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Open and Connected

The central tenets of our field:

Systems are open and consist of

interconnected subsystems.

Synthesis of systems consists of

interconnecting subsystems

– p.2/76



Open

SYSTEM

ENVIRONMENT

Boundary

In this lecture, we think of this interaction boundary as ‘terminals’

SYSTEMENVIRONMENT

electrical components with ‘wires’

mechanical components with ‘pins’

fluidic components with ‘ducts’

signal processors with inputs and outputs

motors with terminals & pins

computer terminal, etc., etc., etc.
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Connected

An interconnection architecture with subsystems
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Connected

Think of:

electrical circuits

mechanical constructions

fluidic systems

networks of signal processors

computers

essentially all engineering systems
– p.4/76



Connected

Observe the hierarchical nature
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Interconnect

Reverse process: ‘tearing’ & ’zooming’ & ’linking’:

very useful in modeling.
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Mathematization

What are the appropriate concepts / mathematization?

What is an open dynamical system?

How do we deal with interconnections?

How does control fit in?

1. Get the physics right

2. The rest is mathematics

R.E. Kalman, Opening lecture
IFAC World Congress, Prague, July 4, 2005
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THEMES

First part:

1. Open and connected

2. A brief history of systems theory

3. Why are better framework is needed

4. Models and behaviors

Second part:

5 Linear time-invariant differential systems

6 Controllability and stabilizability

7 Representations of linear differential systems

8 PDE’s
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How it all began ...
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Planet ???

How does it move?
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Kepler’s laws

Johannes Kepler (1571-1630)
PLANET

SUN

Kepler’s laws:

Ellipse, sun in focus; = areas in = times; (period)

� ��� (diameter)

�
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The equation of the planet

Consequence:

acceleration = function of position and velocity� ��� � � 	 � 
 � � 	 � 	 � 

� ��� � 	 � 
 


� via calculus and calculation

� ��� � ��� � ��� �� �� � 	 � 
 � � �

Hypotheses 
 non

 fingo
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Newton’s laws

2-nd law

� � 	 � 
 � � �  �!  � 	 � 


gravity

� � � 	 � 
 � � "$# %& '(*) + ! , (  
3-rd law

� � 	 � 
.- � � � 	 � 
 � /
0

1 2
13 2

4 � 	 � 
576 8 3 9 5 2
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The paradigm of closed systems
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‘Axiomatization’

K.1, K.2, & K.3

� ��� � ��� � �:� �� �� ;;� � 	 � 
 � � �

��� < � � < �
‘dynamical systems’, flows

closed systems as paradigm of dynamics
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

X
A dynamical system is defined by

a state space and
a state transition function=?> @ @ @ such that @ @ @

= 	 � � A 
 = state at time

�

starting from state A

How could they forget about Newton’s second law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

SYSTEM

ENVIRONMENT

Boundary

a property of but just as much of
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‘Axiomatization’

Reply: assume ‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

� an absurd situation: to model a system,
we have to model also the environment!

a property of but just as much of
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‘Axiomatization’

SYSTEM

ENVIRONMENT

Boundary

Chaos theory, cellular automata, sync, etc.,
‘function’ in this framework ...

Chaos: not a property of the physical laws,
but just as much of what the system is

interconnected to.
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‘Axiomatization’

SYSTEM

ENVIRONMENT

Boundary

Turbulence may not be a property of
Navier-Stokes, but just as much of

the boundary conditions.
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Meanwhile, in engineering, ...
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Input/output systems

SYSTEMstimulus response

cause
input

effect
output

u1
u2

u

1
y

um

y
2

p

input SYSTEM output
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The originators

Lord Rayleigh (1842-1919)

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...
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Mathematical description

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

B CD EGF H IJ

or K L M CD N D O EP CD O EQ D O

B CD EF M J CD ESR I
K L MUT CD N D O EP CD O E Q D OR

I
K L

I V
K L M � CD N D OW D O N D O O EP CD O EP CD O O E Q D OQ D O OR X X X

These models fail to deal with ‘initial conditions’.
A physical system is SELDOM an i/o map
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Input/state/output systems

� ��! Y � Z 	 Y� [ 

� \ � ] 	 Y� [ 


Rudolf Kalman (1930- )
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‘Axiomatization’

State transition function:= 	 � � A� [ 
 > state reached at time

�

from A using input [.

X

Read-out function:] 	 A� ^ 
 > output value with state A and input value ^.
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The input/state/output view turned out to be
a very effective and fruitful paradigm

for control (stabilization, robustness, ...)

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors

prediction of one signal from another, filtering

understanding system representations
(transfer f’n, input/state/output, etc.)

model simplification, reduction

system ID: models from data

etc., etc., etc.
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Let’s take a closer look at the i/o framework ...

in control
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Difficulties with i/o

active control

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors

versus passive control
Dampers, heat fins, pressure valves, ...

