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Problematique

Develop a suitable mathematical framework
for discussing dynamical systems

aimed at modeling, analysis, and synthesis.

~~ control, signal processing, system id., . ..
~~ engineering systems, economics, physics, . ..
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Paradigmatic examples - thermodynamics

Work
Heating (Qha]il) terminal
terminal

Cooling
terminal
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Paradigmatic examples - thermodynamics

Work

Heating terminal

terminal

Q1)
N\

Thermodynamic
Engine

(Qc,

Cooling
terminal

Express the first and second law ~> ?

—p.3/40



Paradigmatic examples - modeling

i Model this interconnected system !

Tearing, zooming & linking
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Paradigmatic examples - modeling

Tearing:

Fl/
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P
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Paradigmatic examples - modeling

Tearing:

F
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Paradigmatic examples - modeling

Zooming:
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Paradigmatic examples - modeling

Linking:
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Paradigmatic examples - modeling

Linking:

N
_—
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THEMES

1. Closed systems

2. Input/output ;
input/state/output systems

3. Beyond causality: behavioral systems
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THEMES

1. Closed systems

2. Input/output ;
input/state/output systems

3. Beyond causality: behavioral systems

m Submodule thm
m Elimination thm
m Controllability and image representation thm
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How it all began ...



Planet‘/W

How does it move?

22?
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Kepler’s laws

§ 15/Tp1630
PLANET
Johannes Kepler (1571-1630) g
SUN
Kepler’s first law: S

Ellipse, sun in focus
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Kepler’'s laws

IMAGYAR POSTA

Johannes Kepler (1571-1630) g L 4 ’\b.\D

Kepler’'s second law:

= areas in = times
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Kepler’'s laws

Z
34 months
Johannes Kepler (1571-1630) ' °°°°° "\
........ e .1 y,é.ar
Kepler’s third law: e g

NS

(period)* = (diameter)®
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The state of the planet

What determines the orbit uniquely?

PLANET
et ‘. o e
SUN
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The state of the planet

What determines the orbit uniquely?

PLANET
s

The position?
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The state of the planet

What determines the orbit uniquely?

PLANET
s

The position and the direction of motion?
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The state of the planet

position
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The state = the position & the velocity

—p.9/40



The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
w(t) = Aw(t), ~w(?)
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The equation of the planet

Consequence:
acceleration = function of position and velocity

2

d
“aw(t) = A(w(®), Zw(?)

~» via calculus and calculation
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Newton’s laws

F'(t) = mj—;w(t) (2-nd law)

F"(t) = mli‘gg)lz (gravity)

F'(t) + F""(t) =0 (3-rd law)
J




Kepler’s laws
K1,K2, & K.3

eded-sopdoy
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IMAGYAR POSTA

Kepler’s laws
K1,K2, & K.3
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<, : Kepler’s laws
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A DIHLEE ©F Kepler’s laws
Qi RH A A K.1, K.2, & K

keners | § B ¢ Hypotheses
15711630 | © femeigy— — A othy
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MAGYAR POSTA

—p.12/40



The paradigm of closed systems



‘Axiomatization’

K.1,K2, & K.3



‘Axiomatization’

K.1,K2, & K.3




‘Axiomatization’

K.1, K.2, & K.3
d? Ly



‘Axiomatization’

K.1, K.2, & K.3
d? Ly

~» ‘dynamical systems’, flows



‘Axiomatization’

K.1, K.2, & K.3
d? Ly

~» ‘dynamical systems’, flows

~» closed systems as paradigm of dynamics



‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

. X
A dynamical system is defined by b\
a state space X and
a state transition function

@ : --- such that

¢ (t, x) = state at time ¢ starting from state x
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‘Axiomatization’

@ : --- such that

. X
A dynamical system is defined by b\
a state space X and
a state transition function

¢(t, x) = state at time ¢ starting from state x

How could they forget about Newton’s second law,
about Maxwell’s eq’ns, about thermodynamics,
about tearing & zooming & linking, ...?
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‘Axiomatization’

Reply: assume ‘fixed boundary conditions’

i ENVIRONMENT

SYSTEM

Boundary

~~ an absurd situation: to model a system,
we have to model also the environment!
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‘Axiomatization’

ENVIRONMENT

SYSTEM

Boundary

Chaos theory, cellular automata, sync, etc.,
‘function’ In this frameworKk ...
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‘Axiomatization’

ENVIRONMENT

SYSTEM

Boundary

Chaos: not a property of the physical laws,
but just as much of what the system is
interconnected to.
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‘Axiomatization’

ENVIRONMENT

SYSTEM

Boundary

Turbulence may not be a property of
Navier-Stokes, but just as much of
the boundary conditions.
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Meanwhile, in engineering, ...
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stimulus

cause
input

input ___ |

SYSTEM

Input/output systems

response

effect
output

SYSTEM output
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The originators

Lord Rayleigh (1842-1919)

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)
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Mathematical description

input — = SYSTEM output

Y(t) = [yor _oo H(t — t)u(t') at’

y(t) = Ho(t) + /_t Hq(t — tHu(t') dt'+

t t’
/ Hy(t —t',t" — t")u(t)u(t”) dt’dt” + - -

— OO

—p.20/40



Mathematical description

input — = SYSTEM output

Y(t) = [yor _oo H(t — t)u(t') at’

These models fail to deal with ‘initial conditions’.

