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General introduction
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SYSTEM ID

Observed data � System model

Case on interest: Data = a time-series record:
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SYSTEM ID

Observed data � System model

Case on interest: Data = a time-series record:

��� ��� �� �� ��	 ��
 
 
 � �� � � � ��� � 
 �

Required: an algorithm to obtain a dynamical system
that ‘explains’ this time-series.
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SYSTEM ID

Observed data � System model

Case on interest: Data = a time-series record:

��� ��� �� �� ��	 ��
 
 
 � �� � � � ��� � 
 �

In the theory, the case

� � and (bi-)infinite data records��� ��� ��� �� ��� ���� � � � ��� ��� ��� � � �

� � � � ��� � � � ��� � � � � �� ��! ��� �� ��� ��� ��� ��� ��� � � � � �� ��� ��� � � �

play an important role.
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SYSTEM ID

Observed data � System model

Difficulties to cope with:

‘blackbox’ data

unmeasured inputs ‘latency’

any element of the model class fits the data
only approximately ‘misfit’

measurement ‘errors’

danger of ‘overfitting’
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ARMAX SYSTEM ID

Usual approach: Data = an input/output record"# $&% '( )$&* '( )
+,- "# $&% '. )$&* '. )
+,-/ / / - "# $&% '0 )$&* '0 ) +, ��1 ��� �32 4 5� ��6 ��� �2 4 7

System model = an ‘ARMAX’ model

‘noise’

suitably sized polynomial matrices.

stationary ergodic gaussian, white, independent of .

ID Algorithm:

(or another repr. of the ARMAX model)

Quality of the ID algorithm:

Assume that the data has been generated by an element of the

model class; then require asymptotic convergence to the ‘true

system’, for (consistency, efficiency, etc.)
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ARMAX SYSTEM ID

Usual approach: Data = an input/output record"# $&% '( )$&* '( )
+,- "# $&% '. )$&* '. )
+,-/ / / - "# $&% '0 )$&* '0 ) +, ��1 ��� �32 4 5� ��6 ��� �2 4 7

System model = an ‘ARMAX’ model8 9 ‘shift’,

�8 : � ��� �<; 9 : ��� = � �

> �8 � 6 = �8 � 1 9 �8 ��? ? 9 ‘noise’>� � 2 4@ A @ BC D � suitably sized polynomial matrices.1 � ? stationary ergodic gaussian, ? white, independent of 1 .

ID Algorithm:

(or another repr. of the ARMAX model)

Quality of the ID algorithm:

Assume that the data has been generated by an element of the

model class; then require asymptotic convergence to the ‘true

system’, for (consistency, efficiency, etc.)
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ARMAX SYSTEM ID

System model = an ‘ARMAX’ model> �8 � 6 = �8 � 1 9 �8 ��? ? 9 ‘noise’>� � 2 4@ A @ BC D � suitably sized polynomial matrices.1 � ? stationary ergodic gaussian, ? white, independent of 1 .

�8 ��? : lack of fit, prevents predictability of 6 from 1 , etc.

Note subtle non-uniqueness of the ARMAX representation.

ID Algorithm:

(or another repr. of the ARMAX model)

Quality of the ID algorithm:

Assume that the data has been generated by an element of the

model class; then require asymptotic convergence to the ‘true

system’, for (consistency, efficiency, etc.)
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ARMAX SYSTEM ID

System model = an ‘ARMAX’ model> �8 � 6 = �8 � 1 9 �8 ��? ? 9 ‘noise’

Well-known: ARMAX systems are those that allow finite

dimensional state representations

8 E 9 F E = G 1 = H? � 6 9 I E = 1 = J?

ID Algorithm:

(or another repr. of the ARMAX model)

Quality of the ID algorithm:

Assume that the data has been generated by an element of the

model class; then require asymptotic convergence to the ‘true

system’, for (consistency, efficiency, etc.)
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ARMAX SYSTEM ID

System model = an ‘ARMAX’ model> �8 � 6 = �8 � 1 9 �8 ��? ? 9 ‘noise’