Controllers without sensors and actuators
– p.25/76



Difficulties with i/o

active control versus passive control

Controlling turbulence

for airplanes, sharks, dolphins, golf balls, bicycling helmets, etc.

Nagano 1998

These are beautiful controllers! The appropriate figure is

SYSTEM

to−be−controlled

CONTROLLED 

CONTROLLERvariables PLANT
control
variables

With the ‘classical’ interconnection figure

output

PLANT ++
+

disturbanced1 d2 disturbance

+

CONTROLLER

u
control
input

y
observed

such controllers do not stabilize, because

dynamic order controlled system dynamic order plant dynamic order controller
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Difficulties with i/o

active control versus passive control

Controlling turbulence

Nagano 1998

These are beautiful controllers! But, the only people not calling
this ”control”, are the control engineers ...
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figure is

SYSTEM
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Difficulties with i/o

active control versus passive control
Another example: the stabilizer of a ship

These are beautiful controllers! But, the only people not calling this
”stabilization”, are the control engineers ...

Btw, this interconnection is, but shouldn’t be, called ‘singular’

The appropriate figure is

SYSTEM

to−be−controlled

CONTROLLED 

CONTROLLERvariables PLANT
control
variables

With the ‘classical’ interconnection figure

output

PLANT ++
+

disturbanced1 d2 disturbance

+

CONTROLLER

u
control
input

y
observed

such controllers do not stabilize, because

dynamic order controlled system dynamic order plant dynamic order controller
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Difficulties with i/o

active control versus passive control

The appropriate figure is
_ _ _ _ ` ` ` `a a a a b b b bc c c c d d d de e e e

SYSTEM

to−be−controlled

CONTROLLED 

CONTROLLERvariables PLANT
control
variables

With the ‘classical’ interconnection figure

output

PLANT ++
+

disturbanced1 d2 disturbance

+

CONTROLLER

u
control
input

y
observed

such controllers do not stabilize, because

dynamic order controlled system

f

dynamic order plant

R

dynamic order controller
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Let’s take a closer look at the i/o framework ...

for interconnection

– p.27/76



i/o and interconnection

f11 f12

p
12

h 1
p

21
f21

p
22

f22

p 2h
11

gg I hji k li m hjion pi ion pi  qn ri i k si i m hion pi i qn ri  k si  m hion pi  qgg I h  k li m h  n p  ion p   qn r  i k s  i m h  n p  i qn r   k s   m h  n p   q

inputs: the pressures t T T � t T �� t � T � t � �

outputs: the flows

ZT T � ZT �� Z � T � Z � �

f11

h 1
p

22
f22

h 211
p

Interconnection:

This identifies 2 inputs AND (NOT WITH) 2 outputs,

the sort of thing SIMULINK c forbids.

This situation is the rule, not the exception (in fluidics, mechanics,...)

Interconnection is not input-to-output assignment!
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Sharing variables, not input-to-output assignment, is the basic

mechanism by which systems interact.

 block 1
Building
 block 2

Building
 block 1

Building
 block 2

Building

Before interconnection:

the variables on the interconnected terminals are independent.

After interconnection: they are set equal.
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Let’s take a closer look at the i/o framework ...

for modeling
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i/o in modeling

Physical systems often interact with their environment through

physical terminals

SYSTEMENVIRONMENT

On each of these terminals many variables ‘live’:

voltage & current

position & force

pressure & flow

price & demand

angle & momentum

etc. & etc.

The selection of what is an input and what is an output

does not need to be made
if it made, it should be made after the modeling is done

sometimes it cannot be made
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i/o in modeling

Physical systems often interact with their environment through

physical terminals

SYSTEMENVIRONMENT

Situation is NOT:

on one terminal there is an input, on another there is an output.

u1
u2

u

1
y

um

y
2

p

input SYSTEM output

This picture is misleading, if superficially interpreted.

The selection of what is an input and what is an output

does not need to be made

if it made, it should be made after the modeling is done

sometimes it cannot be made
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i/o in modeling

Physical systems often interact with their environment through

physical terminals
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if it made, it should be made after the modeling is done

sometimes it cannot be made
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i/o in modeling

Physical systems often interact with their environment through

physical terminals

The selection of what is an input and what is an output

does not need to be made

if it made, it should be made after the modeling is done

V"

I’ I"
+

−
V’

+

−

voltage controlled?

sometimes it cannot be made
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i/o in modeling

Physical systems often interact with their environment through

physical terminals

The selection of what is an input and what is an output

does not need to be made

if it made, it should be made after the modeling is done

sometimes it cannot be made
Voltage

Current
into diode

across diode

variables:

	 Y� v 
 gg I Y � v

tangent bundle of the sphere is not ‘trivial’
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Conclusion

The inability of the i/o framework to properly deal with

(i) interconnections

and

(ii) passive control

is lethal.

