THE SUM-of-SQUARES PROBLEM

 and
DISSIPATIVE DISTRIBUTED SYSTEMS

Jan Willems

Linear differential distributed (n-d) systems

Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 . \quad(*)
$$

Define the associated 'behavior'

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}
$$

Notation $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$.

Example

Maxwell's equations: $\mathrm{n}=4, \mathrm{w}=10$.

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

QDF's

Use multi-index notation. Consider

$$
w \mapsto \sum_{k, \ell}\left(\frac{d^{k}}{d x^{k}} w\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d x^{\ell}} w\right)
$$

$\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}\right) . \Phi_{k, \ell} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}} ; \Phi_{k, \ell}=\Phi_{\ell, k}^{\top}$.
Introduce the 2 n -variable polynomial matrix Φ

$$
\Phi(\zeta, \eta)=\sum_{k, \ell} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

Denote the QDF as Q_{Φ}.

Dissipative distributed systems

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ is

dissipative with respect to the 'supply rate' Q_{Φ}

$: \Leftrightarrow$

$$
\int_{\mathbb{R}^{n}} Q_{\Phi}(w) d x \geq 0
$$

for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support, i.e., for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.
$\mathfrak{D}:=\mathfrak{C}^{\infty}$ and 'compact support'.
if $=$ holds $\quad: \Leftrightarrow \quad$ 'conservative'.

Example

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0
\end{aligned}
$$

Conservative \Leftrightarrow for compact support sol'ns:

$$
\iiint \int_{\mathbb{R}^{4}} \vec{E}(x, y, z, t) \cdot \vec{j}(x, y, z, t) d x d y d z d t=0
$$

Local dissipation law

Can this be reinterpreted as: As the system evolves, some of the supply is locally stored, some locally dissipated, and some redistributed over space?
!! Invent storage and flux, locally defined in time and space, such that in every spatial domain there holds:

$$
\frac{d}{d t} \text { Storage }+ \text { Spatial flux } \leq \text { Supply. }
$$

Reduction to \mathfrak{C}^{∞}

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

kernel representation of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$.
Another representation: image representation

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

w replaced by ℓ, 'free'.
Elimination thm $\Rightarrow \quad \operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)\right) \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}!$
Do all $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ admit an image representation???
iff it is 'controllable'.

Controllability

\boldsymbol{w} 'patches' $\boldsymbol{w}_{1}, \boldsymbol{w}_{\mathbf{2}} \in \mathfrak{B}$.
$\forall \boldsymbol{w}_{1}, w_{2} \in \mathfrak{B} \exists \boldsymbol{w} \in \mathfrak{B}:$ Controllability : \Leftrightarrow 'patchability'.
For controllable systems, the compact support trajectories are 'representative' of the whole behavior.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi, \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi .
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Local dissipation law (stated for $\mathrm{n}=4$)

Thm: $\mathrm{n}=4: x, y, z ; t:$ space/time; $\mathfrak{B} \in \mathfrak{L}_{4}{ }_{4}^{W}$, controllable.

$$
\iiint \int_{\mathbb{R}^{4}} Q_{\Phi}(w) d x d y d z d t \geq 0 \quad \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

$$
\mathbb{I}
$$

\exists an image representation $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$ of \mathfrak{B}, and QDF's S, the storage, and F_{x}, F_{y}, F_{z}, the flux, such that the local dissipation law

$$
\frac{\partial}{\partial t} S(\ell)+\frac{\partial}{\partial x} \boldsymbol{F}_{x}(\ell)+\frac{\partial}{\partial y} F_{y}(\ell)+\frac{\partial}{\partial z} \boldsymbol{F}_{z}(\ell) \leq Q_{\Phi}(w)
$$

holds for all (w, ℓ) that satisfy $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$.

Energy stored in EM fields

Maxwell's equations are dissipative (in fact, conservative) with respect to $-\overrightarrow{\boldsymbol{E}} \cdot \vec{j}$, the rate of energy supplied.

Introduce the stored energy density, S, and the energy flux density (the Poynting vector), $\overrightarrow{\boldsymbol{F}}$,

$$
\begin{aligned}
& S(\vec{E}, \vec{B}):=\frac{\varepsilon_{0}}{2} \vec{E} \cdot \vec{E}+\frac{\varepsilon_{0} c^{2}}{2} \vec{B} \cdot \vec{B} \\
& \vec{F}(\vec{E}, \vec{B}):=\varepsilon_{0} c^{2} \vec{E} \times \vec{B}
\end{aligned}
$$

Local conservation law for Maxwell's equations:

$$
\frac{\partial}{\partial t} S(\vec{E}, \vec{B})+\nabla \cdot \vec{F}(\vec{E}, \vec{B})=-\vec{E} \cdot \vec{j}
$$

Involves \vec{B}, unobservable from $\quad(\vec{E}, \vec{j})$.