ID Algorithm:

� ��1 � ��6 � K � L >� L � L �

(or another repr. of the ARMAX model)

Quality of the ID algorithm:

Assume that the data has been generated by an element of the

model class; then require asymptotic convergence to the ‘true

system’, for
� � (consistency, efficiency, etc.)
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CENTRAL PARADIGM

Test the proposed algorithm assuming that the data has been

generated by a model from a given (ARMAX) model class. The

algorithm should perform well in this ‘test case’. In other words,

ID algorithms should perform well with simulated data

Same sort of justification for Kalman filtering, LQ-, LQG-,

-control, adaptive control, etc.: We want that our algorithm

works well under certain ‘ideal’ circumstances.

Stochasticity can thus in good conscience be interpreted as

relative frequency.
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CENTRAL PARADIGM

Test the proposed algorithm assuming that the data has been

generated by a model from a given (ARMAX) model class. The

algorithm should perform well in this ‘test case’. In other words,

ID algorithms should perform well with simulated data

There is no need to refer to the ‘real’ or ‘true’ system.

As a(n approximate) description of reality, the stochastic

assumptions about 1 � ? are indeed rather tenuous!

Same sort of justification for Kalman filtering, LQ-, LQG-,

-control, adaptive control, etc.: We want that our algorithm

works well under certain ‘ideal’ circumstances.

Stochasticity can thus in good conscience be interpreted as

relative frequency.
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CENTRAL PARADIGM

Test the proposed algorithm assuming that the data has been

generated by a model from a given (ARMAX) model class. The

algorithm should perform well in this ‘test case’. In other words,

ID algorithms should perform well with simulated data

Same sort of justification for Kalman filtering, LQ-, LQG-,M -control, adaptive control, etc.: We want that our algorithm

works well under certain ‘ideal’ circumstances.

Stochasticity can thus in good conscience be interpreted as

relative frequency.
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Is the CENTRAL PARADIGM reasonable?

ID algorithms should perform well with simulated data

What does ‘perform well’ mean?

What ‘simulated data’ should one test the
algorithm for?

Approximation deserves a much more central place in system ID.

It (data produced by high order, nonlinear, time-varying system)

seems much more the core problem in system ID than protection

against unmeasured stochastic inputs or measurement ‘errors’.
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Is the CENTRAL PARADIGM reasonable?

ID algorithms should perform well with simulated data

What does ‘perform well’ mean?

What ‘simulated data’ should one test the
algorithm for?

The ARMAX model class, with stochastic inputs and disturbances

is a very broad model class, but it puts ‘stochasticity’ very central.

Approximation deserves a much more central place in system ID.

It (data produced by high order, nonlinear, time-varying system)

seems much more the core problem in system ID than protection

against unmeasured stochastic inputs or measurement ‘errors’.
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Is the CENTRAL PARADIGM reasonable?

ID algorithms should perform well with simulated data

What does ‘perform well’ mean?

What ‘simulated data’ should one test the
algorithm for?

Approximation deserves a much more central place in system ID.

It (data produced by high order, nonlinear, time-varying system)

seems much more the core problem in system ID than protection

against unmeasured stochastic inputs or measurement ‘errors’.
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The behavior of ARMAX systems
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The behavior of an ARMAX system

When does the stochastic process� 1 � 6 �; N 4 5PO 4 7
belong to the behavior of the ARMAX system

> �8 � 6 = �8 � 1 9 �8 ��? ?

There is an underlying shift-invariant Hilbert space of

time-series to which the components of all the signals

are assumed to belong.

Examples:

jointly stationary ergodic gaussian stochastic processes

almost periodic sequences

– p.9/28



The behavior of an ARMAX system

When does the stochastic process� 1 � 6 �; N 4 5PO 4 7
belong to the behavior of the ARMAX system

> �8 � 6 = �8 � 1 9 �8 ��? ?; � 1 � 6 � is zero mean, stationary, gaussian, and there exist a

stationary gaussian white noise process ? , independent of 1 such

that

> �8 � 6 = �8 � 1 9 �8 ��? , a.s.

