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STATE SPACE SYSTEMS

THEME

How do we formalize the memory of a dynamical system?
When is a variable a state variable?
How do state equations look like?

How are state equations constructed, algorithmically ?
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THE NOTION OF STATE

A state system :=
A latent variable system in which the latent variable has a
special property.

The latent variable system

is said to be a state system if

and

imply
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��� denotes concatenation at

�� , defined as

��� �! #" ��$ %& ')( * +-,. � � %& '

for

& / & ��0$ %& '

for

& 1 & �

In pictures:

time

time
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This definition is the implementation of the idea:

The state at time

�

, � � � � , contains all the infor-
mation (about

�  � � � !) that is relevant for the
future behavior.

The state = the memory.

The past and the future are ‘independent’,
conditioned on (given) the present state.

=� Markovianity!
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Examples of state systems:

1. Discrete-time systems.

2. Continuous-time systems.

3. Automata.

4. Trellis diagrams.

5. QM:

the ‘wave function’;
the ‘probability’ density of the particle’s position.

The wave function = latent, state, the observables = manifest??
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Examples of state systems:

1. Discrete-time systems.

2. Continuous-time systems.

In particular, the ubiquitousBB � � � � � � C � � � � � � D � � � � � E � � � � F � � � � � � D � � � �HG

 � � � � � D � � � � E � � � � �
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Examples of state systems:

1. Discrete-time systems.

2. Continuous-time systems.

3. Automata.

4. Trellis diagrams.

5. QM:

II � J � KL � J � � M � N J N �G

J � the ‘wave function’;M � � � � � � the ‘probability’ density of the particle’s position.
The wave function = latent, state, the observables = manifest??
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For discrete time state systems O

Theorem: The latent variable system�P� � �Q � � � � �
	 � � �
is a state system if (and only if, provided the system is ‘complete’)�
	 � � admits a representation as a difference equation that is

first order in the latent variable �, and
zero-th order in the manifest variable  :

> � � � � ? @ � � � � � � �  � � � � � � � A�
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STATE FOR DIFFERENTIAL SYSTEMS

Here we meet the notorious R S

-difficulty:
concatenation and

R S

don’t mix.

We hence modify the state axiom to: The latent variable system
is said to be a

state system if

and

imply

‘Closure’ w.r.t., e.g., the -topology.

Equivalent: if is a weak sol’n of the ODE.
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�� � � � � � ��0� �� � � � � � � Z �\[] 	^ _�
	 � � �

‘Closure’ w.r.t., e.g., the
X �\[ Z

-topology.

Equivalent: if is a weak sol’n of the ODE.

`bac ( * the differential systems with d variables.
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DESCRIPTOR SYSTEMS

Theorem: The latent variable system

�U � U V � U W � �
	 � � � with�
	 � � � XV Y W

is a state system if and only if �
	 � � admits
a kernel representation that is

first order in the latent variable �, and
zero-th order in the manifest variable  .

In other words, iff there exist matrices such that
this kernel representation takes the form of a descriptor system:
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MINIMALITY

We can consider two types of minimality of state representations:

1. Minimality of the number of equations
2. Minimality of the number of state variables

We discuss mainly the second one.

Definition: The state system with

is said to be state-minimal if, whenever

with is another state system
with the same manifest behavior, there holds

.

STATE CONSTRUCTION – p.10/71



MINIMALITY

We can consider two types of minimality of state representations:
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2. Minimality of the number of state variables

We discuss mainly the second one.

Definition: The state system

�U � UV � U W � �
	 � � � with�
	 � � � XV Y W

is said to be state-minimal if, whenever�U � UV � U W i � j � 	 � � � with

j �
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is another state system

with the same manifest behavior, there holds
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Trimness

One more definition...

� XV

is said to be trim if,

l

w� � U V

,

m� �
such that � A � �w� . The state system

�U � UV � U W � �
	 � � � with�
	 � � � XV Y W

is said to be state-trim if,
l

x� � U W
,m �� � � � � � 	 � � such that � � A � � x� .

Theorem:
The state system with is
state-minimal iff it is state trim and the state is observable
from .

State-minimal state-trim and state-observable.
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Further results

1. State isomorphism theorem.

Assume

�U � UV � U W � �
	 � � � and

�U � UV � U W � j � 	 � � � ,�
	 � � � j �
	 � � � XV Y W

both state-minimal, same manifest behavior

there exists a nonsingular

q � U W h W
such thatn �� � � � � � 	 � � and

�� � � j � � j �
	 � � p n � j � q � p �

The minimal state representation is unique up to a choice of the
basis in the state space.

2. Controllability.

3. Descriptor systems.

4. Notation:

:= the dimension of the minimal state associated with .
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Further results

1. State isomorphism theorem.

2. Controllability.

The manifest behavior is controllable iff there exists a state
representation of it whose full behavior is controllable.

3. Descriptor systems.

4. Notation:

:= the dimension of the minimal state associated with .
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Further results

1. State isomorphism theorem.

2. Controllability.

3. Descriptor systems.m

algorithms acting on

e � > � f
in a descriptor representation to

verify its state-minimality, its equation minimality, both combined.

4. Notation:

:= the dimension of the minimal state associated with .
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Further results

1. State isomorphism theorem.

2. Controllability.

3. Descriptor systems.

e BB � � ? > � ? f � A

and
e j BB � � j ? > j � j ? f j � A

are two minimal (state- and equation-minimal) representations of
the same manifest behavior iff there exist nonsingular matricesr � q � U g h g

such thate j � r e q � > j � r e q � f j � r f�
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Further results

1. State isomorphism theorem.

2. Controllability.

3. Descriptor systems.

4. Notation:

k � �

:= the dimension of the minimal state associated with .
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All ‘classical’ results remain valid, except, (fortunately!)
the celebrated (non-)equivalence:

state-minimality state-observability + state-controllability.

Non-controllable systems are very ‘real’ and they allow
state-minimal (non-controllable) state representation.

STATE CONSTRUCTION – p.13/71



Input/State/Output Systems

Finally...

It is possible to combine the input/output partition and the state
representation, leading to the ubiquitous:

II � � � s � ? t D � E � u � ? D �  � � D � E � �

D is input := free,E is output := bound by D,� is state := ‘splitting’.

Notation:
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Theorem: Let

� XV

.

There exists a componentwise partition  � � D � E � ,
with

v wyx � D � � z � � � v wyx � E � � { � �
, and matrices|} ~ � �� �� � �� ��� � } � �� ��� �� �� �} ~ � �� �� � �� �� � } ~ � �� �� � �� �

such that BB � � � s � ? t D � E � u � ? D �

is a minimal (equation- and state-minimal) state repr’ion of .
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| �� � is minimal (state + eq’n minimal)

it is state-minimal

it is state-observable

� �� � � �
�

���
...�� � �b� �� �0� �

�
� � � v wyx � s � �

is state controllable (usual Kalman def’n)

the manifest behavior is controllable.

If is minimal (i.e., observable) then

state controllable iff manifest behavior controllable.

Watch out:

minimality of but controllable & observable.
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STATE CONSTRUCTION

!! Given a dynamical system

� � �� � � �
find a state representation

�P� � �� � � � � �
	 � � �
for it !!

This problem is a jewel that has emerged in systems theory (and in
computer science) in the sixties. It has ramifications in the theory
of stochastic processes, in computer science and formal language
theory, (more recently) model simplification, etc.

We assume henceforth or and is
time-invariant.
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There are 2 main aspects:

1. Abstract state construction: construct the state space from

2. Find algorithms that pass from a behavioral equation
representation of the manifest behavior to a specification of

and a behavioral equation representation of .
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Useful general properties

A state system

�P� � �� � � � � �
	 � � � is said to be irreducible

� [ (

C � � � j

,

�P� � �� � � � j � j � 	 � � � such thatj �
	 � � � � �� � C¡  � � N � � �  � � �
	 � � ¢
is a state system),

(

C

is a bijection)].

