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Introduction

Basic merits of the behavioral approach :

B Language for modeling, independent of system
representation, adapted to first principles modeling,

no signal flow graphs
M Interconnection —> sharing variables

B General, simple notions as controllability, observability, state,

etc.

B Versatile theory of LTI systems: diff. eq’n models, state

models, transfer function models, etc.
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Introduction

In the context of control :

B Control = interconnection
B Control = finding a good subbehavior

B Obtain controlled behavior first,
~»  synthesis, ‘implementation’ problem;
regularity, feedback, etc.

B LQ and H  theory via quadratic differential forms
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Outline

Today: general introduction to LQ control using QDF’s
B QDF’s and their positivity
M A couple of preliminaries on behaviors

B Stationarity, optimality of quadratic integrals

w.r.t. compact support variations
B w.r.t. one-sided variations

B Outline of the LQ trajectory optimization problem
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QDF’s

Let (I)k,KERT“XWZ, k.t =0,1,2,...,N
and w; € €°(R,R"), =1,2.

The map

€®(R,R™) x €*°(R,R") - €°(R,R)
defined by
(wy, wa) — Zk £_O(dtk ’wl)T(I’k e(dtewz)

is called a bilinear differential form (BDF).
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Let (I)k,géRWXW, k., =0,1,2,...,N
and w € €°(R, R").

The map €° (R, R¥) — €*°(R, R) defined by

N dk d*
w = Y oo (GEW)  Pre(Jzw)

is called a quadratic differential form (QDF).

QDF’s
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QDF’s

Compact notation and parametrization ~» R [, 7]

and matrices of real polynomials in two indeterminates:

N
®(¢,m) = Z B¢ "

k,£=0

with @5 , € R %72, In 1<>1 relation with the BDF

Ls : €°(R,R") x €2°(R, R*?) — ¢ (R, R)

L (w1, wz) := Zke ()(dtk:wl)T(I)k: e(dtewz)

called the BDF Lg induced by ® (¢, n).
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QDF’s

Compact notation and parametrization ~ R [{, 7]
and matrices of real polynomials in two indeterminates:

N
®(¢,m) = Z B¢ "

k,£=0

with @5 , € R %72, Withw; = wp = w ~
Qs : €°(R,R") — € (R, R)
Ly(w,w) = Qa(w) = Zke o(dtkw)T(I)k E(dte w)

called the QDF (Q 4 induced by ®((, n)
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QDF’s

Withwy = wo = w ~

Qs : €°(R,R") — € (R, R)
— I d* . \T dt
Le(w,w) = Qa(w) = > o (Garw)  Pre(zw)
called the QDF (Q 4 induced by ®((, 1)

WLOG (I)k,g = (I)Zk i.e. & = P, (I)*(Ca "7) = (I)(na C)T
symmetry

symmetric 2-var. pol. matrices arein 1 <> 1 relation with QDF’s
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QDF’s

B Total energy for oscillator

d2

equals

1 d 1
= —_M(—w)? 4+ —Kw?>.
Qa(w) > (dtw) —|—2 w

1 1
®(¢,n) = EMCU + EK
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QDF’s

¢, Polynomial matrix for Q& ?

d 1 d d 0 1 w1
wz(awl)zi[mwl sz] [0 0 s

Therefore <I>(C, 77) — %
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Positivity of QDF’s

Q4+ (or P) is (pointwise) non-negative : <
Qe(w)(t) >0 VweEC® (R,R), andt € R.

(Q s is average non-negative : <

4+ o0
Qo(w)dt >0 Vw € € (R, RY) of compact support.

— OO

Qs is half-line non-negative : <

0
/ Qo(w)dt >0 VYw € €° (R, R") of compact support.

— OO

3 positivity, strict positivity, ... analogues.
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Positivity of QDF’s

(Q s is (pointwise) non-negative <

Mat(®) > 0.

Mat(®) := ’

&I DeR[]: @(¢n) =D (¢)D(n)
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Positivity of QDF’s

Qs is average non-negative
<~

b(—iw,tw) >0 Vw € R.

