimum taken over all € such that
Row(t) 4+« + Rrw(t + L) = Moé(t) + -+ - + Mré(t + L)
i.e. min. over all € that ‘explain’ w(1), w(2),...,w(T).

~~» system ID: search for the optimal model,
in the sense of minimal latency

in a given model class.

—p.29/33

Latency minimization

B How do we compute the latency, the optimal £’s?

B Algorithms for minimization over (R, M)’s in model class.

Latency minimization is a deterministic Kalman filtering pbm

The latency is actually equal to the prediction error!

~ deterministic interpretation, system ID toolbox, etc.

- p.29/33

Remarks on stochastic SYSID

—p.30/33

Why stochastic interpretation?

Row(t) +---+ Rrpw(t + L) = Mpe(t) +--- + Mre(t + L)

We can consider € as a stochastic disturbance.
If we take also u as a stochastic process, then w stochastic.

SYSID pbm is then a statistical one, leading to maximum likelihood
estimation (very related to PEM).

It allows evaluation of algorithms in terms of T' — oc. Nice
statistical questions emerge, as consistency, asymptotic

efficiency, etc.
~> deep theory of ARMAX systems.

~p.31/33

Why stochastic interpretation?

It is difficult to argue that stochastic unobserved disturbances
offer a realistic explanation of the lack of fit between observations

and the deterministic part.

This lack of fit is more likely a result of low order, linear models for
nonlinear systems, neglected dynamics, approximation, in addition

to unmeasured inputs, which may or may not be stochastic.

Stochastic methods offer the user a ‘certificate’ under which the

algorithms work well.

-p.31/33

Conclusions

— = Approximate

+
/ Deterministic \
Exact - Approximate
Deterministic \ / = Stochastic

— Exact . >
Stochastic

B We concentrated on exact deterministic SYSID.
B Nice concepts, as MPUM.
B Realization theory as special case

M Subspace algorithms very effective

—p.32/33

Thank you
Thank you

—p.33/33

	
	
	small hfill �oldmath yb {SYSID}
	small hfill �oldmath yb {SYSID}
	small hfill �oldmath yb {Case of interest today}
	small hfill �oldmath yb {Case of interest today}
	small hfill �oldmath yb {$hw mapsto R$}
	
	small hfill �oldmath yb {The MPUM}
	
	small hfill �oldmath yb {The model class $Lw $}
	small hfill �oldmath yb {The module structure}
	small hfill �oldmath yb {The model class $Lw _{mathtt {L}}$}
	small hfill �oldmath yb {The MPUM in $Lw _{mathtt {L}}$}
	
	small hfill �oldmath yb {Recursive computation}
	small hfill �oldmath yb {Recursive in T}
	small hfill �oldmath yb {Recursive in annihilators}
	
	small hfill �oldmath yb {Consistency}
	small hfill �oldmath yb {Identifiability}
	
	small hfill �oldmath yb {$hw mapsto 	ilde {x}mapsto {	iny �mat A&B\C&Demat }$}
	small hfill �oldmath yb {$hw mapsto R 	ext { or } {	iny �mat A&B\C&Demat }$}
	small hfill �oldmath yb {Performance}
	
	small hfill yb {Why latent variables?}
	small hfill �oldmath yb {Latency minimization}
	
	small hfill �oldmath yb {Why stochastic interpretation?}
	small hfill �oldmath yb {Conclusions}
	