Two state systems and
are said to be equivalent

if there exists a bijection such that
.

Clearly equivalent state systems represent the same manifest
behavior.
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Abstract state construction

We now address the question: Given

� � �� � � �
, find a

(irreducible) state space representation

� � � �� � � � � �
	 � � �

for it.

The crucial idea is to define the state space!

When do two trajectories bring the system in the same state?

When is what is stored in the memory by the two trajectories the
same?

When the trajectories can be continued in the same way!
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This idea of constructing an equivalence relation on the manifest
behavior , sometimes called ‘Nerode equivalence’, leads to our
past canonical state representation.

In the past canonical state construction, define the equivalence
relation by

In the future canonical state construction, define the equivalence
relation by
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This idea of constructing an equivalence relation on the manifest
behavior , sometimes called ‘Nerode equivalence’, leads to our
past canonical state representation.

In the past canonical state construction, define the equivalence
relation

£¤ byn � £¤  � p � n �� � ��  � � �� � ��  � � p �

Our concept of state being basically ‘time-symmetric’
future canonical state representation.

In the future canonical state construction, define the equivalence
relation by
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This idea of constructing an equivalence relation on the manifest
behavior , sometimes called ‘Nerode equivalence’, leads to our
past canonical state representation.

In the past canonical state construction, define the equivalence
relation

£¤ byn � £¤  � p � n �� � ��  � � �� � ��  � � p �

In the future canonical state construction, define the equivalence
relation

£ Y byn � £ Y  � p � n �� ��  � � � �� ��  � � � p �

STATE CONSTRUCTION – p.21/71



Finally, combine both to the two-sided canonical state
representation.
In the two-sided canonical state construction, define the
equivalence rel.

£¦¥ by

n � £¥  � p � n � �� � ��  � � �� � ��  � � �

� � �� ��  � � � �� ��  � � � � p �

Obviously,

We now construct the associated state representations.

STATE CONSTRUCTION – p.22/71



Finally, combine both to the two-sided canonical state
representation.
In the two-sided canonical state construction, define the
equivalence rel.

£¦¥ by

n � £¥  � p � n � �� � ��  � � �� � ��  � � �

� � �� ��  � � � �� ��  � � � � p �

Obviously, n � £¥  � p n �� � £¤  � � � �� � £ Y  � � p �

We now construct the associated state representations.
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For the past-canonical state construction, define
the state space by

�¤ � �

mod

£¤ �

and the full behavior by

�
	 � �¨§ ¤ � � �� � � � N �� � � � �H© � � �H© � � � � A � l � � � � ¢ �

For the future-canonical state construction, define
the state space by mod and the full behavior by

For the two-sided-canonical state construction, define
the state space by mod and the full behavior by
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For the past-canonical state construction, define
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�¤ � �

mod

£¤ �

and the full behavior by
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For the future-canonical state construction, define
the state space by

� Y � �

mod

£ Y � and the full behavior by

�
	 � �¨§ Y � � �� � � � N �� � � � �H© � � �H© � � � � A � l � � � � ¢ �

For the two-sided-canonical state construction, define
the state space by mod and the full behavior by
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For the past-canonical state construction, define
the state space by

�¤ � �

mod

£¤ �

and the full behavior by

�
	 � �¨§ ¤ � � �� � � � N �� � � � �H© � � �H© � � � � A � l � � � � ¢ �

For the future-canonical state construction, define
the state space by

� Y � �

mod

£ Y � and the full behavior by

�
	 � �¨§ Y � � �� � � � N �� � � � �H© � � �H© � � � � A � l � � � � ¢ �

For the two-sided-canonical state construction, define
the state space by

�¥ � �
mod

£¥ �

and the full behavior by

�
	 � �¨§ ¥ � � �� � � � N �� � � � �H© � � �H© � � � � A � l � � � � ¢ �
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The canonical state representations

� ¤ � � �� � � �¤ � ¤ �
and� Y � � �� � � � Y � Y � have very good properties.

In particular, they are irreducible.

The question when all irreducible state representations of a given
system are equivalent has a very nice answer in terms of these
canonical representations.
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The canonical state representations
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and� Y � � �� � � � Y � Y � have very good properties.

In particular, they are irreducible.

The question when all irreducible state representations of a given
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canonical representations.
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Indeed, the following conditions are equivalent:

1. All irreducible state representations of a given system�� � � �

are equivalent.

2.

�� � � �¤ � �
	 � �§ ¤ �

and

�� � � � Y � �
	 � �¨§ Y � are
equivalent.

3.

�� � � �¤ � �
	 � �§ ¥ �

is irreducible.

4.

�� � � �¤ � �
	 � �§ ¤ �

and

�� � � �¤ � �
	 � �¨§ ¥ �

are
equivalent.

5.

�� � � � Y � �
	 � �§ Y � and
�� � � �¤ � �
	 � �¨§ ¥ �

are
equivalent.
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Example

X � ��ª ª � ª « � «ª ¢ �

This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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Example

X � ��ª ª � ª « � «ª ¢ �
Past canonical state representation:

¬  ®ª 
¯ ¯®ª

« ª � «
¬

This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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Example

X � ��ª ª � ª « � «ª ¢ �
Future canonical state representation:

¬  ®ª � « 
¯ ¯®«

ª ª
¬

This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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Example

X � ��ª ª � ª « � «ª ¢ �
Two-sided canonical state representation:

¬  ®ª 
¯ ¯®ª

« «
¬

°
°ª

ª

This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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Example

X � ��ª ª � ª « � «ª ¢ �
This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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Example

X � ��ª ª � ª « � «ª ¢ �
This example demonstrates that not all irreducible state
representations are equivalent.

Important instances of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.
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STATE CONSTRUCTION in DIFFERENTIAL SYSTEMS

Given a representation of the manifest behavior
� X g

,
find a (state-minimal) state representation for it.

Most logical : latent variable repr’on state repr’on.
However, it is most convenient to discuss kernel repr’ons first.
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STATE CONSTRUCTION in DIFFERENTIAL SYSTEMS

Given a representation of the manifest behavior
� X g

,
find a (state-minimal) state representation for it.

Most logical : latent variable repr’on O state repr’on.
However, it is most convenient to discuss kernel repr’ons first.

STATE CONSTRUCTION – p.27/71



STATE MAPS

Let

� o � � U g hV no p

. The map

� II � � is called a state map for� XV

if the full behavior

�
	 � � � � �� � � � N  �

and � � � BB � �  ¢

satisfies the axiom of state. Minimal state map: obvious.

In a state-minimal representation, is always determined by a state
map (because of observability), whence (minimal) state maps exist.
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STATE MAPS

Let

� o � � U g hV no p

. The map

� II � � is called a state map for� XV

if the full behavior

�
	 � � � � �� � � � N  �

and � � � BB � �  ¢

satisfies the axiom of state. Minimal state map: obvious.

In a state-minimal representation, � is always determined by a state
map (because of observability), whence (minimal) state maps exist.
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Algorithms for State Construction

Problem: Given a ‘numerical’ specification of a dynamical system,
end up with a ‘numerical’ specification of a state model.

Given the impulse response construct a state model .

Given the transfer function construct a state model .

Given a kernel, image, or latent variable representation,

construct a (minimal) state model or .

Make sure is in a special (e.g., balanced) form
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Algorithms for State Construction

Problem: Given a ‘numerical’ specification of a dynamical system,
end up with a ‘numerical’ specification of a state model.

We only consider linear time-invariant differential systems

Given the impulse response construct a state model .

Given the transfer function construct a state model .

Given a kernel, image, or latent variable representation,

construct a (minimal) state model or .

Make sure is in a special (e.g., balanced) form
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Algorithms for State Construction

Problem: Given a ‘numerical’ specification of a dynamical system,
end up with a ‘numerical’ specification of a state model.

Given the impulse response construct a state model

| �� � .

O the theory around the Hankel matrix.

Given the transfer function construct a state model .