< (LMI) 3 a‘storage function’ ¥ = ¥* € R"*¥ [{, n]:

®(¢,m) + (€ +n)¥(¢,n) =0

ie. Qa(w)+ 2Qu(w) >0 Vw € € (R, R).
& d afactorization (is also an LMI):

®(—¢,8) = F' (=& F(§)
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Positivity of QDF’s

Roughly:

Qs is half-line non-negative
& (LM 3 & = ¥* € RY™¥ [{, n]:

¥ >0

®(¢,m) + (C+m¥(¢,n) >0
<~
1. P(—tw,tw) >0 VwER
2. A certain Pick matrixis > 0O
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Preliminaries: Behaviors
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Introduction

Basic merits of the behavioral approach :

B Language for modeling, independent of system
representation, adapted to first principles modeling,

no signal flow graphs
M Interconnection —> sharing variables

B General, simple notions as controllability, observability, state,

etc.

B Versatile theory of LTI systems: diff. eq’n models, state

models, transfer function models, etc.
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Introduction

Get the physics right.
After that, it is all mathematics.
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Introduction

Get the physics right.
After that, it is all mathematics.

Physics does not have signal flow graphs...

Interconnection appears by sharing variables...

Use a mathematical (graph) structure in circuit theory that

supports more than just 2-terminal elements.
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LTl systems K

The behavior 8 C (R")X belongsto £" : <

3 a polynomial matrix R € R**" [£] such that

B ={we e RR)|R(L)w=0}
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LTl systems K

The behavior 8 C (R")X belongsto £" : <

3 a polynomial matrix R € R**" [£] such that

B ={we e RR)|R(L)w=0}

8 is said to be controllable

R e

the trajectories in B3 are ‘patch-able’, ‘concatenable’.

undesired past

/"\

~

controlled
transztw/

time

/

Vo

desired future
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LTl systems K

VS is said to be controllable : &

the trajectories in 83 are ‘patch-able’, ‘concatenable’.
< R(A) has the same rank for all A € C.

< Bisanimage: 3 M € R"*® [£] such that

- (4))
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LTl systems K

VS is said to be controllable : &

the trajectories in ¢ are ‘patch-able’, ‘concatenable’.

B c L' &
R(%)sz

d kernel representation

iff 25 € £ and controllable

3 image representation
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LTl systems K

B € £V is said to be autonomous : &

w1, Wo & ?B, wl(t) = ’UJ2(t) for t <0 = w1 = Wy.

<398 is finite dimensional

<3 kernel repr. R (%) w = 0, with R square, det(R) # 0.
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LTl systems K

B € £V is said to be stable : &
weB = w(t) = O0fort — oo.

< kernel repr. R (%) w = 0,
with R square and det(R) a Hurwitz polynomial.

stable = autonomous.
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LTl systems K

After you get used to w € *5 , the rest is easy.
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Problem formulation

—p.16/36



Aims

Object of study: for ® = ®* € R"*¥ [, n]

the stationarity, minimality, etc. of the integral:

viewed as a map from € (R, R¥) to R
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Aims

Object of study: for ® = ®* € R"*¥ [, n]

the stationarity, minimality, etc. of the integral:

fj;o Qs (w) dt

viewed as a map from € (R, R¥) to R

o &~ »® b

. Char. the stationary traj. w.r.t. compact support variations

the local minima w.r.t. compact support variations
stationary trajectories w.r.t. one-sided variations
local minima w.r.t. one-sided variations

Minimize with initial and terminal conditions on w.
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Level of generality

f_Jr;o Qs (w) dt

forw € B, B € £ controllable, w = M (%) L

~ [T Qq(2) dt
£ € €, with®'(¢,n) = M (¢)®(¢, 1) M(n).

.. . d
Solve for stationary, minimizing £, returnto w = M (%) L.
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Level of generality

fj';o w' Gw dt

with G € R"*7 (&) a rational weighting function.

