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Linear differential distributed (n-d) systems

Let R € R**¥[&q1, -+ , &,], and consider

R(p2,p)w=0. (%

Oxq’ ’ O,

Define the associated ‘behavior’
B = {w € € (R*,RY) | (*) holds }.

Notation 5 € L.
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Example

Maxwell’s equations: n = 4, w = 10.

4
&,
I

|
>

— 6—»
VXFE = ——
ot ’
V.-B = o0,
c°VxB = —j34—E
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QDF’s
Use multi-index notation. Consider
d¥ ! dt
w —> ——w () ——w
2k dx* “\ dat
€ (R, R¥) — € (R*,R). ®p 0 € RVXY; By p = @Zk.

Introduce the 2n-variable polynomial matrix ®
(¢,m) =) Ppectnt
k.t

Denote the QDF as (Q 3.
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Dissipative distributed systems

B e L s

dissipative with respect to the ‘supply rate’ Q4

Jze Qo (w) dx >0

for all w € B of compact support, i.e., forallw € B N 2.

?) := ¢°° and ‘compact support’.

if=holds :& ‘conservative’.
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Example

o

VvV.E+V-7 = o0

soat + J ’
—82 2 o -
608t2E+€OCVXVXE+a-7 _

Conservative << for compact support sol’ns:

/// E”(wayaZat)-;(a:,y,z,t) drdydzdt =0
R4
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Local dissipation law

Can this be reinterpreted as: As the system evolves, some of the
supply is locally stored, some locally dissipated, and some

redistributed over space?
I' Invent storage and flux, locally defined in time and space, such

that in every spatial domain there holds:

SUPPLY

il

% Storage + Spatial flux < Supply.
%. FLUX

7

STORAGE

vy
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Reduction to €*°

(5o 5mr)
Rl —,--,— Jw=0
0xq 0T,

kernel representation of 25 € £".
Another representation: image representation

w=M<3 .. 3)2

8:131 ) ? an

w replaced by ¢, ‘free’.

Elimination thm = im (M( 9 .. i)) c £ !

3331 ? ? 8:811

Do all ’B5 € £} admit an image representation???

iff it is ‘controllable’.
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Controllability

NN

w ‘patches’ wq, w2 € *B.

V wi,we € B d w € B : Controllability :<> ‘patchability’.

For controllable systems, the compact support trajectories are
‘representative’ of the whole behavior.
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Are Maxwell’s equations controllable ?

The following equations
in the scalar potential ¢ : R X R®> — R and

the vector potential A : R X R3 — R3
generate exactly the solutions to Maxwell’s equations:

— 8 g
F = ——A-V
5t ®,
B = VX A:
J = eowA — €0c®V?2A 4 ¢9c?V (V . A) + €oav¢a
o -
= —e0-V-A—¢eoV?p.
P €0 ot €0 ¢

Proves controllability. Illlustrates the interesting connection

controllability < d potential!
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Local dissipation law (stated for n = 4)

Thm:n = 4 : x,y, z;t : space/time; 5 € £, controllable.

/// Qs (w) dedydzdt >0 forallw € B ND
R4

)

- an image representation w = M <68w, ;y, (,fz, gt> £ of B,
and QDF’s S, the storage,and F,, F,, F, the flux,

such that the /ocal dissipation law

55 (0) + 5 Fe () + 5 Fy (6) 4+ 22 F. (8) < Qo (w)

: 8 8 8 8
holds for all (w, £) that satisfy w = M (8:1:’ By’ 52 Bt> L.
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Energy stored in EM fields

Maxwell’s equations are dissipative (in fact, conservative) with
respectto — FE -3, the rate of energy supplied.

Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), F’,

—E-E - B - B,
2 2

S <E, E) :

F (E’, E) ;= eoc’E X B.

Local conservation law for Maxwell’s equations:

—

2.5 (E,B’> +V-F"(E’,B’) =—E.j.

—

Involves B, unobservable from (E ;)
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Local dissipation law (General case)

Thm: B € £ controllable, is globally dissipative w.r.t. QQ &:

[on Qa (w) dz >0 forallw € BN D

)

3 an image representation w = M(%)E of B,

and an n-vector of QDF’s (Q4 such that the /ocal dissipation law

V-Qu (4) < Qs (w)

holds for all (w, £) that satisfy w = M (%) £.
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Idea of the proof

Using controllability and image representations, we may assume,
WLOG: B = ¢ (R*, R")

To be shown

Global dissipation : <=

Qs (w) > Oforallw € D
Rn

()
F¥: V-Qu(w) <Qs(w) forallw € €°

<: Local dissipation
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Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > O0forallw € R"
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Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > O0forallw € R"

{L |(Factorization equation = SOS)

3D: ®(—¢,€)=DT (=€) D(¢)
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9 ¥

/ Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > O0forallw € R"

)

(Factorization equation = SOS)

3D: ®(—¢,€)=DT (=€) D(¢)

$ (easy)

&+n)' T n) =2 n) — DT (¢)D(n)




/ Qs (w) > Oforallw € D
Rn

{ (Parseval)

¢ (—tw,iw) > O0forallw € R"

)

(Factorization equation = SOS)

3D: ®(—¢,€)=DT (=€) D(¢)

$ (easy)

I3T: (C+n) T(En)=2(n) — D" () D(n)

$ (clearly)

F¥: V:Qu(w) <Qsp(w) forallw € €




Idea of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : <=

Qs (w) > Oforallw € D
Rn

)
F¥: V:Qu(w) <Qsp(w) forallw € €

<: Local dissipation

However, for n > 1, this factorization needs rational functions
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The factorization equation

X' (=8 X (8 =Y (&) (FE)

with Y € R®***[£] given, and X the unknown. Solvable??

SY(E) =Y (=€) and Y (iw) > 0 Yw € R®.

== the SOS problem
X' (X =Y(  (sos)

with Y € R®***[£] given, and X the unknown. Solvable??

&Y€) =Y"(¢) and Y(a) >0 Va € R".
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Idea of the proof

—> solvability of the factorization eq’n

$ (—tw,tw) > O0forallw € R”

{L | (Factorization equation)

ID: ®(—¢¢) =D" (—€)D(¢)

over the rational functions, i.e., with ) a matrix with elements in

R(éh’" 9€n)°

The need to introduce rational functions in this factorization
equation and an image representation of *35 (to reduce the pbm to
free variables) are the causes of the unavoidable presence of
(possibly unobservable, i.e., ‘hidden’) latent variables in the local
dissipation law.
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BEY

X' (€)X (&)=Y (&)

Can be made into an LMI by

Y (&) ~ 2(¢,n), 2(-§,€) =Y(§)

and solving

37T (C+mn) T(Cn) <@, n)

For 1-d systems (ODE case), we know a great deal: Available
storage, required supply reasoning gives a proof of factorizability.
= upper and lower bounds for W. Yields low rank factorizations.
Sol’n set convex, compact. State models: ARE, ARineq, LMI’s.

Does any of this generalize to SOS via PDE’s?
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BEY

The nature and need of these hidden variables

Needed also e.g. in Lyapunov theory, etc.?
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Reference: H. Pillai and JCW, Dissipative distributed systems,
SIAM Journal on Control and Optimization,
Volume 40, pages 1406-1430, 2002.

Jan.Willems(@esat.kuleuven.be

http://www.esat .kuleuven.be/~Jjwillems
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