A physical system is SELDOMLY an i/o map
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Input/state/output systems

~S %m:f(.ﬁl),ﬂ), y:g(wﬂu)

» -

Rudolf Kalman (1930- )
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‘Axiomatization’

State transition function:

Qb(t, X ’LL) . state at time ¢ from x using input wu.

\X
Read-out function: \

g (X, 11) . output with state X and input value u.
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The input/state/output view turned out to be
a very effective and fruitful paradigm

m for control (stabilization, robustness, ...)

to—be—controlled

exogenous

inputs —B> > outputs
Plant
M —J Sensors
control inputs measured outputs
Controller =
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The input/state/output view turned out to be
a very effective and fruitful paradigm

m for control (stabilization, robustness, ...)

m prediction of one signal from another
m system ID: models from data

®m understanding system representations
(state, transfer f'n, etc.)

= etc., etc., etc.
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Let’s take a closer look at the i/o framework ...

in control (only)



Difficulties with i/o

active control

to—be—controlled

exogenous

inputs —B> > outputs
Plant
M —J Sensors
control inputs measured outputs
Controller J=
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Difficulties with i/o

active control

exogenous to—be—controlled

inputs —B> > outputs
Plant
M —J Sensors
control inputs measured outputs
Controller J=

versus passive control
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Difficulties with i/o

active control versus passive control

Controlling turbulence

for airplanes, sharks, dolphins, golf balls, bicycling
helmets, etc.
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Difficulties with i/o

active control versus passive control

Controlling turbulence

-UMCONTROLLED
TURBULENCE
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Difficulties with i/o

active control versus passive control
Controlling turbulence

Nagano 1998
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Difficulties with i/o

active control versus passive control
Controlling turbulence

Nagano 1998
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active

control

Difficulties with i/o

versus passive control

Nagano 1998
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Difficulties with i/o

active control versus passive control

Nagano 1998

These are beautiful controllers!
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Difficulties with i/o

active control versus passive control

Nagano 1998

These are beautiful controllers! But, the only people
not calling this “control™, are the control engineers ..
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At last, a consistent framework ...



The behavior

time.
| |

SYSTEM

Which event trajectories are possible?
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The behavior

The behavior =
all trajectories of the system variables
which, according to the mathematical
model, are possible.

Definition: A system . is defined as

> = (T, W, 8)

with T = the set of independent variables
W = the signal space
B C W' the behavior.
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The behavior

signal space

j\/\ /

time

£

Totality of ‘legal’ trajectories =: the behavior
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Linear shift-invariant differential systems

There exists an extensive theory for these systems

>, — (T, W, B)

T = R", the set of independent variables,
W = RR¥, the set of dependent variables,

B — sol'ns lin. const. coeff. system ODE’s or PDE’s.
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Linear shift-invariant differential systems

There exists an extensive theory for these systems

> = (T, W, B)

T = R", the set of independent variables,
often n — 1 (dynamical systems)
or n — 4 (distributed systems),

W = R", the set of dependent variables,

B — sol’ns lin. const. coeff. system ODE’s or PDE’s.
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Linear shift-invariant differential systems

Let R € R**¥[&y,- -+ ,&,], and consider

R(

* 73%%)7” = 0. (*)

a e o
8%1,
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Linear shift-invariant differential systems

Let R € R**¥[&y,- -+ ,&,], and consider

R(

* 7%)71] = 0. (*)

a e o
3:131’

Define the associated behavior

B = {w € €°(R*, RY) | (*) holds }.
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Linear shift-invariant differential systems

Let R € R**"[&q,- -+ , &), and consider

R(

- ,a%n)w = 0. (%)

a e o
8:131’

Define the associated behavior

B = {w € €°(R*, RY) | (*) holds }.

Notation for n-D linear differential systems:

(R*,R",B) € £7, or B c L.
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— 1
-E = —p,
€0

— 8—»

F = ——B
V X YRk

.B = 0,

- 1 - 0 =
2 = —9 —F.
c“V X B eog+8t
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T = R X R3 (time and space)n = 4,
w = (E, B, 3, p) (electric field, magnetic field,
current density, charge density),
W=R3 xR xR xR, w =10,
B € 2}10 — the set of solutions to these PDE’s.
Note: 10 variables, 8 equations! = - free variables.
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Submodule theorem

R € R***[&q, -« , &) defines
B = ker(R(a%l, vee a%)), but not vice-versa.

¢¢ o ‘intrinsic’ characterization of 25 € £7 77
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Submodule theorem

R € R***[&q, -« , &) defines
B = ker(R(a%l, vee 8%)), but not vice-versa.