Given a kernel, image, or latent variable representation,

construct a (minimal) state model or .

Make sure is in a special (e.g., balanced) form
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Algorithms for State Construction

Problem: Given a ‘numerical’ specification of a dynamical system,
end up with a ‘numerical’ specification of a state model.

Given the impulse response construct a state model

| �� � .

Given the transfer function construct a state model

| �� � .

Given a kernel, image, or latent variable representation,

construct a (minimal) state model

� e � > � f �

or

| �� � .

Make sure

| �� � is in a special (e.g., balanced) form
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Define the ‘shift-and-cut’ operator © on

U no p

as follows:

© � M� ? M � o ?�± ± ± ? M³² ¤ � o ² ¤ � ? M ² o ²

´ M � ? M � o ?± ± ± ? M ² ¤ � o ² ¤ � ? M ² o ² ¤ �

Extend-able in the obvious term-by-term way to

U g h g no p

.

Repeated use of the cut-and-shift on yields the
‘stack’ operator , defined by

...
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Define the ‘shift-and-cut’ operator © on

U no p

as follows:

© � M� ? M � o ?�± ± ± ? M³² ¤ � o ² ¤ � ? M ² o ²

´ M � ? M � o ?± ± ± ? M ² ¤ � o ² ¤ � ? M ² o ² ¤ �

Extend-able in the obvious term-by-term way to

U g h g no p

.

Repeated use of the cut-and-shift on

µ � U g h g no p

yields the
‘stack’ operator

�·¶ , defined by

�P¶ � �
�

¸�
¹ º¶ »¹ $ º¶ »

...¹ �½¼¾¿ ¼ ¼ �À � º¶ »
�

Á�
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FROM KERNEL to STATE REPRESENTATION

There is a construction (elegant in its simplicity) of a state map in
terms of the cut-and-shift and stack operators!

Theorem: Let

£ � II � �  � A

be a kernel representation of

� XV

.

Then

�PÂ � II � � is a state map for . The resulting state
representation

£ � BB � �  � A G � � �PÂ � BB � � 

Need not be minimal. It is trivially state-observable, but it may not
be state-trim. Using Gröbner basis techniques it can be trimmed,
leading to a minimal state representation.
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There is a construction (elegant in its simplicity) of a state map in
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be a kernel representation of

� XV
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�PÂ � II � � is a state map for . The resulting state
representation
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SINGLE INPUT - SINGLE OUTPUT SYSTEMS

Apply this to

M � BB � � E � Ã � BB � � D
with Ä %Å ' * Ä � Æ Ä � Å Æ¡Ç Ç Ç Æ Ä �� � Å �� � Æ Ä �Å �� Ä � È * ÉÊ %Å ' * Ê � Æ Ê � Å Æ¡Ç Ç Ç Æ Ê �� � Å �� � Æ Ê � Å �

The cut-and-shift and stack operators yield the polynomial matrix

...
...
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SINGLE INPUT - SINGLE OUTPUT SYSTEMS

Apply this to

M � BB � � E � Ã � BB � � D
with Ä %Å ' * Ä � Æ Ä � Å Æ¡Ç Ç Ç Æ Ä �� � Å �� � Æ Ä �Å �� Ä � È * ÉÊ %Å ' * Ê � Æ Ê � Å Æ¡Ç Ç Ç Æ Ê �� � Å �� � Æ Ê � Å �

The cut-and-shift and stack operators yield the polynomial matrix

�PÂ � o � �
�

¸Ë¸Ë¸Ì�
Í � Y � � � Y Í �� � Î �� $ Y Í � Î �� � ¤ Ï � ¤ � � � ¤ Ï �� � Î �� $ ¤ Ï � Î �� �Í $ Y � � � Y Í �� � Î �� Ð Y Í � Î �� $ ¤ Ï $ ¤ � � � ¤ Ï �� � Î �� Ð ¤ Ï � Î �� $

...
...Í �� � Y Í � Î ¤ Ï �� � ¤ Ï � ÎÍ � ¤ Ï �

�
ÁËÁËÁÌ�
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It follows that � � �PÂ � II � � is a state map, in fact, a state minimal
one, even if the system is not controllable, i.e., when M and Ã have a
common factor.

To get more convenient minimal state maps, we can take any basis
for span of the rows of .

One choice: take the rows of in reverse order.

A small calculation shows that this choice of the state variables
leads to the so-called observer canonical form, the i/s/o
representation

...
...

...
...

...
...
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To get more convenient minimal state maps, we can take any basis
for span of the rows of .

One choice: take the rows of

� Â in reverse order.

A small calculation shows that this choice of the state variables
leads to the so-called observer canonical form, the i/s/o
representation

s �
�

�
¤ Í �� � Ñ Í � � � � � � � �¤ Í �� $ Ñ Í � � � � � � � �

...
...

...
...

...¤ Í � Ñ Í � � � � � � � �
�

� � t �
�

�
Ï �� � ¤ Í �� � Ï � Ñ Í �Ï �� $ ¤ Í �� $ Ï � Ñ Í �

...Ï � ¤ Í � Ï � Ñ Í �
�

� �

u � n � Ñ Í
Ò � � � � � � � p � � n Ï � Ñ Í � p �
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Another immediate choice is to pick the state map

� o � �
�

¸Ë¸�
� ÓÎ Ó

...
...Î �� $ ÓÎ �� � Ó

�
ÁËÁ�

We need to compute the Ô’s so that the combinations of the rows of�Â that yield the first column of also give the second column.

The second column can be obtained by long hand division of Ã byM, i.e., by computing the polynomial

« � o � � U no p

defined by the
equation

M � o � « � o ¤ � � � Ã � o � �

modulo

o ¤ � U no ¤ � p � �
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Then

� o � �
�

¸Õ¸�
� Ö �Î Ö � Y Ö � Î

...
...Î �� $ Ö �� $ Y Ö �� Ð Î Y � � � Y Ö � Î �� $Î �� � Ö �� � Y Ö �� $ Î Y � � � Y Ö � Î �� �

�
ÁÕÁ� �

This leads to the observable canonical form, the i/s/o
representation

...
...

...
... ...
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Then

� o � �
�

¸Õ¸�
� Ö �Î Ö � Y Ö � Î

...
...Î �� $ Ö �� $ Y Ö �� Ð Î Y � � � Y Ö � Î �� $Î �� � Ö �� � Y Ö �� $ Î Y � � � Y Ö � Î �� �

�
ÁÕÁ� �

This leads to the observable canonical form, the i/s/o
representation

s �
�

¸�
� � � � � � �� � � � � � �

...
...

...
...� � � � � � �¤ × �× � ¤ × �× � ¤ × $× � � � � ¤ × �� �× �

�
Á� � t �

�
¸�

Ö �Ö $

...Ö �� �Ö �
�

Á� �

u � n � � � � � � � p � � n Ö � p �
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FROM IMAGE to STATE REPRESENTATION

Theorem: Let  � � II � �Ø be an image representation of� XV Z [Ù Ú , and

�·Û the stack operator induced by .
Then

 � � BB � �Ø G � � � Û � BB � �Ø

is a state representation of .

Again, not necessarily minimal.

Note: we obtain a state map that acts on . If is not
observable, then the state may not be observable, whence not
state-minimal.
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FROM IMAGE to STATE REPRESENTATION

Theorem: Let  � � II � �Ø be an image representation of� XV Z [Ù Ú , and

�·Û the stack operator induced by .
Then

 � � BB � �Ø G � � � Û � BB � �Ø

is a state representation of .

Again, not necessarily minimal.

Note: we obtain a state map that acts on

Ø

. If  � � II � �Ø is not
observable, then the state may not be observable, whence not
state-minimal.