Just as the state, the input/output partition needs to be constructed

from first principles models. Contrary to the state, such a partition

may not be useful, or even possible

We need a better, more flexible, universal, simpler framework that

properly deals with

open & connected.
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General formalism
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Generalities

What is a model? As a mathematical concept.
What is a dynamical system? What is the role of differential
equations in thinking about dynamical models?

So, before Boyle, Charles, and Avogadro got into the act,
and may have seemed unrelated, yielding

The ideal gas law restricts the possibilities to
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Generalities

Intuition
We have a ‘phenomenon’ that produces ‘outcomes’ (‘events’).
We wish to model the outcomes that can occur.

Before we model the phenomenon:
the outcomes are in a set, which we call the universum.

After we model the phenomenon:
the outcomes are declared (thought, believed)
to belong to the behavior of the model,
a subset of this universum.

This subset is what we consider the mathematical model.

So, before Boyle, Charles, and Avogadro got into the act,
and may have seemed unrelated, yielding

The ideal gas law restricts the possibilities to

– p.34/76



Generalities

This way we arrive at the

Definition

A math. model is a subset of a universum of outcomes

w
is called the behavior of the model.

For example, the ideal gas law states that the temperature

x

,
pressure

y

, volume

z
, and quantity (number of moles) of an

ideal gas satisfy y z
x � {

with

{
a universal constant.

So, before Boyle, Charles, and Avogadro got into the act,
and may have seemed unrelated, yielding

The ideal gas law restricts the possibilities to

– p.34/76



Generalities

So, before Boyle, Charles, and Avogadro got into the act,
x� y� z

and may have seemed unrelated, yielding

� | }~ w
The ideal gas law restricts the possibilities to

� � 	 x� y� z� 
�� | }~ � y z � x � { �
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Features

Generality, applicability

shows the role of model equations� notion of equivalent models� notion of more powerful model

Structure, symmetries

...
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We will only consider deterministic models.

Stochastic models: there is a map

y

(the ’probability’)

y > � /� � �
with a ‘ �-algebra’ of subsets of .

y 	 
 � ‘the degree of certainty (belief, plausibility, propensity,
relative frequency) that outcomes are in ;� � the degree of validity of as a model.

Fuzzy models: there is a map (the ‘membership function’)
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We will only consider deterministic models.

Stochastic models: there is a map

y

(the ’probability’)

y > � /� � �
with a ‘ �-algebra’ of subsets of .

Determinism: � ��� � � ��� � ���� �� �� �� y 	 
 � �

.

Fuzzy models: there is a map � (the ‘membership function’)

�> � /� � �

Determinism: � is ‘crisp’:�?� ��� 	 � 
 � � /� � �� � � � " 	 � � � 
 > � � Y� � � 	 Y 
 � � �
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Dynamical systems

In dynamics, the outcomes are functions of time �
EVENTS

SYSTEM
time

time

time

Which event trajectories are possible?

Definition

A dynamical system =

with , the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),

the behavior (= the admissible trajectories).
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).
signal space

time

Totality of ‘legal’ trajectories =: the behavior
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End of Part I
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Part II: Linear Differential Systems
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).
signal space

time

Totality of ‘legal’ trajectories =: the behavior
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).

For a trajectory (‘an event’) � > � � we thus have:

�� : the model allows the trajectory ��� ��

: the model forbids the trajectory � w
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).

Usually,� � |

, or

� /� � 
 , etc. (in continuous-time systems),
or

�� or

�

, etc. (in discrete-time systems).
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).

Usually, |�

(in lumped systems),
a function space

(in distributed systems, time a distinguished variable),
a finite set (in DES)’ etc.
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Dynamical systems

Definition

A dynamical system =

� > � 	� � � 

with

� |

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),�

the behavior (= the admissible trajectories).

Emphasis:� � |�� |� �� solution set of system of (linear constant coefficient)
ODE’s, or difference eqn’s, or PDE’s. � ‘differential systems’.
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A series of examples
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Examples

Let’s put Kepler and Newton in this setting.

K1+K2+K3 obviously define a dynamical system
� � 	� � � 


� � |� � | ��� all � > | | �

that satisfy Kepler’s 3 laws.

Nice example of a dynamical model ‘without equations’.

Is it a differential system?

This question turned out to be of revolutionary importance...

Input / output systems

(time),

(input output signal spaces),

all input / output pairs.

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!
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Examples

Flows:

��� Y 	 � 
 � Z 	 Y 	 � 
 

�

� all state trajectories.