Cfr. the work of Picci, Lindquist, (and co-workers), Deistler, Ljung,

e.a.

There is an underlying shift-invariant Hilbert space of

time-series to which the components of all the signals

are assumed to belong.

Examples:

jointly stationary ergodic gaussian stochastic processes

almost periodic sequences
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The behavior of an ARMAX system

Deterministic language

When does the time-series� 1 � 6 �; N 4 5PO 4 7

belong to the behavior of the ARMAX system

> �8 � 6 = �8 � 1 9 �8 ��? ?

There is an underlying shift-invariant Hilbert space of

time-series to which the components of all the signals

are assumed to belong.

Examples:

jointly stationary ergodic gaussian stochastic processes

almost periodic sequences
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The behavior of an ARMAX system

There is an underlying shift-invariant Hilbert space of

time-series

:; N 4

to which the components of all the signals

are assumed to belong.

Q :� R S 9 Q 8 :� 8 R S

Examples:

jointly stationary ergodic gaussian stochastic processes

almost periodic sequences
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The behavior of an ARMAX system

There is an underlying shift-invariant Hilbert space of

time-series

:; N 4

to which the components of all the signals

are assumed to belong.

Q :� R S 9 Q 8 :� 8 R S

Examples:

jointly stationary ergodic gaussian stochastic processes

T TU T T . V W T TU XY Z T T . V [ \^]0 _ M `abc `
0

dfeg 0 T TU X Y Z T T .

h.
almost periodic sequences
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The behavior of an ARMAX system

� 1 � 6 �; N 4 5PO 4 7
belongs to the behavior of the ARMAX system

� >� � �

, i.e.> �8 � 6 = �8 � 1 9 �8 ��? ;

1. its components

2
2. there exists ? ; N 4i

with

(a) components

2
(b) the8 d? ’s are orthonormal,

� 2 N

(c) the8 d? ’s are

j

to the8 d 1 ’s,

� 2 N

such that

> �8 � 6 = �8 � 1 9 �8 ��?
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The notion of an input

�lk �nm �lk �no p � k �rq
Call o free if o 
 s

,

t m 
 u
such that�o � m � 


.

Maximally free v no further free components in m .

Maximally free = ‘input’. Then m = ‘output’.

o is input square and

w�x y � � p z
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The behavior of an ARMA system

An ARMA system is an ARMAX system that has only outputs.

Analog of ‘autonomous’ system. 6; N 4 7
belongs to the

behavior of the ARMA system

� >� �
, i.e.> �8 � 6 9 �8 ��? � {�| } � > �~ 9 ! ;

1. its components

2
2. there exists ? ; N 4i

with

(a) components
2

(b) the8 d�� ’s are orthonormal,

� 2 N

such that
> �8 � 6 9 �8 ��?

To avoid difficulties yet to be dealt with in the proofs, assume throughout

that

�� � �� � � �
is left prime and that

��� � ' � )

has no roots on the unit circle.

The behavior of an ARMA system consists of the that

have the same autocorrelation function with

etc., etc.
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The behavior of an ARMA system

An ARMA system is an ARMAX system that has only outputs.

Analog of ‘autonomous’ system.> �8 � 6 9 �8 ��? � { | } � > �~ 9 !

The behavior of an ARMA system consists of the 62 7

that

have the same autocorrelation function � * *; N 4 7 A 7

with

� * * ��� � ; 9 Q 8 d 6� 6 S�

etc., etc.
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The behavior of an MA system

An MA system is a special ARMA system. 6; N 4 7
belongs

to the behavior of the MA system , i.e.

6 9 �8 ��? � ;
1. its components

2

2. there exists ? ; N 4i
with

(a) components

2
(b) the8 d�� ’s are orthonormal,

� 2 N

such that 6 9 �8 ��?

The behavior of an MA system consists of the that have

the same compact support autocorrelation function

with

etc., etc.
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The behavior of an MA system

An MA system is a special ARMA system.