STATE CONSTRUCTION – p.36/71



SINGLE INPUT - SINGLE OUTPUT SYSTEMS

When the system is controllable, and given in image representation
by DE � M � II � �Ã � II � � Ø
with

M � o � � M� ? M � o ?± ± ± ? M W ¤ � o W ¤ � ? M W o W � M W Ü � A �Ã � o � � Ã� ? Ã � o ?�± ± ± ? Ã W ¤ � o W ¤ � ? Ã W o W�
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The cut-and-shift and stack operators yield

� o � �
�

¸Ë¸Ë¸Ë¸Õ¸Ë¸Ë¸Ë¸�
Í � Y � � � Y Í �� � Î �� $ Y Í � Î �� �Ï � Y � � � Y Ï �� � Î �� $ Y Ï � Î �� �Í $ Y � � � Y Í �� � Î �� Ð Y Í � Î �� $Ï $ Y � � � Y Ï �� � Î �� Ð Y Ï � Î �� $

...Í �� � Y Í � ÎÏ �� � W Y Ï � ÎÏ �Í �

�
ÁËÁËÁËÁÕÁËÁËÁËÁ�

�
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There are again two ready bases for the linear span of the rows of
:

Minimality (observability) holds iff and are co-prime.
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There are again two ready bases for the linear span of the rows of
:

�
¸Ë¸�

Í �Í �� � Y Í � Î

...Í $ Y � � � Y Í �� � Î �� Ð Y Í � Î �� $Í � Y � � � Y Í �� � Î �� $ Y Í � Î �� �
�

ÁËÁ� and

�
¸Ë¸�

� Î
...Î �� $Î �� �

�
ÁËÁ� �

Minimality (observability) holds iff and are co-prime.
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There are again two ready bases for the linear span of the rows of
:

The first choice leads to the controllable canonical form

s �
�

�
¤ Í �� � Ñ Í � � � � � � � �¤ Í �� $ Ñ Í � � � � � � � �

...
...

...
...

...¤ Í � Ñ Í � � � � � � � �
�

� � t �
�

�
��

... �
�

� �

u � n Ö � Ö $ � � � Ö �� � Ö � p � � n Ö � p �

Minimality (observability) holds iff and are co-prime.
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There are again two ready bases for the linear span of the rows of
:

The second choice leads to the controller canonical form

s �
�

¸�
� � � � � � �� � � � � � �

...
...

...
...� � � � � � �¤ × �× � ¤ × �× � ¤ × $× � � � � ¤ × �� �× �

�
Á� � t �

�
¸�

��

...� × �
�

Á� �

u � n Ï � ¤ Í � Ý �× � Ï � ¤ Í � Ý �× � � � � Ï �� � ¤ Í �� � Ý �× � p � � n Ï � p �

Minimality (observability) holds iff and are co-prime.
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FROM LATENT VARIABLE to STATE REPRESENTATION

Consider the latent variable system

� � � �U � UV � YV $ � U W � �
	 � � �

with �
	 � � � XV � YV $ Y W

. Eliminate  � O� j� � �U � UV � � U W � j �
	 � � � . It is easy to deduce directly from the
state axiom that

� j� is a state system if

��� is.

Construction of a state representation for :

1. latent variable representation for .
2. Apply the cut-and-shift and stack operators to .
3. Obtain a state map

a, not necessarily minimal, latent var’ble state repr’ion for
.
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FROM LATENT VARIABLE to STATE REPRESENTATION

Consider the latent variable system

� � � �U � UV � YV $ � U W � �
	 � � �

with �
	 � � � XV � YV $ Y W

. Eliminate  � O� j� � �U � UV � � U W � j �
	 � � � . It is easy to deduce directly from the
state axiom that

� j� is a state system if

��� is.

Construction of a state representation for :

1.

£ � II � �  � � II � �Ø latent variable representation for .
2. Apply the cut-and-shift and stack operators to

n £ NßÞ p

.
3. Obtain a state map

� � �Pà Â á ¤ Û â � II � � nãåä p �

a, not necessarily minimal, latent var’ble state repr’ion for
.
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FROM LATENT VARIABLE to STATE REPRESENTATION

Consider the latent variable system

� � � �U � UV � YV $ � U W � �
	 � � �

with �
	 � � � XV � YV $ Y W

. Eliminate  � O� j� � �U � UV � � U W � j �
	 � � � . It is easy to deduce directly from the
state axiom that

� j� is a state system if

��� is.

Construction of a state representation for :

1.

£ � II � �  � � II � �Ø latent variable representation for .
2. Apply the cut-and-shift and stack operators to

n £ NßÞ p

.
3. Obtain a state map

� � �Pà Â á ¤ Û â � II � � nãåä p �

O a, not necessarily minimal, latent var’ble state repr’ion for .
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

Readily deduced from descriptor representation:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.
This complements the existing algorithms

transfer function i / s / o representation;
impulse response i / s / o representation.

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

Readily deduced from descriptor representation:
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Notes
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Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.m

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

Readily deduced from descriptor representation:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.m

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

i/s/o representation:BB � � � s � ? t D � E � u � ? D �  � � D � E � �

Readily deduced from descriptor representation:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.m

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

output nulling representation:BB � � � s � ? tæ � A � u � ?  �

Readily deduced from descriptor representation:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.m

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

driving variable representation:BB � � � s � ? tæç �  � u � ? ç �

Readily deduced from descriptor representation:
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Notes

Basic idea of algorithms:
from latent variable representation directly to state model.m

Gröbner basis techniques algorithms for state trimming.

Our state construction is easily extended to state / input
construction.

Examples of useful special (minimal) state representations:

Readily deduced from descriptor representation:

e BB � � ? > � ? f � A�
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BALANCED STATE CONSTRUCTION

THEME

!! Given a representation of a dynamical system,
find a representation of a reduced model !!

We are looking for algorithms:
parameters of model parameters of reduced model

For example,
model: transfer function

reduced model: balanced reduced model
Algorithm: ???
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BALANCED STATE CONSTRUCTION

THEME

!! Given a representation of a dynamical system,
find a representation of a reduced model !!

We are looking for algorithms:
parameters of model

è

parameters of reduced model

For example,
model: transfer function

reduced model: balanced reduced model
Algorithm: ???
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BALANCED STATE CONSTRUCTION

THEME

!! Given a representation of a dynamical system,
find a representation of a reduced model !!

We are looking for algorithms:
parameters of model

è

parameters of reduced model

For example,
model: discrete-time impulse response

reduced model: balanced reduced model
Algorithm: SVD of Hankel matrix.

For example,
model: transfer function

reduced model: balanced reduced model
Algorithm: ???
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BALANCED STATE CONSTRUCTION

THEME

!! Given a representation of a dynamical system,
find a representation of a reduced model !!

We are looking for algorithms:
parameters of model

è

parameters of reduced model

For example,
model: transfer function

reduced model: balanced reduced model
Algorithm: ???
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For simplicity, (today) only:
SISO systems & classical I/O balancing

System

relating the input to the output .

Behavior:

diff. eq’n holds
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For simplicity, (today) only:
SISO systems & classical I/O balancing

System

=� M � Ã � U no p � v�éê �é é � Ã � v éê �é é � M � � � k O

M � II � � E � Ã � II � � D �
relating the input D � U U

to the output E � U U

.

Behavior:

diff. eq’n holds
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For simplicity, (today) only:
SISO systems & classical I/O balancing

System

=� M � Ã � U no p � v�éê �é é � Ã � v éê �é é � M � � � k O

M � II � � E � Ã � II � � D �
relating the input D � U U

to the output E � U U

.

Behavior:

º Í§ Ï » � � � � D � E � � X �\[ Z� �U � U � � N

diff. eq’n holds

¢ �
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CONTROLLABILITY & OBSERVABILITY

Well-known: º Í§ Ï » is controllable iff M and Ã are co-prime.

Controllability image representation for :

diff. eq’n holds

is exactly equal to . Co-primeness of and

controllability of & observability of

observability means:
for every , unique
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CONTROLLABILITY & OBSERVABILITY

Well-known: º Í§ Ï » is controllable iff M and Ã are co-prime.