Local dissipation law (General case)

Thm: $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ controllable, is globally dissipative w.r.t. Q_{Φ} :

$$
\int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) d x \geq 0 \quad \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

$$
\mathbb{I}
$$

\exists an image representation $w=M\left(\frac{d}{d x}\right) \ell$ of \mathfrak{B}, and an n-vector of QDF's Q_{Φ} such that the local dissipation law

$$
\nabla \cdot Q_{\Psi}(\ell) \leq Q_{\Phi}(w)
$$

holds for all (w, ℓ) that satisfy $w=M\left(\frac{d}{d x}\right) \ell$.

Idea of the proof

Using controllability and image representations, we may assume, WLOG: $\mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$

To be shown

Global dissipation : \Leftrightarrow

$$
\begin{gathered}
\int_{\mathbb{R}^{\mathbf{n}}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\hat{\mathbb{1}} \\
\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{gathered}
$$

\Leftrightarrow : Local dissipation

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
& \mathbb{I} \quad \text { (Parseval) } \\
& \Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
& \mathbb{I} \quad \text { (Parseval) } \\
& \Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{n}
\end{aligned}
$$

i) (Factorization equation \cong SOS)

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

$\int_{\mathbb{R}^{\mathbf{n}}} Q_{\Phi}(w) \geq 0$ for all $w \in \mathfrak{D}$

I (Parseval)

$\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}^{\mathrm{n}}$
I. (Factorization equation \cong SOS)
$\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)$
I) (easy)
$\exists \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)$
$\int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0$ for all $w \in \mathfrak{D}$
I) (Parseval)
$\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}^{\mathrm{n}}$
I. (Factorization equation \cong SOS)
$\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)$
I (easy)
$\exists \Psi:(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)$
I (clearly)
$\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w)$ for all $w \in \mathfrak{C}^{\infty}$

Idea of the proof

Assuming factorizability, we indeed obtain:

Global dissipation : \Leftrightarrow

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\hat{\mathbb{I}} \\
\exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{gathered}
$$

\Leftrightarrow : Local dissipation

However, for $\mathrm{n}>1$, this factorization needs rational functions

The factorization equation

$$
\begin{equation*}
X^{\top}(-\xi) X(\xi)=Y(\xi) \tag{FE}
\end{equation*}
$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown. Solvable??

$$
\Leftrightarrow \boldsymbol{Y}(\xi)=\boldsymbol{Y}^{\top}(-\xi) \text { and } \boldsymbol{Y}(i \omega) \geq 0 \forall \omega \in \mathbb{R}^{\mathrm{n}} .
$$

\cong the SOS problem

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

(SOS)
with $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ given, and X the unknown. Solvable??
$\Leftrightarrow \boldsymbol{Y}(\boldsymbol{\xi})=\boldsymbol{Y}^{\top}(\xi)$ and $\boldsymbol{Y}(\boldsymbol{\alpha}) \geq 0 \forall \boldsymbol{\alpha} \in \mathbb{R}^{\mathrm{n}}$.

Idea of the proof

\Rightarrow solvability of the factorization eq'n

$$
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{n}
$$

I. (Factorization equation)

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

over the rational functions, i.e., with D a matrix with elements in $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{n}\right)$.

The need to introduce rational functions in this factorization equation and an image representation of \mathfrak{B} (to reduce the pbm to free variables) are the causes of the unavoidable presence of (possibly unobservable, i.e., 'hidden') latent variables in the local dissipation law.

$$
X^{\top}(-\xi) X(\xi)=Y(\xi)
$$

Can be made into an LMI by

$$
Y(\xi) \leadsto \Phi(\zeta, \eta), \quad \Phi(-\xi, \xi)=Y(\xi)
$$

and solving

$$
\exists ? ? \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta) \leq \Phi(\zeta, \eta)
$$

For 1-d systems (ODE case), we know a great deal: Available storage, required supply reasoning gives a proof of factorizability. \exists upper and lower bounds for Ψ. Yields low rank factorizations. Sol'n set convex, compact. State models: ARE, ARineq, LMI's.

Does any of this generalize to SOS via PDE's?

The nature and need of these hidden variables

Needed also e.g. in Lyapunov theory, etc.?

Reference: H. Pillai and JCW, Dissipative distributed systems, SIAM Journal on Control and Optimization, Volume 40, pages 1406-1430, 2002.

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

Reference: H. Pillai and JCW, Dissipative distributed systems, SIAM Journal on Control and Optimization, Volume 40, pages 1406-1430, 2002.

Jan.Willems@esat.kuleuven.be
http://www.esat.kuleuven.be/~jwillems