~ G=P'Q, P,Q € R*** [¢]
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Level of generality

[T (Ghw) T (Gaw) dt

with G, Gy € R*** (&) rational weighting functions, with
R d =R d
1 dt Wy = I dt W2

d
e.d. aw = Ax + Bw,;, wys = Cx + Dw,

B quadratic functionals
B rational weightings

M variables related by linear differential systems
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Compact support variations
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Compact support variations

\ w+ A

What do we mean by w ‘stationary’, a ’local minimum’?
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Compact support variations

Note that Qs (w + A) — Qo (w) = 2Ls(w, A) + Qa(A)

w € €= (R, RY) is said to be stationary for [ Qs w.r.t.

compact support variations if

+o00 Foo
/ (Qa(w + A) — Qa(w)) dt = Qs(A) dt

— 00 — OO

forall A € € (R, RY) of compact support. i.e.

[T Le(w,A)dt =0 VA
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Compact support variations

w € €= (R, RY) is said to be stationary for [ Qs w.r.t.
compact support variations if

+o00 Foo
/_ (RQa(w + A) — Qp(w)) dt = B Qs(A) dt

forall A € €*° (R, RW) of compact support. And a

local minimum if

[T (Qs(w + A) — Qa(w)) dt > 0

forall A € € (R, R") of compact support.
&> stationarity and [T Qs(A)dt > o0.
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Compact support variations

Theorem:

1. Stationary € £F

2. w is stationary < (I)(_ﬁ’ dt)w =0
' 3. Either no local minima, or stationary => local minimum
4. Local minima <
() ‘I’(—aa a)w =0

(ii) Q4 is average non-negative,
ie. P(—tw,tw) >0 YweEeR

If det(P(—&,&)) # O, stationary is an autonomous system.
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Compact support variations

Theorem:

1. Stationary € £F

2. w is stationary < (I)(_ﬁ’ a)w =0
' 3. Either no local minima, or stationary => local minimum
4. Local minima <
(i) ®(—%,5)w=0

(ii) Q4 is average non-negative,
ie. P(—tw,tw) >0 YweEeR

If det(P(—&,&)) # O, stationary is an autonomous system.

Of crucial importance in mechanics
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Examples

d2
w+ —w=20 harmonic oscillator
dt?

local minimum? ~ 1 — w? NO!
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Examples

d2
w+ —w=20 harmonic oscillator
dt?
local minimum? ~ 1 — w? NO!

[y (wz + (%’w)z) dt ~ ®(¢,n) =1+ (N~

d2
w— —w=2~0 hyperbolic flow
di2 yp

local minimum? ~ 1 + w2 YES!
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Examples

+ o0 d
i Energy absorbed / F (—q) dt

1
M[%]:[(K+Dd+mdt2)]w
~ 3 (K+D¢+ M) n+ 5 (K+Dn+Mn?)¢ ~
2
Dddtzq_O forD >0~ q = a -+ Bt local minima

Stat. traj. include (strictly) the dissipation-free ones g(t) = constant.
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Examples

v # Energy absorbed | j_:: VI dt

vi_ | 1+RcCL
M[I]_[ C%dt Vc

1

2

~> (1+ RcC() C’n—l—%(l—kRCCn) C( ~
2

—RCCzﬁq =0 ~ V() =a+pBt,I(t) =L’ local minima

The stat. traj. include (strictly) the dissipation-free traj. I(t) = O.
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State representation

The stationary trajectories in other representations. E.g.

d oo
—x = Ax + Bu / (u' Ru+ ' Qx) dt

dt —oo
£ £
~> 2 =H| |, u=—-R!BTX
A A

Local minima = R > 0.
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Stability

Stationarity, local minimality have no bearing on stability .

In fact, if they are ‘time-symmetric’ notions, while stability is not.

In mechanics, there is no stability.
In control applications, stability can be imposed

or, as we how aim at,

enforced by imposing stronger requirements on 0 .
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One-sided variations
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e W+ A ‘

One-sided variations

V=

When is w a local minimum?
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One-sided variations

w € € (R, R") is saidto be a

local minimum w.r.t. one-sided variations : &

f::,o (Qa(w + A) — Qs(w)) dt > 0

forall A € € (R, RY) with support on a half line
[t, +00) forsome t € R.
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One-sided variations

[T (Qs(w + A) — Qa(w)) dt > 0

forall A € € (R, RY) with support on a half line

s W A

/
Mﬂm{/

V=
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Main new result

Theorem:

w is a local minimum w.r.t. one-sided variations

—> local minimum w.r.t. compact support variations, i.e.

d L
S(——, —)w = and P(—iw,iw) >0 Vw € R.