Controllability

m

image representation for º Í§ Ï » :

D � M � BB � �Ø � E � Ã � BB � �Ø �

ëíì º Í§ Ï » � � � � D � E � � î �\[ Z� �U � U � � N mØ � U U � diff. eq’n holds

¢

is exactly equal to º Í§ Ï » .

Co-primeness of and

controllability of & observability of

observability means:
for every , unique
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CONTROLLABILITY & OBSERVABILITY

Well-known: º Í§ Ï » is controllable iff M and Ã are co-prime.

Controllability

m

image representation for º Í§ Ï » :

D � M � BB � �Ø � E � Ã � BB � �Ø �

ëíì º Í§ Ï » � � � � D � E � � î �\[ Z� �U � U � � N mØ � U U � diff. eq’n holds

¢

is exactly equal to º Í§ Ï » . Co-primeness of M and Ã

controllability of º Í§ Ï » & observability of

ëíì º Í§ Ï »

observability means:
for every

� D � E � � ëíì º Í§ Ï » � º Í§ Ï » , m

unique

Ø �
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STATE POLYNOMIALS

Any set of polynomials

� � � � � � � � � � � � W ¢

that form a basis forU W ¤ � no p

a minimal state representation of º Í§ Ï » with state

� � � � � � BB � �Ø � � � � BB � �Ø � � � � � � W ¤ � � BB � �Ø � �

The associated system matrices are the (unique) solution matrix

of the following system of linear equations in :

...
...
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STATE POLYNOMIALS

Any set of polynomials

� � � � � � � � � � � � W ¢

that form a basis forU W ¤ � no p

a minimal state representation of º Í§ Ï » with state

� � � � � � BB � �Ø � � � � BB � �Ø � � � � � � W ¤ � � BB � �Ø � �

The associated system matrices are the (unique) solution matrix| �� � of the following system of linear equations in

U W no p

:

�
¸Ë¸Ì�

Îðï � º Î »Îðï $ º Î »
...Îðï � º Î »Ï º Î »

�
ÁËÁÌ� � s tu

�
¸Ë¸Ì�

ï � º Î »ï $ º Î »

...ï � º Î »Í º Î »
�

ÁËÁÌ� �
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BALANCING

In the context of the state construction through an image
representation, being balanced becomes a property of the
polynomials � � � � � � � � � � � W.
The central problem is:

Choose the polynomials � � � � � � � � � � � W so that this| �� �
is balanced.
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QDF’s

The real two-variable polynomial

ñ�ò � ó � � �õô § ô i ñô § ô i ò ô óô i
induces the map

 � R S �U � U � ´ �õô § ô i � BôB �ô  � ñô § ô i � Bô i
B �ô i  � � R S �U � U � �

called a a quadratic differential form (QDF), denoted as ö .
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THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as
QDF’s, acting on the latent variable

Ø

of the image representation.

The controllability gramian is defined as:

Let and define by

infimum over all that join the ‘fixed’ future at
, i.e., such that for .
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THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as
QDF’s, acting on the latent variable

Ø

of the image representation.

The controllability gramian ÷ is defined as:

Let

Ø � R S �U � U �

and define ÷ �Ø �
by

÷ �Ø � � A � � � w � ø x ùx �
¤ S N M � BB � �Ø j � � � N � B � �

infimum over all that join the ‘fixed’ future at
, i.e., such that for .
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THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as
QDF’s, acting on the latent variable

Ø

of the image representation.

The controllability gramian ÷ is defined as:

Let

Ø � R S �U � U �

and define ÷ �Ø �
by

÷ �Ø � � A � � � w � ø x ùx �
¤ S N M � BB � �Ø j � � � N � B � �

infimum over all

Ø j � ú Y �U � U �
that join the ‘fixed’ future

Ø

at� � A

, i.e., such that

Ø � � � � Ø j � � �
for

� A

.
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THE OBSERVABILITY GRAMIAN

The observability gramian û is defined as:

Let
and define by

where is such that

(i)

(ii)

(iii)

smoothly cont’s at with .
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THE OBSERVABILITY GRAMIAN

The observability gramian û is defined as: Let

Ø � R S �U � U �

and define û �Ø �

by

û �Ø � � A � � � S
� N Ã � BB � �Ø j � � � N � B � �

where

Ø j � �U � U �

is such that

(i)

ü ý �� þÿ � � * ü i ý �� þ ÿ � ��

(ii)

% Ä % ��& ' ü i� Ê % ��& ' ü i ' } � � ×ÿ Ý ��

(iii) Ä % ��& ' ü i % & ' ý � �ÿ þ � * É��

smoothly cont’s at with .
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THE OBSERVABILITY GRAMIAN

The observability gramian û is defined as: Let

Ø � R S �U � U �

and define û �Ø �

by

û �Ø � � A � � � S
� N Ã � BB � �Ø j � � � N � B � �

where

Ø j � �U � U �

is such that

(i)

ü ý �� þÿ � � * ü i ý �� þ ÿ � ��

(ii)

% Ä % ��& ' ü i� Ê % ��& ' ü i ' } � � ×ÿ Ý ��

(iii) Ä % ��& ' ü i % & ' ý � �ÿ þ � * É��

Ø j

smoothly cont’s
Ø

at

� � A
with D N º � § S » � M � II � �Ø j N º � § S » � A

.
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COMPUTATION of

�

and

Given º Í§ Ï » , M � Ã co-prime,

v éê �é é � Ã � v�éê �é é � M � � � k, M

Hurwitz.

with the (unique) solution of the Bezout-type
equation
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COMPUTATION of

�

and

Given º Í§ Ï » , M � Ã co-prime,

v éê �é é � Ã � v�éê �é é � M � � � k, M

Hurwitz.

The controllability gramian and the observability gramian are
QDF’s, ÷ and û , with � � U nò � ó p . They can be
computed as follows:

with the (unique) solution of the Bezout-type
equation
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COMPUTATION of

�

and

Given º Í§ Ï » , M � Ã co-prime,

v éê �é é � Ã � v�éê �é é � M � � � k, M

Hurwitz.

�ò � ó � � M �ò � M � ó �Þ M �Þ ò � M �Þ ó �ò ? ó

with the (unique) solution of the Bezout-type
equation
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COMPUTATION of

�

and

Given º Í§ Ï » , M � Ã co-prime,

v éê �é é � Ã � v�éê �é é � M � � � k, M

Hurwitz.

�ò � ó � � M �ò � M � ó �Þ M �Þ ò � M �Þ ó �ò ? ó

�ò � ó � � M �ò � C � ó � ? C �ò � M � ó �Þ Ã �ò � Ã � ó �ò ? ó

with

C � U W ¤ � no p
the (unique) solution of the Bezout-type

equation

M � o � C �Þ o � ? C � o � M �Þ o �Þ Ã � o � Ã �Þ o � � A�
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BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

� � � � � � � � � � � � W � is
balanced if

(i) for such that ( : Kronecker delta):

states that are difficult to reach are also difficult to observe.
(ii) The state components are ordered so that ‘easiest to reach first’:

and hence ‘easiest to observe’ first:
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BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

� � � � � � � � � � � � W � is
balanced if
(i) for

Ø ô such that �ô i � II � �Ø ô � A � � �ô ô i ( �ô ô i : Kronecker delta):

÷ �Ø ô � � A � � @
û �Ø ô � � A �

states that are difficult to reach are also difficult to observe.