Observed flows:

��� Y 	 � 
 � Z 	 Y 	 � 
 
¡  \ 	 � 
 � ¢ 	 Y 	 � 
 

�

� all possible output trajectories.

Note:

1. It may be impossible to express as the solutions of a

differential equation involving only \.
2. The auxiliary (latent variable) nature of Y.

Input / output systems

(time),

(input output signal spaces),

all input / output pairs.

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W
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terminal
Cooling

Heating
terminal

Thermodynamic
Engine
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These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



Examples

Input / output systems

ZT 	 \ 	 � 
 � ��� \ 	 � 
 � � ��� � \ 	 � 
 � w w w � � 


� Z � 	 [ 	 � 
 � �� � [ 	 � 
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� w w w � � 


� � |

(time),� £�¤ ¥

(input

¤

output signal spaces),� all input / output pairs.
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Engine

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



Examples

Input / state / output systems

��� Y 	 � 
 � Z 	 Y 	 � 
 � [ 	 � 
� � 

� \ 	 � 
 � ¢ 	 Y 	 � 
 � [ 	 � 
 � � 


What do we want to call the behavior?

the

	 [� \� Y 
 ’s, or the
	 [� \ 
 ’s?

Is the

	 [� \ 
 behavior described by a differential eq’n?

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



Examples

Codes¦ § ¨ � the code; yields the system

� � 	© � §� ¦ 
 w
Redundancy structure, error correction possibilities, etc., are visible

in the code behavior

¦

. It is the central object of study.

Formal languages§ � a (finite) alphabet,ª §« � the language = all ‘legal’ ‘words’ ¬ T ¬ � @ @ @ ¬®­ @ @ @§« � all finite strings with symbols from

§

.

yields the system

� � 	 �� §� ª 
 w

Examples: All words appearing in the Webster dictionary

All LATEX documents.

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!
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Examples

Thermodynamics: a theory of open systems

Thermodynamics is the only theory of a general nature of which I

am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of

thermodynamics – holds, I think, the supreme position among the

laws of nature.

Arthur Eddington

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



Examples

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

time-axis:

|

Q: Variables of interest? A: h� x h� ¯� x ¯�� signal space: � |±° ¤ |° ¤ |° ¤ |±° ¤ |

Behavior : a suitable family of trajectories.

But, there are some universal laws that restrict the ’s that are

‘thermodynamic’.

First and second law:

These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



Examples

Thermodynamics: a theory of open systems

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

	 h² ¯² 
 �� � /  	 hx h ² ¯x ¯ 
 �� / w

These laws deal with ‘open’ systems.

But not with input/output systems!

– p.42/76



³

: Linear time-invariant differential systems

– p.43/76



More structure

� � 	� � � 

is said to be linear

if is a vector space, and a linear subspace of

�

.

– p.44/76



More structure

� � 	� � � 

is said to be time-invariant

if

� � |� | ~ � �� or

� ~ and if satisfies

� ! for all

� � � w

� ! denotes the shift, � ! Z 	 � � 
 > � Z 	 � �- � 


.

– p.44/76



More structure

� � 	� � � 

is said to be differential

if

� � |� or

| ~ , etc., and if is the solution set of a (system of)
ODE’s.

a difference system if, etc.

– p.44/76



More structure

� � 	� � � 

is said to be symmetric

w.r.t. the transformation group

� xµ´ � ]� ¶ �
on

�

if

x´ � for all ]� ¶

.

Examples:

1. time-invariance, time-reversibility

2. permutation symmetry, rotation symmetry, translation
symmetry, Euclidean symmetry,

3. etc., etc.

– p.44/76



·¸

{� |¹ º ¸ �» � { 	 gg I 
 � � /

defines the

linear, time-invariant, differential system:

� � 	 |� |¸ � 

with

� � �� ¦ L 	 |� |¸ 
 � { 	 gg I 
 � � / � w

– p.45/76



·¸

{� |¹ º ¸ �» � { 	 gg I 
 � � /

defines the

linear, time-invariant, differential system:

� � 	 |� |¸ � 

with

� � �� ¦ L 	 |� |¸ 
 � { 	 gg I 
 � � / � w

NOTATIONª ¹ > all such systems (with any - finite - number of variables)ª¸ > with ¼ variables

� ª¸
(no ambiguity regarding

� � )

– p.45/76



·¸

{� |¹ º ¸ �» � { 	 gg I 
 � � /

defines the

linear, time-invariant, differential system:

� � 	 |� |¸ � 

with

� � �� ¦ L 	 |� |¸ 
 � { 	 gg I 
 � � / � w

NOMENCLATURE

Elements of

ª ¹ > linear differential systems{ 	 gg I 
 � � / > a kernel representation of the

corresponding

�� ª ¹

or

� ª ¹

– p.45/76



Overview

Starting from this vantage point, a rich theory has been developed

1. Modeling by tearing, zooming, and linking

2. Controllability and stabilizability

3. Control by interconnection:

from stabilization to LQ and L -control

4. Observability, observers and the like

5. SYSID, the MPUM, subspace ID

6. System representations

7. PDE’s

8. etc., etc., ...