6 9 �8 ��? �
The behavior of an MA system consists of the 62 7

that have

the same compact support autocorrelation function� *; N 4 7 A 7

with

� * ��� �<; 9 Q 8 d 6� 6 S�

etc., etc.
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The model class

What subsets of

s � u

are representable as a
ARMAX, ARMA, MA system?

Denote the family of these subsets as�� � �� � �� � �� � � .
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The model class

What subsets of

s � u

are representable as a
ARMAX, ARMA, MA system?

Denote the family of these subsets as�� � �� � �� � �� � � .
If


 �� � �� � �� � �� � �� what are all its
representations

� � � �� � � � � ?
an equivalence relation on tuples of polynomial

matrices
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The model class

Identifiability

Given

�o � m � 


, are there simple conditions (say
on the o ) such that there is only one element in�� � �� that contains this

�o � m �
?

persistency of excitation
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The model class

Identification problem

Give an algorithm

� �o � �m � � � � � � � � � �p �


estimate, finite data records, consistency, etc.
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The structure of ARMAX systems
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The module of orthogonalisers

Consider� >� � � K 2 �l�� � �� � >
square,

{ | } � > �~ 9 ! .

Define the following set of polynomial vectors

��� ; 9 �<� 2 4 5 � 7 BC � C g ( D� � � �8 � B *% D j8 d 1

for all

� 2 N
and for all

� 1 � 6 �2 �

and ’s ’s

the transposes of the rows of .

But, these do not always form a set of generators.

Proposition:

Let

with square and non-singular, and left prime.

The transposes of the rows of form a (minimal) set of

generators of the module .

unique up to unimodular

This submodule the part of the ARMAX system

– p.15/28



The module of orthogonalisers

Define the following set of polynomial vectors

��� ; 9 �<� 2 4 5 � 7 BC � C g ( D� � � �8 � B *% D j8 d 1

for all

� 2 N
and for all

� 1 � 6 �2 �

Easy:

� � submodule of
4 5 � 7 BC � C g ( D

viewed as a module over4 BC � C g ( D

. Hence finitely generated.

FAQ: What is
� � in terms of the ARMAX matrices

� >� � �

?

and ’s ’s

the transposes of the rows of .

But, these do not always form a set of generators.

Proposition:

Let

with square and non-singular, and left prime.

The transposes of the rows of form a (minimal) set of

generators of the module .

unique up to unimodular

This submodule the part of the ARMAX system
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The module of orthogonalisers

�l� ; 9 � � 2 4 5 � 7 BC � C g ( D � � � �8 � 8 g ( � B *% D j8 d 1 �

 9 > �8 � 6 = �8 � 1 9 �8 ��? and8 d? ’s

j8 d¡ 1 ’s
the transposes of the rows of

B > D 2 � � .

But, these do not always form a set of generators.

Proposition:

Let

with square and non-singular, and left prime.

The transposes of the rows of form a (minimal) set of

generators of the module .

unique up to unimodular

This submodule the part of the ARMAX system
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The module of orthogonalisers

�l� ; 9 � � 2 4 5 � 7 BC � C g ( D � � � �8 � 8 g ( � B *% D j8 d 1 �

 9 > �8 � 6 = �8 � 1 9 �8 ��? and8 d? ’s

j8 d¡ 1 ’s
the transposes of the rows of

B > D 2 � � .

But, these do not always form a set of generators.

Proposition:

Let
B > D 9 F B >£¢ ¢ D

with

F

square and non-singular, and

B > ¢ ¢ D left prime.

The transposes of the rows of

B > ¢ ¢ D form a (minimal) set of

generators of the module

� � .

unique up to unimodular

This submodule the part of the ARMAX system
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The module of orthogonalisers

�l� ; 9 � � 2 4 5 � 7 BC � C g ( D � � � �8 � 8 g ( � B *% D j8 d 1 �

Proposition:

Let

B > D 9 F B >£¢ ¢ D

with

F

square and non-singular, and

B > ¢ ¢ D left prime.