(ii) The state components are ordered so that ‘easiest to reach first’:

and hence ‘easiest to observe’ first:
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BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

� � � � � � � � � � � � W � is
balanced if
(i) for

Ø ô such that �ô i � II � �Ø ô � A � � �ô ô i ( �ô ô i : Kronecker delta):

÷ �Ø ô � � A � � @
û �Ø ô � � A �

states that are difficult to reach are also difficult to observe.
(ii) The state components are ordered so that ‘easiest to reach first’:

A � ÷ �Ø � � � A � ÷ �Ø � � � A � ± ± ± ÷ �Ø W � � A � �

and hence ‘easiest to observe’ first:

û �Ø � � � A � û �Ø � � � A � ± ± ± û �Ø W � � A � � A�
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It is a standard result from linear algebra that there exist
polynomials

� � 	�
 �� � � 	
 �� � � � � � � 	
 �W �

that form a basis for
U W ¤ � no p

,
and real numbers © � © � ± ± ± © W � A

such that and
are factored as

�ò � ó � � � W��� � © ¤ �ô � 	�
 �ô �ò � � 	�
 �ô � ó �

�ò � ó � � � Wô � � © ô � 	
 �ô �ò � � 	
 �ô � ó �

The ’s are uniquely defined by and , the ’s ‘almost’.
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It is a standard result from linear algebra that there exist
polynomials

� � 	�
 �� � � 	
 �� �� � � � � 	
 �W �

that form a basis for
U W ¤ � no p

,
and real numbers © � © � ± ± ± © W � A

such that and
are factored as

�ò � ó � � � W��� � © ¤ �ô � 	�
 �ô �ò � � 	�
 �ô � ó �

�ò � ó � � � Wô � � © ô � 	
 �ô �ò � � 	
 �ô � ó �

The © ô ’s are uniquely defined by and , the � 	
 �ô ’s ‘almost’.
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THEOREM: These © ô ’s are the Hankel singular values of º Í§ Ï »
and �� Ä � ��� � ü� � � Ê � ��� � ü�

 !#" $ � �  ! " $&% � ��� � ü�  ! " $&' � ��� � ü� � � � �  ! " $� � ��� � ü �

is a balanced state space representation of º Í§ Ï » .

The balanced system matrices: sol’n of the following linear
equations in :

...
...
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THEOREM: These © ô ’s are the Hankel singular values of º Í§ Ï »
and �� Ä � ��� � ü� � � Ê � ��� � ü�

 !#" $ � �  ! " $&% � ��� � ü�  ! " $&' � ��� � ü� � � � �  ! " $� � ��� � ü �

is a balanced state space representation of º Í§ Ï » .
The balanced system matrices: sol’n of the following linear
equations in

U W no p

:

�
¸Ë¸�

Îðï ! " $(% º Î »Îðï ! " $)' º Î »
...Îðï ! " $� º Î »Ï º Î »

�
ÁËÁ� � s 	
 � t 	
 �

u 	�
 � 	�
 �
�

¸Ë¸�
ï !#" $ % º Î »ï !#" $ ' º Î »

...ï !#" $� º Î »Í º Î »
�

ÁËÁ� �
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ALGORITHM

DATA: * � Ã + , -. / � co-prime,

v�éê �é é � Ã � v éê �é é � * � � � 0,* Hurwitz.

COMPUTE:

1. ,

2. and ,

3. and

4. the balanced system matrices

OUTPUT: a balanced state representation of .

STATE CONSTRUCTION – p.54/71



ALGORITHM

DATA: * � 1 + , -. / �

COMPUTE:

1. ,

2. and ,

3. and

4. the balanced system matrices

OUTPUT: a balanced state representation of .
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ALGORITHM

DATA: * � 1 + , -. / �

COMPUTE:

1.

+ , -2 � 3 / ,

� 2 � 3 � � * � 2 � * � 3 � 4 * � 4 2 � * � 4 3 �2 5 3

2. and ,

3. and

4. the balanced system matrices

OUTPUT: a balanced state representation of .
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ALGORITHM

DATA: * � 1 + , -. / �

COMPUTE:

1.

+ , -2 � 3 / ,
2.

6 + ,87#9 � -. /

and

+ , -2 � 3 / ,

� 2 � 3 � � * � 2 � 6 � 3 � 5 6 � 2 � * � 3 � 4 1 � 2 � 1 � 3 �2 5 3

* � . � 6 � 4 . � 5 6 � . � * � 4 . � 4 1 � . � 1 � 4 . � � :�

3. and

4. the balanced system matrices

OUTPUT: a balanced state representation of .
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ALGORITHM

DATA: * � 1 + , -. / �

COMPUTE:

1.

+ , -2 � 3 / ,
2.

6 + ,87#9 � -. /

and

+ , -2 � 3 / ,
3.

� � ;�< �� � � ;< �� � � � � � � ;< �7 �

and = � = � > > > = 7 ? :

by
the expansions:

� 2 � 3 � � � 7 ��@ � =9 �A � ;�< �A � 2 � � ;�< �A � 3 � �

� 2 � 3 � � � 7 A@ � = A � ;< �A � 2 � � ;< �A � 3 � �

4. the balanced system matrices

OUTPUT: a balanced state representation of .
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ALGORITHM

DATA: * � 1 + , -. / �

COMPUTE:

1.

+ , -2 � 3 / ,
2.

6 + ,87#9 � -. /

and

+ , -2 � 3 / ,
3.

� � ;�< �� � � ;< �� � � � � � � ;< �7 �

and = � = � > > > = 7 ? :

4. the balanced system matrices
BDC ! " $FE ! " $G ! " $FH ! " $ I

by solving

J
KLKM

NPO ! " $(% Q N RNPO ! " $)' Q N R
...NPO ! " $TS Q N RU Q N R

V
WLWX Y Z ;< [ \ ;�< [

] ;< [ ;< [
J

KLKM
O ^#_ `(a Q N RO ^#_ `)b Q N R

...O ^#_ `TS Q N Rc Q N R
V

WLWX d

OUTPUT: a balanced state representation of .
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ALGORITHM

DATA: *fe 1 + , -. / e

COMPUTE:

1.

+ , -2 e 3 / ,
2.

6 + ,87#9 g -. /

and

+ , -2 e 3 / ,
3.

hji ;�< [g e i ;< [k e d d d e i ;< [7 l

and = g = k > > > = 7 ? :

4. the balanced system matrices
BDC ^#_ `FE ^#_ `G ^#_ `FH ^#_ ` I

OUTPUT: a balanced state representation of Q cnm U R .
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REMARKS

1. Model reduction by balanced truncation follows.

2. These algorithms open up the possibility to involve ‘fast’
polynomial computations in order to obtain a balanced
representation.

3. The reduction algorithms solve linear equations in
‘approximately’.

Suggests other (say, least squares) methods than simple
truncation.
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REMARKS

1. Model reduction by balanced truncation follows.

2. These algorithms open up the possibility to involve ‘fast’
polynomial computations in order to obtain a balanced
representation.

3. The reduction algorithms solve linear equations in

, 79 g -. /

‘approximately’.

Suggests other (say, least squares) methods than simple
truncation.
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4. Instead of computing the = A’s and the i ;< [A ’s by the factorization
of e , we can also proceed by evaluating and at 0
distinct points

There holds

This implies that and can be computed directly from

Once is known, the matrices of the balanced state

representation is readily computed.
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4. Instead of computing the = A’s and the i ;< [A ’s by the factorization
of e , we can also proceed by evaluating and at 0
distinct points

Define o Y p qsr t hu g e u ke > > > e u 7 l

v Y B hu w Ae u Ax l I Ax@ g my y y m 7A@ g m y y y m 7 v Y B hu w Ae u Ax l I Ax@ g m y y y m 7A@ g my y y m 7

v Y Bi ;< [A hu Ax l I Ax@ g my y y m 7A@ g my y y m 7z Y p qsr t h = g e = ke d d d e = 7 l

There holds

This implies that and can be computed directly from

Once is known, the matrices of the balanced state

representation is readily computed.
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4. Instead of computing the = A’s and the i ;< [A ’s by the factorization
of e , we can also proceed by evaluating and at 0
distinct points

There holds

v Y w v z9 g v e v Y w v z v d

This implies that v and

z
can be computed directly fromv e v d

Once is known, the matrices of the balanced state

representation is readily computed.
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4. Instead of computing the = A’s and the i ;< [A ’s by the factorization
of e , we can also proceed by evaluating and at 0
distinct points

There holds

v Y w v z9 g v e v Y w v z v d

This implies that v and

z
can be computed directly fromv e v d

Once v is known, the matrices of the balanced state

representation

{}| ^#_ `�~ ^#_ `� ^_ `�� ^#_ ` � is readily computed.
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v follows immediately from evaluation of � at the

u A’s.