– p.46/76



Controllability

– p.47/76



Controllability

Take any two trajectories � "� � �� .

2

0

1
w

w

W

time

Controllability:

2

0 T

1
w

w

σ wT

W

time

W

– p.48/76



Controllability

Take any two trajectories � "� � �� .

2

0

1
w

w

W

time

Controllability:

2

0 T

1
w

w

σ wT

W

time

W

– p.48/76



Controllability

The time-invariant system

� � 	 � � � 


is said to be

controllable

if for all � "� � �� there exists �� and

x /
such that

� 	 � 
 � � " 	 � 
 � ½ /

� � 	 � ² x 
 � x

Controllability >
legal trajectories must be ‘patch-able’, ‘concatenable’.

– p.49/76



State Controllability

Special case: classical Kalman definitions for��! Y � Z 	 Y� [ 
 w

controllability: variables = state or (input, state)
This is a special case of our controllability:

?

X X

x1

x2

X

x 1

x 2

time

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman’s definition addresses a rather special situation.

– p.50/76



State Controllability

Special case: classical Kalman definitions for��! Y � Z 	 Y� [ 
 w

controllability: variables = state or (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
Or not properly editing the equations?

Kalman’s definition addresses a rather special situation.

– p.50/76



Tests

Given a system representation, derive algorithms in terms of the
parameters for controllability.

Consider the system

� ª ¾

defined by

{ ��� � � / w
Under what conditions on

{� | ¾ ¿ � �» �
does it define a

controllable system?

Theorem:

{ ��! � � /
defines a controllable system

À �Á Â 	 { 	Ã 
 
 � constant over

Ã � Ä w

– p.51/76



Tests

Notes:

If

{ ��! � � /

has

{

of full row rank, then

controllability

{ 	 Ã 


is of full row rank

Å Ã � Ä

.

Equivalently,

{

is right-invertible as a polynomial matrix
( ‘left prime’).

– p.52/76



Tests

Notes:

��! Y � � Y- Æ [� � � Y or

	 Y� [ 
 is controllable iff

À �Á Â 	 � �² ÃÇ Æ � 
 � È �?� 	 Y 
 Å Ã � Ä w

Popov-Belevich-Hautus test for controllability.

Of course,

À �Á Â É Æ � Æ @ @ @ � Ê Ë� +*Ì , � " Æ Í � È �?� 	 Y 
 w

– p.52/76



Tests

Notes:

When is t ��� � " � Î ��� � �
controllable? t� Î� | �» �

, not both zero.

Controllable rank
	 � t 	Ã 
 ² Î 	Ã 
 � � � ÅÃ � Ä w

Iff t and Î are co-prime. No common factors!

Testable via Sylvester matrix, etc.

Generalizable.

– p.52/76



Stabilizability

The system

� � 	 � � |� � 


is said to be stabilizable if, for all�� , there exists � �� such that

� 	 � 
 � � � 	 � 


for

� ½ /

and � � 	 � 
 ² !Ï Ð /
.

Stabilizability >

legal trajectories can be steered to a desired point.

w’
0

1
w W

time

– p.53/76



Stabilizability

Consider the system defined by

{ ÑÑÒ ÓÔ / w
Under which conditions on

{� | ¾ ¿ � �» �
does it define a

stabilizable system?

Theorem:

{ ��! Ó Ô /
defines a stabilizable system

À �Á Â Õ { Õ Ã Ö Ö Ô constant over

� Ã � Ä ×Ø � � Ù Õ Ã Ö Ú � w

– p.54/76



Image representations

Representations of

ª ¾

:

{ ÛÛÜ Ó Ô Ú

called a ‘kernel’ representation. Sol’n set

� ª ¾
, by definition.

{ ÛÛÜ ÓÔ ÛÛÜ Ý
called a ‘latent variable’ representation of the behavior of theÓ-variables.

‘Elimination th’m’

� ª ¾

.

Missing link:

called an ‘image’ representation of

Elimination theorem every image is also a kernel.

¿¿ Which kernels are also images ?? Controllability!

– p.55/76



Image representations

Representations of

ª ¾

:

{ ÛÛÜ Ó Ô Ú

called a ‘kernel’ representation. Sol’n set

� ª ¾
, by definition.

{ ÛÛÜ ÓÔ ÛÛÜ Ý
called a ‘latent variable’ representation of the behavior of theÓ-variables.

‘Elimination th’m’

� ª ¾

.