The transposes of the rows of

B > ¢ ¢ D form a (minimal) set of

generators of the module

� � .

In behavioral language,

B > ¢ ¢ D defines a ‘controllable’ kernel;>g (¢ ¢ is the transfer function of the ‘deterministic part’ of our

ARMAX system.

unique up to unimodular

This submodule the part of the ARMAX system

– p.15/28



The module of orthogonalisers

�l� ; 9 � � 2 4 5 � 7 BC � C g ( D � � � �8 � 8 g ( � B *% D j8 d 1 �

Proposition:

Let

B > D 9 F B >£¢ ¢ D

with

F

square and non-singular, and

B > ¢ ¢ D left prime.

The transposes of the rows of

B > ¢ ¢ D form a (minimal) set of

generators of the module

� � .

B >£¢ ¢ D unique up to

B > ¢ ¢ D K ¤ B >¢ ¢ D � ¤

unimodular

This submodule

 9 the part of the ARMAX system
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The AR module

Consider the ARMA system� >� � K 2 �� � � � � >

square,

{ | } � > �~ 9 ! .

Define the following set of polynomial vectors

¥ � ; 9 �§¦ 2 4 7 BC D � ¦ � �8 � 6 j8 d 6 ¨ � 2 N� � Q ! �

is the module generated by the transp. of the rows of , with

a unit circle ‘spectral factorization’.
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The AR module

Consider the ARMA system� >� � K 2 �� � � � � >

square,

{ | } � > �~ 9 ! .

Define the following set of polynomial vectors

¥ � ; 9 �§¦ 2 4 7 BC D � ¦ � �8 � 6 j8 d 6 ¨ � 2 N� � Q ! �

Easy:

¥ � submodule of

4 7 BC D
. Hence finitely generated.

FAQ: What is
¥ � in terms of the ARMAX matrices

� >� �

?

is the module generated by the transp. of the rows of , with

a unit circle ‘spectral factorization’.
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The AR module

Consider the ARMA system� >� � K 2 �� � � � � >

square,

{ | } � > �~ 9 ! .

Define the following set of polynomial vectors

¥ � ; 9 �§¦ 2 4 7 BC D � ¦ � �8 � 6 j8 d 6 ¨ � 2 N� � Q ! �

¥ � is the module generated by the transp. of the rows of , with� C � � � C g ( � 9 > � C � > � � C g ( �

a unit circle ‘spectral factorization’.
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The AR module

Now, given an ARMAX system

� >� � �
, with behavior , andB > D 9 F B >£¢ ¢ D with

B >£¢ ¢ D generators of the module of

orthogonalisers, it can be shown that© 9 B >£¢ �8 � ¢ �8 � D 9 � :; N 4 7�

ª B *% D 2 such that

: 9 >£¢ �8 � 6 = ¢ �8 � 1 �

is an ARMA system.

Described by

.

The associated AR submodule the AR part of the ARMAX

system. Assume generated by the polynomial matrix .

It follows finally that is an MA system, .

The associated MA matrix the MA part of the ARMAX system.
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The AR module

© 9 B >«¢ �8 � ¢ �8 � D 9 � :; N 4 7�

ª B *% D 2 such that
: 9 >£¢ �8 � 6 = ¢ �8 � 1 �

is an ARMA system. Described byF �8 � : 9 �8 ��? .

The associated AR submodule

 9 the AR part of the ARMAX

system. Assume generated by the polynomial matrix .

It follows finally that is an MA system, .

The associated MA matrix the MA part of the ARMAX system.

– p.17/28



The AR module

Described by F �8 � : 9 �8 ��? .

The associated AR submodule

 9 the AR part of the ARMAX

system. Assume generated by the polynomial matrix .

It follows finally that
�8 � ©

is an MA system, ¬ 9 �8 ��? .

The associated MA matrix

 9 the MA part of the ARMAX system.
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Recapitulation

Time-series o v s� m v u
.

Behavior , an ARMAX behavior.o input, m output.