¢¢ o ‘intrinsic’ characterization of 25 € £7 77

Define the annihilators of 25 € £ by
M 1= {n € R'[1, -+ ,&] | n" (g2, 52)B = 0}

Dy isaR[£q, -+, &]-submodule of R¥[¢4, - - - , &,]-
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Submodule theorem

Define the annihilators of 5 € £ by

m% = {n € Rw[fla'” 9€n] | nT(aiwla"' ’ 3(2311)% — O}'

My isaR[¢q, - - ,&]-submodule of R¥[¢4, - - , &,]-

Thm. 1:

1:1
23 <— submodules of R" [519 "t 9€n]
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Elimination theorem

Assume B € £71772 and define
B, := {w; | I ws such that (w1, wsz) € B}

B, € 221?
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Elimination theorem

Assume B € £71772 and define
B, := {w; | I ws such that (w1, wsz) € B}

B, € 221?

Thm. 2 (‘Elimination’ thm):  [It does!
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Elimination theorem

- —

Which PDE’s describe (p, E/, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~»

- 1
V-E = —p,
€0
19 ~ -
GOQV E—l—V J = O,
2 . _, .
—F VXV XUF —7 = 0
60(%2 + €ocC -I-aj

—p.31/40



Controllability

R s )w =0

is a ‘kernel representation’ of the associated 5 & Sﬂ
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Controllability

R(5-,

0

) Oy

Jw =0

is a ‘kernel representation’ of the associated 5 & Sﬁ

Another representation: image representation

0
w:M(a—ml,

.’833

L.

‘Elimination’ thm = im(M(3%,---

 oa7)) € L5 !
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Controllability

is a ‘kernel representation’ of the associated 5 & Sﬁ

Another representation: image representation
_ 5,

‘Elimination’ thm = im(M(a—wl,--- ,aw ) € €7 !
Which systems admit an image representation???

.’Bm
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Controllability

is a ‘kernel representation’ of the associated 5 & 22

Another representation: image representation
— 9 ...
w—M(aml, Do 9 )e.

‘Elimination’ thm = im(M(a—wl,--- ,aw ) € €7 !
Which systems admit an image representation???

Thm. 3: |5 admits image repr. < it is ‘controllable’.
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Controllability forn =1

Controllability def’n in pictures:

undersired trajectory

e,
—

time

/

desired trajectory
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Controllability forn =1

Controllability def’n in pictures:

undersired trajectory

e,
—

time

\_,/

/ desired trajectory

undesired past

7

controlled
transztw/

time

&
/

\

>_,/

desired future
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Controllability for PDE’s

Controllability def’n in pictures:

W

O

Wi, Wo - 5.
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Controllability for PDE’s

’wQE%.

w € °*B ‘patches’ w1,




Controllability for PDE’s

’UJ2€%.

w € °*B ‘patches’ w1,

Controllability :<= ‘patch-ability’.




Are Maxwell’s equations controllable?
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Are Maxwell’s equations controllable?

The following equations in the scalar potential ¢ and

the vector potential A: generate exactly the solutions
to Maxwell’s equations:

— 8 —
i FE = ——A-V
ey ?,
B = VXA’,
7 € 32A, e0c®V2A 4+ €9c?V(V - A) + ¢ 8Vq{>
= _ — C C . N
J ° o2 0 0 %ot "
0 -
= —e0=—V-A—¢eoV?p.
p €05 eoV~gp

proves controllability.
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Are Maxwell’s equations controllable?

The following equations in the scalar potential ¢ and

the vector potential A: generate exactly the solutions
to Maxwell’s equations:

[ | — 8 —
E = ——A-V
ot &
B = ij,
7 € azﬁ e0c®V2A 4+ €9c?V(V - A) + ¢ 8Vq{>
= — A — C . —
J 0(,%2 0 0 081; )
0 -
= —e0—V-A—¢goV?3.
p €05 eoV~gp

proves controllability. lllustrates the connection

controllability << d potential !
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Observability

Observability of the image representation

0 13
w=M(—,--,
0xq 0x,

)L
is defined as: £ can be deduced from w,

i.e., M(a%l, cee a%n) should be injective.
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Observability

Observability of the image representation

0, 0

W= M(o—,y-- =)
0xq 0x,

is defined as: £ can be deduced from w,

: 9 9 .

i.e., M(a_a;l’ +++ , 5.—) should be injective.

Not all controllable systems admit an observable image
repr’ion. Forn = 1, they do. Forn > 1, exceptionally.

The latent variable in an image repr’ion may be ‘hidden’.
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Observability

Observability of the image representation

0 19
W= M(o—,y-- =)
0xq 0x,
is defined as: £ can be deduced from w,
e, M (-2, ,-2) should be injective
€ By ) D, J :

Example: Maxwell’s equations do not allow a potential
representation that is observable.
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Sources

Dynamical systems (ODE’s): ~ 1985

2-D discrete set of ind. variables: Rocha ~ 1990
Differential-delay systems:

Glusing-Luerssen, Rocha, Zampieri, Vettori
PDE’s: Shankar, Pillai, Oberst, Zerz ~ 1995

Generalization from R, C to quaternions:
Pereira, Vettori ~ 2004

— p.38/40



Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

Thank you




Details & copies of the lecture frames are available
from/at

Jan.Willems@desat.kuleuven.ac.be

http://www.esat .kuleuven.ac.be/~jwillems
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