Missing link: ÓÔ ÛÛÜ Ý

called an ‘image’ representation of Ô �?� ÛÛÜ w

Elimination theorem every image is also a kernel.

¿¿ Which kernels are also images ?? Controllability! – p.55/76



Image representations

Theorem: (Controllability and image representations):

The following are equivalent for

� ª ¾ßÞ
1. is controllable

2. admits an image representation

ÓÔ ÛÛÜ Ý

3. etc., etc.

– p.56/76



Numerical test

Image representation leads to an effective numerical test.à

similar results & algorithms for time-varying systems.à

partial results for nonlinear systems.

– p.57/76



Controllable part

The ‘controllable part’ of

� ª ¹

can be defined in many equivalent

ways. Most expedient:

áâã äæå â ç çéè ê çéë Þ Ô largest controllable

ì� ª¸îí ì

Two systems

y±ï Õ ÑÑÒ Ö Ó ï Ô ï Õ ÑÑÒ Ö Óéð yð Õ ÑÑÒ Ö Ó ï Ô ð Õ ÑÑÒ Ö Óð

have the same controllable part iff they have the same transfer

function yñ ïï ï Ô Þ ò ï Ô òð Þ Ô yñ ïð ð

Transfer function: determines the controllable part only.

Limited description. Limitation of tf. f’n manipulations.
– p.58/76



Polynomial representations

Representations with

| �» �

-matrices of

� ª ¹
1.

{ ó ggô õ ÓÔ Ú

by definition

2. WLOG:

{

full row rank

3.

{

left prime over

| �» �

(

à öÞ { öÔ Ç
) controllable

4. ÓÔ ó ggô õ Ý

controllable

5. if controllable,

WLOG: right prime over

| �» �
(

à Þ Ô Ç

)

‘observable image representation’:

à Þ ÝÔ Õ ggô Ö Ó .

– p.59/76



Representations with rational functions

Let

ò� |¹ º ¸ �» �

. What does

ò Õ ggô Ö ÓÔ Ú
mean?

The behavior defined by is defined as that of

a left co-prime factorization over of

Representations with -matrices of .

1. WLOG, with (strictly) proper, etc.

2. left prime over ring of stable rational f’ns stabilizable

3. controllable

4. if controllable, WLOG: right prime over stable rational f’ns

‘observable im. repr’on’: stable rational .

– p.60/76



Representations with rational functions

Let

ò� |¹ º ¸ �» �

. What does

ò Õ ggô Ö ÓÔ Ú
mean?

Joint work with

Yutaka Yamamoto

The behavior defined by is defined as that of

a left co-prime factorization over of

Representations with -matrices of .

1. WLOG, with (strictly) proper, etc.

2. left prime over ring of stable rational f’ns stabilizable

3. controllable

4. if controllable, WLOG: right prime over stable rational f’ns

‘observable im. repr’on’: stable rational .
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Representations with rational functions

The behavior defined by

ò Õ ggô Ö Ó Ô Ú

is defined as that of

Õ ggô Ö ÓÔ Ú

òÔ yñ ï

a left co-prime factorization over

| �» �

of

ò

Representations with

| Õ » Ö

-matrices of
� ª ¹

.

1. WLOG, with

ò

(strictly) proper, etc.

2.

ò

left prime over ring of stable rational f’ns stabilizable

3. ÓÔ ò Õ ggô Ö Ý
controllable

4. if controllable, WLOG:

ò
right prime over stable rational f’ns

‘observable im. repr’on’:

à÷

stable rational Þ ÝÔ ÷ Õ ggô Ö Ó .
– p.60/76



PDE’s

– p.61/76



PDE’s

Much of the theory also holds for PDE’s.� Ô | øí the set of independent variables, often ùÔ ú
,Ô |� í the set of dependent variables,Ô sol’ns of a linear constant coefficient system of PDE’s.

Let and consider

Define the associated behavior

holds

Notation for n-D linear differential systems:
or

– p.62/76



PDE’s

Much of the theory also holds for PDE’s.� Ô | øí the set of independent variables, often ùÔ ú
,Ô |� í the set of dependent variables,Ô sol’ns of a linear constant coefficient system of PDE’s.

Let

{� | ¾ ¿ � �»üû í ý ý ý í » ø �í and consider

{ þþÌÿ í ý ý ý í þþÌ�� Ó Ô Ú w Õ � Ö

Define the associated behavior

Ô � Ó� ¦ Ð Õ | øí |� Ö × Õ � Ö holds

� w

Notation for n-D linear differential systems:Õ | øí |� í Ö � ª � øí or

� ª � ø w – p.62/76



Example

Maxwell’s eq’ns, diffusion eq’n, wave eq’n, w w w

��� ��� � ï	
 �
�

� º ��� � ñ �� ô ������� ��� � � �¯ � � º �
� � ï	
 ���� �� ô �����

(time and space) ,

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables. ‘open’ system.