Assume > 0.
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Main new result

Theorem:

w is then a local minimum w.r.t. one-sided variations <= (roughly)
2. (D3 is half-line nonnegative
3. w(t) —» 0 for t > oo

Stability is a consequence of minimality, shows importance in

control.

Algorithmic problem: Extract the stable trajectories from

(I)(—a, a)w = 0.~  ‘spectral factorization’ .
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Main new result

Computation:

b(—tw,tw) >0 Vw €R
< 3 H € R €] with det(H ) Hurwitz :

®(—¢,86) = H' (—§)H(¢)

Hence H (%)w — (0 gives the one-sided optimal trajectories.
Computation much more tricky: ‘SOS’, spectral factorization, ARE,
LMI’s with extremality conditions.

Conclusion:

Optimality w.r.t. compact support has nothing to do with stability.
Optimality w.r.t. one-sided variations delivers exactly stability.

- p.29/36



Controller implementation
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Implementation

How does this relate to the classical view of control, where an

input trajectory selection, or a feedback law selection are the aim?
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Implementation

Start with 23 € £V, criterion like QDF QQ ».
Obtain a (stationary, or optimal w.r.t. compact support or
one-sided variations) controlled behavior

f RE L, AC S

Find a controller € € £" such that

R=BNC

regular interconnection, or feedback...

cfr. the work of Trentelman c.s.
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Implementation

control — to—be—controlled

PLAN T variables variables

control

variables CONTROLLER

—-p.31/36



Implementation

control — to—be—controlled

PLAN T variables variables

control

variables CONTROLLER

to—be—controlled
variables

PLANT CONTROLLER

control
variables

CONTROLLED

SYSTEM
—-p.31/36



Implementation

Given a first principles representation of the plant 3 and P,
end up with a adapted representation of the controller €.
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LQ optimal trajectories
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Optimal trajectories

Given ® € R"*" [(,m]and I € R**" [£],a € R®:

! Minimize or infimize f0+°° Qs (w) dt subject to

I(%)w(O) = a

and possibly conditions on w and its derivatives as t — +o0.
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Optimal trajectories

Given ® € R"*" [(,m]and I € R**" [£],a € R®:

! Minimize or infimize f0+°° Qs (w) dt subject to

I(%)w(O) = a

and possibly conditions on w and its derivatives as t — +o0.

a & 0 b

. When is infimum > 400 ?

When is the infimum a minimum ?
When is the minimum unique ?
Given B8 € £" when is there an optimal continuation ?

etc- —p.33/36



Optimal trajectories

These problems are dealt with in complete generality in the paper.

Example: Given 25 € £V, controllable.

+o0o
* ! Minimize/ ||w]|? dt
0

subject to w € B and w|(_oo,0] given.
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Optimal trajectories

B e awvi)

Find continuation that minimizes [ ||w||? dt.

How to compute it? Is it unique? Is it stable?
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Optimal trajectories

Assume $5 given in observable image representation

d
w=M/[—)H/L.
dt
Find the stable stationary trajectories for

Qs with ®(¢,n) = M ' (¢)M(n)

via spectral factorization of

MT(—¢)M(¢) = HT(—¢)H(¢) det(H) Hurwitz .
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Optimal trajectories

Finally ‘match’ the required initial conditions for
d
H(—)w" =0
dt

with those of the given w € 5.

Existence, uniqueness, stability ...
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Highligths

B QDF’s and their positivity.
The role of R [, 1] .

M Stationarity w.r.t. compact support variations: readily
B |local minimality <= average positivity.

H w.r.t. one-sided variations <= half-line positivity. Extracts

stable stationary traj.

B Outline of the LQ trajectory optimization problem
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Thank you
Thank you
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