Unfortunately, in order to compute we have to solve for .
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v follows immediately from evaluation of � at the

u A’s.

Unfortunately, in order to compute v we have to solve for

6

.
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However, if we take for the

u A’s the roots of �, assumed distinct,
then

6

is not needed,
and a very explicit expression for both and is obtained.

In this case,

Balancing and model reduction: the pencil
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However, if we take for the

u A’s the roots of �, assumed distinct,
then

6

is not needed,
and a very explicit expression for both and is obtained.
In this case,

v Y 4 B c Q9 � ��� R c Q9 � � x R� ��� � � � x I Ax@ g my y y m 7A@ g m y y y m 7

v Y 4 B U Q � ��� R U Q � � x R� ��� � � � x I Ax@ g m y y y m 7A@ g my y y m 7

Balancing and model reduction: the pencil
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However, if we take for the

u A’s the roots of �, assumed distinct,
then

6

is not needed,
and a very explicit expression for both and is obtained.
In this case,

v Y 4 B c Q9 � ��� R c Q9 � � x R� ��� � � � x I Ax@ g my y y m 7A@ g m y y y m 7

v Y 4 B U Q � ��� R U Q � � x R� ��� � � � x I Ax@ g m y y y m 7A@ g my y y m 7

Balancing and model reduction: � the pencil

B c Q9 � ��� R c Q9 � � x R� ��� � � � x I Ax@ g my y y m 7A@ g m y y y m 7 � B U Q � ��� R U Q � � x R� ��� � � � x I Ax@ g my y y m 7A@ g my y y m 7
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5. Heuristic: evaluate e at less than � points, obtain reduced
model.

6. Suggests algorithms to fit the reduced order transfer function
with the original transfer function at privileged points of the
complex plane.
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5. Heuristic: evaluate e at less than � points, obtain reduced
model.

6. Suggests algorithms to fit the reduced order transfer function
with the original transfer function at privileged points of the
complex plane.
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FROM TIME SERIES to LINEAR SYSTEM

Problem of system identification:
Given an observed vector time-series (the ‘data’)

find a model for the system which produced this time-series.

Usual approach:

Assume an input/output partition: and assume the data

produced by a stochastic system

with pol. matr., and something like gaussian, i.i.d.
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FROM TIME SERIES to LINEAR SYSTEM

Problem of system identification:
Given an observed vector time-series (the ‘data’)

��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e
find a model for the system which produced this time-series.

Usual approach:

Assume an input/output partition: and assume the data

produced by a stochastic system

with pol. matr., and something like gaussian, i.i.d.
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FROM TIME SERIES to LINEAR SYSTEM

Problem of system identification:
Given an observed vector time-series (the ‘data’)

��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e
find a model for the system which produced this time-series.

Usual approach:

Assume an input/output partition: � Y �
� e and assume the data

produced by a stochastic system� h = l � Y h = l � 5 h = l��

with

�e e pol. matr., and � something like gaussian, i.i.d.
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! Estimate � ���¡  m ¢ e � �¡  m ¢ e � �   m ¢
from the data, and prove consistency

h � � �¡  m ¢ e � �   m ¢ e � �   m ¢ l 4 £¤¥ h �e e l

and other good features of the estimates.

‘Consistency paradigm’: If the data is produced by an element of
the model class, then the algorithm should recover the model.

Algorithms should work well for simulated data!
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! Estimate � ���¡  m ¢ e � �¡  m ¢ e � �   m ¢
from the data, and prove consistency

h � � �¡  m ¢ e � �   m ¢ e � �   m ¢ l 4 £¤¥ h �e e l

and other good features of the estimates.

‘Consistency paradigm’: If the data is produced by an element of
the model class, then the algorithm should recover the model.

Algorithms should work well for simulated data!
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Our approach:

1. Exact modeling

2. Approximate modeling

3. Stochastic modeling

4. Approximate stochastic modeling
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Our approach:

1. Exact modeling

2. Approximate modeling

3. Stochastic modeling

4. Approximate stochastic modeling
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Assume an infinite ‘observed’ time-series� � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Call unfalsified by if .

Call more powerful than if .

Call the most powerful unfalsified model (MPUM) if

(i) , and
(ii)
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Assume an infinite ‘observed’ time-series� � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

ª ©s« Y set of discrete-time

h¬ Y  l
linear difference systems.

Call unfalsified by if .

Call more powerful than if .

Call the most powerful unfalsified model (MPUM) if

(i) , and
(ii)
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Assume an infinite ‘observed’ time-series� � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Call

¦ ª ©

unfalsified by

��� if

��� ¦ .

Call more powerful than if .

Call the most powerful unfalsified model (MPUM) if

(i) , and
(ii)
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Assume an infinite ‘observed’ time-series� � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Call

¦ ª ©

unfalsified by

��� if

��� ¦ .

Call g¦ ª ©

more powerful than k¦ ª ©
if g ® k.

The more a model forbids, the better it is! (cfr Popper)

Call the most powerful unfalsified model (MPUM) if

(i) , and
(ii)
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Assume an infinite ‘observed’ time-series� � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Call

¦ ª ©

unfalsified by

��� if

��� ¦ .

Call g¦ ª ©

more powerful than k¦ ª ©
if g ® k.

Call

¯�   ¦ ª ©

the most powerful unfalsified model (MPUM) if

(i)

��� ¦ ¯�   , and
(ii)

��� ¦ ¦ ª © ® ¯�  
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Proposition:

¯�   exists

° °

Easily generalized to a family of observed time-series.
There exists many algorithms to pass (recursively) from to .
These algorithms generalize the Hankel matrix algorithms (impulse
response measurements) in a very meaningful way.
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Proposition:

¯�   exists

° °
Easily generalized to a family of observed time-series.

There exists many algorithms to pass (recursively) from to .
These algorithms generalize the Hankel matrix algorithms (impulse
response measurements) in a very meaningful way.
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SUBSPACE IDENTIFICATION

Construct first the underlying state sequence produced by
��� in¯�   and compute

| ~� � from there!

There exist beautiful algorithms due to De Moor, Van Overschee,
Picci, Katayama, Chiuso, that do this (in the stochastic framework).

I will explain the idea in a deterministic setting.
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SUBSPACE IDENTIFICATION

Construct first the underlying state sequence produced by
��� in¯�   and compute

| ~� � from there!

There exist beautiful algorithms due to De Moor, Van Overschee,
Picci, Katayama, Chiuso, that do this (in the stochastic framework).

I will explain the idea in a deterministic setting.
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Data: ��� Y h > > > e �� h�� l e �� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.
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Data: ��� Y h > > > e �� h�� l e �� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Form the Hankel matrix of the data:

�   « Y
J

KLK±KLKLKLKLK²M
� � � ...
...

... � � � ... � � �� � � �   Q g R �   Q kR �   Q³ R � � � �   Q ¢ x x R � � �� � � �   Q kR �   Q³ R �   Q´ R � � � �   Q ¢ x x � g R � � �� � � �   Q³ R �   Q´ R �   Qµ R � � � �   Q ¢ x x � kR � � �

� � � ...
...

... � � � ... � � �� � � �   Q ¢ x R �   Q ¢ x � g R �   Q ¢ x � kR � � � �   Q ¢ x � ¢ x x9 g R � � �

� � � ...
...

... � � � ... � � �
V

WLW±WLWLWLWLW²X
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Data: ��� Y h > > > e �� h�� l e �� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Split into ‘past’ and ‘future’:

�   « Y
J

K±KLKLKLK²M
� � � ...

...
... � � � ...