– p.63/76



Example

Maxwell’s eq’ns, diffusion eq’n, wave eq’n, � � �

��� ��� � ï 	
 �
�

� � ��� � ñ �� ô � ���� ��� � � �� � � � �
� � ï 	
 ���� �� ô �����

� Ô � � � �

(time and space) ùÔ ú
,Ó Ô �! í �#"í �%$í &

(electric field, magnetic field, current density, charge density),Ô � � � � � � � � � �í 'Ô ( Ú

,Ô set of solutions to these PDE’s.

Note: 10 variables, 8 equations!

à

free variables. ‘open’ system.
– p.63/76



Submodule theorem

)+* � , - , ./üû í ý ý ý í / ø 0 defines 1 2�34 ) þþ�5ÿ í ý ý ý í þþ�5� ,

but not vice-versa.

¿¿

à

‘intrinsic’ characterization of
* 6 7 ø 8 8

Is there a mathematical ‘object’ that characterizes a

* 6 7 ø 8

Define the annihilators of

* 6 7 ø by

9 Þ 1 :<; * � 7 ./üû í ý ý ý í / ø 0= ; > þþ�5ÿ í ý ý ý í þþ�5� 1 Ú ? �

Proposition: 9 is a
� ./7û í ý ý ý í / ø 0 sub-module of

� 7 ./7û í ý ý ý í / ø 0 �

Theorem:
bijective

submodules of

– p.64/76



Submodule theorem

)+* � , - , ./üû í ý ý ý í / ø 0 defines 1 2�34 ) þþ�5ÿ í ý ý ý í þþ�5� ,

but not vice-versa.

¿¿

à

‘intrinsic’ characterization of
* 6 7 ø 8 8

Is there a mathematical ‘object’ that characterizes a

* 6 7 ø 8

Define the annihilators of

* 6 7 ø by

9 Þ 1 :<; * � 7 ./üû í ý ý ý í / ø 0= ; > þþ�5ÿ í ý ý ý í þþ�5� 1 Ú ? �

Proposition: 9 is a
� ./7û í ý ý ý í / ø 0 sub-module of

� 7 ./7û í ý ý ý í / ø 0 �

Theorem:
6 7 ø bijective

submodules of

� 7 ./7û í ý ý ý í / ø 0

– p.64/76



Elimination theorem

Motivation: In many problems, we want to eliminate variables. For
example, first principle modeling

@ model containing both variables the model aims at (‘manifest’
variables), and auxiliary variables introduced in the modeling
process (‘latent’ variables).

¿ Can these latent variables be eliminated from the equations ?
– p.65/76



Elimination theorem

This leads to the following important question, first in polynomial
matrix language. Consider

)û A B
BDC û í ý ý ý í B
BC ø E F û 1 )�G A B
BDC û í ý ý ý í B
BC ø EF G �

Obviously, the behavior of the

AF û í F G E
’s is described by a system

of PDE’s. ¿ Is the behavior of the F û ’s alone also ?

B

W

W1

W x 21

B1

– p.66/76



Elimination theorem

In the language of behaviors:

Let

* 6 7ÿ H 7 �ø . Define

û 1 :F û * I J A � øí � 7ÿ E= à F G such that
AF û í F G E * ? �

Does this ‘projection’ û belong to

6 7ÿ ø ?

B

W

W1

W x 21

B1

Theorem: It does!

6 ,

is closed under projection !!
– p.66/76



The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

÷ A C E 1 K

Given:

÷ Þ L Mí K * M

; Unknown: C * L

.

¿ Does there exists a sol’n C ?

Examples:

1.

2.

3.

– p.67/76



The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

÷ A C E 1 K

Given:

÷ Þ L Mí K * M

; Unknown: C * L

.

¿ Does there exists a sol’n C ?

Examples:

1.

÷ * � øÿ - ø �í K * � ø �í C * � øÿ
2.

3.
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The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

÷ A C E 1 K

Given:

÷ Þ L Mí K * M

; Unknown: C * L

.

¿ Does there exists a sol’n C ?

Examples:

1.

2. ODE’s: ÷ A N
NO E C 1 K

with

÷ * � øÿ - ø � ./ 0í K * I J A �í � ø � Eí C * I J A �í � øÿ E

.

Or over distributions, K * P A �í � ø � Eí C * P A �í � øÿ E

.

3.
– p.67/76



The Fundamental Principle

Proof: ‘Fundamental principle’. Consider

÷ A C E 1 K

Given:

÷ Þ L Mí K * M

; Unknown: C * L

.

¿ Does there exists a sol’n C ?

Examples:

1.

2.