1. The module of orthogonalisers

­ ® ® ¯ .
2. p ® � k �nm ® �lk �no is an ARMA system.

The AR-module .

3. p � k �
is an MA-system

4. the ARMAX representation�lk � ® � k �m � k � ® �lk �no p � k �q
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An identification algorithm

For notational simplicity, we only treat the case that an
infinite time series

is given, components in .
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An identification algorithm

For notational simplicity, we only treat the case that an
infinite time series

° ° °- "# $ * 'g d)$&% 'g d) +, - ° ° °- "# $&* '± )$% '± )
+, - "# $&* ' ( )$% ' ( )
+, - "# $&* ' . )$% ' . )
+, -/ / / - "# $&* ' d)$% ' d) +,- ° ° °

is given, components in .
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Algorithm

Data:

° ° °- "# $ * 'g d)$&% 'g d) +, - ° ° °- "# $&* '± )$% '± )
+, - "# $&* ' ( )$% ' ( )
+, - "# $&* ' . )$% ' . )
+, -/ / / - "# $&* ' d)$% ' d) +,- ° ° °

We assume that the data has been produced by an ARMA sys-

tem, and we are looking for an algorithm that returns

� >� � �

,

equivalently,

� B >£¢ ¢ D � � �
.
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PERSISTENCY of EXCITATION

A key ingredient is ‘persistency of excitation’ .

The vector time-series

�o is said to be
persistently exciting of order if the Hankel matrix"²³²´²µ²´²´²µ²´²³²¶#

° ° ° $% ' ( ) $% ' . ) $% '· ) ° ° ° $% ' 0 g ¸ � ( ) ° ° °° ° ° $% ' . ) $% ' · ) $% '¹ ) ° ° ° $% ' 0 g ¸ � . ) ° ° °° ° ° $% ' · ) $% ' ¹ ) $% 'º ) ° ° ° $% ' 0 g ¸ � · ) ° ° °° ° ° ...
...

...
. . .

... ° ° °° ° ° $&% ' ¸ ) $&% ' ¸ � ( ) $&% ' ¸ � . ) ° ° ° $% '0 ) ° ° °
+»³»´»µ»´»´»µ»´»³»¶,

is of full row rank.

Persistency of excitation no linear relations of order L.

Assume persistency of excitation as needed.
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PERSISTENCY of EXCITATION

A key ingredient is ‘persistency of excitation’ .

The vector time-series

�o is said to be
persistently exciting of order if the Hankel matrix"²³²´²µ²´²´²µ²´²³²¶#

° ° ° $% ' ( ) $% ' . ) $% '· ) ° ° ° $% ' 0 g ¸ � ( ) ° ° °° ° ° $% ' . ) $% ' · ) $% '¹ ) ° ° ° $% ' 0 g ¸ � . ) ° ° °° ° ° $% ' · ) $% ' ¹ ) $% 'º ) ° ° ° $% ' 0 g ¸ � · ) ° ° °° ° ° ...
...

...
. . .

... ° ° °° ° ° $&% ' ¸ ) $&% ' ¸ � ( ) $&% ' ¸ � . ) ° ° ° $% '0 ) ° ° °
+»³»´»µ»´»´»µ»´»³»¶,

is of full row rank.

Assume persistency of excitation as needed.
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Estimating the X part

Determine the orthogonalisers, for instance by computing the

’MPUM’ type module generated by the left kernel of the Hankel

matrix of the mixed correlation matrix"²´²µ²´²µ²´²³²³²³²´²µ²´²³²³²¶#
¼3½ ½ '( ) ¼½ ½ '. ) ° ° ° ¼3½ ½ '0 ) ° ° °¼f¾ ½ '( ) ¼¾ ½ '. ) ° ° ° ¼f¾ ½ ' 0 ) ° ° °¼�½ ½ '. ) ¼�½ ½ '· ) ° ° ° ¼�½ ½ '0 � ( ) ° ° °¼3¾ ½ '. ) ¼¾ ½ '· ) ° ° ° ¼3¾ ½ ' 0 � ( ) ° ° °

...
...