... � � �� � � �   Q9 ¢ x R � � � �   Q¶ R �   Q g R � � � �   Q ¢ x x R � � �

� � � �   Q9 ¢ x � g R � � � �   Q g R �   Q kR � � � �   Q ¢ x x � g R � � �

� � � ...
...

... � � � ...
... � � �

V
W±WLWLWLW²X
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Data: ��� Y h > > > e �� h�� l e �� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Split into ‘past’ and ‘future’:

�   « Y
J

K±KLKLKLK²M
� � � ...

...
... � � � ...

... � � �� � � �   Q9 ¢ x R � � � �   Q¶ R �   Q g R � � � �   Q ¢ x x R � � �

� � � �   Q9 ¢ x � g R � � � �   Q g R �   Q kR � � � �   Q ¢ x x � g R � � �

� � � ...
...

... � � � ...
... � � �

V
W±WLWLWLW²X
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Data: ��� Y h > > > e �� h�� l e �� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Take the intersection of the row span of the ‘past’ and the ‘future’:

�   « Y
J

KLKLKLK±KLKLKLK²M
� � � ...

...
... � � � ...

... � � �� � � �   Q9 ¢ x R � � � �   Q¶ R �   Q g R � � � �   Q ¢ x x R � � �

� � � �O Q9 ¢ x R � � � �O Q¶ R �O Q g R � � � �O Q ¢ x x R � � �

� � � �   Q9 ¢ x � g R � � � �   Q g R �   Q kR � � � �   Q ¢ x x � g R � � �

� � � ...
...

... � � � ...
... � � �

V
WLWLWLW±WLWLWLW²X
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Data: � � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Form the Hankel matrix of the data:

...
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .
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Data: � � Y h ��� h�� l e ��� h�� l e � � h�� l e > > > e � � h�� l e > > > l

�� h�� l§¦ ¨©

.

Form the Hankel matrix of the data:

�   « Y
J

K±KLKLKLK²M
�   Q g R �   Q kR �   Q³ R � � � �   Q ¢ x x R � � ��   Q kR �   Q³ R �   Q´ R � � � �   Q ¢ x x � g R � � ��   Q³ R �   Q´ R �   Qµ R � � � �   Q ¢ x x � kR � � �

...
...

...
. . .

...
. . .�   Q ¢ x R �   Q ¢ x � g R �   Q ¢ x � kR � � � �   Q ¢ x � ¢ x x9 g R � � �

...
...

...
. . .

...
. . .

V
W±WLWLWLW²X
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Examine the rank of truncated Hankel matrices

¢ x m ·�   « Y
J

KLK²M
�   Q g R �   Q kR �   Q³ R¹¸ ¸ ¸ �   Q ¢ x x R ¸ ¸ ¸�   Q kR �   Q³ R �   Q´ R¹¸ ¸ ¸ �   Q ¢ x x � g R ¸ ¸ ¸�   Q³ R �   Q´ R �   Qµ R¹¸ ¸ ¸ �   Q ¢ x x � kR ¸ ¸ ¸

...
...

...
. . .

...
. . .�   Q ¢ x R �   Q ¢ x � g R �   Q ¢ x � kR¸ ¸ ¸ �   Q ¢ x � ¢ x x9 g R¸ ¸ ¸

V
WLW²X

for

� º Y � e � e > > > and determine a

� º Y »
until the ’permanent’

rank increase by adding more block rows is stabilized.

The permanent rank increase = the number of input var. in .
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Examine the rank of truncated Hankel matrices

¢ x m ·�   « Y
J

KLK²M
�   Q g R �   Q kR �   Q³ R¹¸ ¸ ¸ �   Q ¢ x x R ¸ ¸ ¸�   Q kR �   Q³ R �   Q´ R¹¸ ¸ ¸ �   Q ¢ x x � g R ¸ ¸ ¸�   Q³ R �   Q´ R �   Qµ R¹¸ ¸ ¸ �   Q ¢ x x � kR ¸ ¸ ¸

...
...

...
. . .

...
. . .�   Q ¢ x R �   Q ¢ x � g R �   Q ¢ x � kR¸ ¸ ¸ �   Q ¢ x � ¢ x x9 g R¸ ¸ ¸

V
WLW²X

for

� º Y � e � e > > > and determine a

� º Y »
until the ’permanent’

rank increase by adding more block rows is stabilized.

The permanent rank increase = the number of input var. in

¯�   .
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Determine vectors ¼ g ¦ ¨7 aw © e ¼ k¦ ¨7 bw © e > > > e ¼¾½ ¦ ¨7À¿ w ©
such that the vectors obtained by padding them with a multiple

(possibly zero) of Á zeros, form a left nullspace of
Â m ·�   .

A typical such vector looks likeÃ¶¸ ¸ ¸ ¶§Ä � ¶¸ ¸ ¸ ¶ Å d

Now pad with a multiple of zeros before. A typical such vector:

Let the first blocks act on , obtain the state sequence

Note: there is no need to examine an infinite number of rows.
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Determine vectors ¼ g ¦ ¨7 aw © e ¼ k¦ ¨7 bw © e > > > e ¼¾½ ¦ ¨7À¿ w ©
such that the vectors obtained by padding them with a multiple

(possibly zero) of Á zeros, form a left nullspace of
Â m ·�   .

A typical such vector looks likeÃ¶¸ ¸ ¸ ¶§Ä � ¶¸ ¸ ¸ ¶ Å d
Now pad with a multiple of Á zeros before. A typical such vector:Ã¶¸ ¸ ¸ ¶Ä � Å d

Let the first

»

blocks act on

Â m ·�   , obtain the state sequence

Ã�O Q Â R m �O Q Â � g R m �O Q Â � kR m¸ ¸ ¸ Å

Note: there is no need to examine an infinite number of rows.
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Determine vectors ¼ g ¦ ¨7 aw © e ¼ k¦ ¨7 bw © e > > > e ¼¾½ ¦ ¨7À¿ w ©
such that the vectors obtained by padding them with a multiple

(possibly zero) of Á zeros, form a left nullspace of
Â m ·�   .

A typical such vector looks likeÃ¶¸ ¸ ¸ ¶§Ä � ¶¸ ¸ ¸ ¶ Å d
Now pad with a multiple of Á zeros before. A typical such vector:Ã¶¸ ¸ ¸ ¶Ä � Å d

Let the first

»

blocks act on

Â m ·�   , obtain the state sequence

Ã�O Q Â R m �O Q Â � g R m �O Q Â � kR m¸ ¸ ¸ Å

Note: there is no need to examine an infinite number of rows.
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Now determine

Æ e Çe È

by computing a left nullspace
Ã9 ÉÊ Ë Å

of
the matrix �O Q Â � g R �O Q Â � kR �O Q Â �³ R¸ ¸ ¸�O Q Â R �O Q Â � g R �O Q Â � kR¸ ¸ ¸�   Q Â R �   Q Â � g R �   Q Â � kR¸ ¸ ¸

or by first partitioning into inputs and outputs,

and solving

for .
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Now determine

Æ e Çe È

by computing a left nullspace
Ã9 ÉÊ Ë Å

of
the matrix �O Q Â � g R �O Q Â � kR �O Q Â �³ R¸ ¸ ¸�O Q Â R �O Q Â � g R �O Q Â � kR¸ ¸ ¸�   Q Â R �   Q Â � g R �   Q Â � kR¸ ¸ ¸
or

| ~� � by first partitioning

� � Y Ì �¡Í �¡Î Ï
into inputs and outputs,

and solving

B �O Q Â � g R �O Q Â � kR¸ ¸ ¸�¡Î Q Â R �¡Î Q Â � g R¸ ¸ ¸ I Y Ì C E GH Ï B �O Q Â R �O Q Â � g R¸ ¸ ¸�Í Q Â R �Í Q Â � g R¸ ¸ ¸ I

for

Z e \ e ]e .
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The manuscript & copies of the lecture frames will be available
from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/ Ðjwillems

Thank you for your attention !
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