3. PDE’s: ÷ A B
BC û í ý ý ý í B
BDC ø E C 1 K

÷ * � øÿ - ø � ./üû í ý ý ý í / ø 0í K * I J A � øí � ø � EíC * I J A � øí � øÿ E

, or over distributions. – p.67/76



The Fundamental Principle for PDE’s

÷ A þþ�5ÿ í ý ý ý í þþ�5� E C 1 K
Given:

÷ * � øÿ - ø � ./7û í ý ý ý í / ø 0í K * I J A � øí � ø � Eí
Unknown: C * I J A � øí � øÿ E

.

¿ Does there exists a sol’n C ?

Obvious necessary condition:

A; * � Qÿ ./üû í ý ý ý í / ø 0 ESR A ù > A /üû í ý ý ý í / ø E ÷ A /üû í ý ý ý í / ø E 1 Ú E

; > A B
BDC û í ý ý ý í B
BDC ø E K 1 Ú �

Theorem (Fundamental principle): This is a n.a.s.c.

– p.68/76



The Fundamental Principle for PDE’s

÷ A þþ�5ÿ í ý ý ý í þþ�5� E C 1 K
Given:

÷ * � øÿ - ø � ./7û í ý ý ý í / ø 0í K * I J A � øí � ø � Eí
Unknown: C * I J A � øí � øÿ E

.

¿ Does there exists a sol’n C ?
Theorem (Fundamental principle): This is a n.a.s.c.

Since the ; ’s form a (finitely generated)

� ./ û í ý ý ý í / ø 0 -module,
this is a finite condition!

Example:

Take

Ú T 1 ÷ * � ./üû í ý ý ý í / ø 0 . PDE

÷ A þþ�5ÿ í ý ý ý í þþ�5� E C 1 K.
Always solvable!

– p.68/76



The elimination theorem

There exist effective algorithms for

A )û í )�G EVU )
.@ Computer algebra, Gröbner bases.

It follows from all this that

6 ,ø has very nice properties. In
particular, it is closed under:

Intersection:

A û í G * 6 7 ø E A û W G * 6 7 E

Addition:

A û í G * 6 7 ø E A û X G * 6 7 ø E

Projection:

YZ [ \]ÿ � ] �^ _a` Yb cÿ Z [ \]ÿed _ b cÿ f projection

Action of a linear differential operator:YZ [ \]ÿ d g h [ i] � � ]ÿ jk�l g m m m g k ^ n _` Y h Y oop _ Z [ \] �^ _

.

Inverse image of a linear differential operator:YZ [ \] �^ g h [ i] � � ]ÿ jkql g m m m g k ^ n _` Y h Y oop _ _sr l Z [ \]ÿ ^ .
– p.69/76



Elimination theorem

Which PDE’s describe ( &ut �! t �%$

) in Maxwell’s equations ?

Eliminate

�#"

from Maxwell’s equations @
ý �! 1 (

vxw & t

vxw B
B O ý �! X ý �$ 1 y t

vzw B G
B O G �! X vzw { G � � �! X B
B O �$ 1 y �

– p.70/76



) ||�5} t ~ ~ ~ t ||�5�� F 1 y
is called a kernel representation of the associated

* 6 7�.
Another representation: image representation

F 1 ||�5} t ~ ~ ~ t ||�5�� � �

‘Elimination’ thm
��� ||�5} t ~ ~ ~ t ||�5�� * 6 7� �

Which linear diff. systems admit an image representation???

admits an image representation iff it is ‘controllable’.

– p.71/76
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Controllability for PDE’s

Controllability def’n in pictures:

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

�

��

���

��� �

��

F�� t F G *

.
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Controllability for PDE’s

� F *

‘patches’ F � t F G *

.
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Controllability : ‘patch-ability’.
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential

��� � � �   �

and the vector potential

¡£¢� � � �   �  

, generate exactly the
solutions to Maxwell’s equations:

¤�¥ ¦ r §§ p ¤©¨ r ª «­¬¤�® ¦ ª � ¤a¨¬¤©¯ ¦ °± § ²§ p ² ¤ ¨ r °± � ² ª ² ¤³¨´ °± � ² ª µ ª�¶ ¤³¨ · ´ °± §§ p ª «¬

¸ ¦ r °± §§ p ª¶ ¤³¨ r °± ª ² «­¹
Proves controllability. Illustrates the interesting connection

controllability

�

potential!
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Conclusion

The flexibility and generality of the behavioral approach in modeling,

for system representations, for passive control, dealing with PDE’s,

etc. is evident.

Exemplified by the notion of controllability.

Nature and Nature’s laws lay hid in night

God said, ‘Let Newton be’ and all was light

Mathematical Systems Theory lay bound by might

Ratio said, ‘Let Behaviors be’ and all was right

– p.75/76
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Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.be

http://www.esat.kuleuven.be/ ºjwillems

Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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