...
...

...¼3½ ½ '¿ ) ¼3½ ½ '¿ � ( ) ° ° ° ¼½ ½ '0 � ¿ g ( ) ° ° °¼�¾ ½ ' ¿ ) ¼�¾ ½ '¿ � ( ) ° ° ° ¼¾ ½ '0 � ¿ g ( ) ° ° °
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Estimating the X part

Determine the orthogonalisers, for instance by computing the

’MPUM’ type module generated by the left kernel of the Hankel

matrix of the mixed correlation matrix"²´²µ²´²µ²´²³²³²³²´²µ²´²³²³²¶#
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AR part

Compute the ARMA signal�: 9 L >¢ �8 � ��6 = L ¢ �8 � ��1

Compute its AR module for instance by computing the MPUM type

module generated by the left kernel of the Hankel matrix
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Result:
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MA part

Compute the signal � ¬ 9 L �8 � �:

Compute its MA representation for instance by computing the

correlations and factoring as

Result:
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MA part
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MA part

Compute the signal � ¬ 9 L �8 � �:
Compute its MA representation for instance by computing the

correlations �<Â Â ��� � 9 Q 8 d � ¬� � ¬ S� and factoring as
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Result:
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MA part

Real computations, finite time series, noise:Ä all sorts of approximations.

How can we guarantee that is Schur,

how do we guarantee that the autocorrelation of

� ¬ has the

necessary positivity and compact support properties?

We take a look at the second problem, in the scalar case.

Compute estimates .

We can approximate with a ‘legal’ MA by solving the LMI:

minimize subject to

such that ...
...

The dyadic expansion of then

yields, with ...
...

, an LS MA approximation. Can be

reduced, via storage functions, and another LMI, to a scalar .
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MA part

Compute estimates

L � Â Â ��� � 9 Q 8 d � ¬� � ¬ S
.

We can approximate

L � with a ‘legal’ MA � by solving the LMI:

minimize

Ã deg Ã� L � ��� � � � ��� �� .
subject to
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MA part

Compute estimates

L � Â Â ��� � 9 Q 8 d � ¬� � ¬ S
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We can approximate

L � with a ‘legal’ MA � by solving the LMI:
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The dyadic expansion of

¥ 9 ¬�( ¬ �( = � � � = ¬ÏÎ ¬ �Î then

yields, with � ' Ç ) e Ð ÑÒ
... ÑÓ

Ô "²¶# ÊÖÕ...Õ ×
+»¶, , an LS MA approximation. Can be

reduced, via storage functions, and another LMI, to a scalar .
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A simulation

The system is�8 � >¢ �8 �Ø ÙÚ Û� 'ÝÜ ) 6 9 �8 � ¢ �8 �Ø ÙÚ ÛÞ 'ÝÜ ) 1 = �8 ��? �

where the polynomials ,

> ¢ , ¢ , and are selected as follows:ß ' Ç ) e ( � Ç � ±/ º Ç à- Þâá ' Ç ) e ( g (/ . Ç � ±/ ã Ç àg ±/ ä Ç å- � ' Ç ) e ( � ±/ º Ç-� á ' Ç ) e ( g ±/ æ ä( · Çg (/ º ·ç Ç à � (/ · ä( Ç å � ±/ ã¹ º ( Ç è g ±/ º æ. ä Ç é/
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A simulation

The inputs 1 and ? are zero mean, gaussian, white, with variances�

and

! � �

, respectively. The initial condition, under which 6 is
obtained from 1 and ? is a random vector.

The time horizon for the simulation is

� 9 � ! ! ! and the

simulated time series

� 1 � 6 � is used for estimation.

The experiment is repeated 9 ê

times with different

realizations of 1 and ? in each run.
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A simulation
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A simulation
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A simulation
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A simulation
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Remarks

Note dramatic simplification to orthogonalisers/MA if

deterministic part in controllable.

The orthogonality suffices for a finite number of shifts.
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