Remarks

on

RLC CIRCUITS

Jan C. Willems, K.U. Leuven

Workshop on Observation and Estimation

Sde Boker, July 15, 2004

THE REALIZATION PROBLEM

Given a set of building blocks, and a way to interconnect these building blocks, what behaviors can be obtained?

Example 1: State representation algorithms. Building blocks: adders, amplifiers, forks, integrators (as in analog computers)

$$\rightsquigarrow$$
 LTIDS $\overset{\bullet}{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \quad \mathbf{y} = C\mathbf{x} + D\mathbf{u}.$

Example 2: Electrical circuit synthesis. Building blocks: resistors, capacitors, inductors, connectors, transformers, gyrators.

Module Types:

Resistors, Capacitors, Inductors, Transformers, Connectors.

All terminals are of the same type: electrical, and there are 2 variables associated with each terminal,

(V, I)

- V the *potential*,
- I the *current* (counted > 0 when it flows <u>into</u> the module).
- \rightsquigarrow signal space of each terminal: \mathbb{R}^2 .

$$V_1 - V_2 = R I_1; \quad I_1 + I_2 = 0.$$

Capacitor: 2-terminal module.

Parameter: C > 0 (capacitance in farads, say). Device laws:

$$C\,rac{d}{dt}(V_1-V_2)=I_1\,; \ \ I_1+I_2=0.$$

Inductor: 2-terminal module. Parameter: L > 0 (inductance in henrys, say). Device laws:

$$L \frac{d}{dt}I_1 = V_1 - V_2; \quad I_1 + I_2 = 0.$$

Transformer: 4-terminal module; terminals (1,2): primary; terminals (3,4): secondary. Parameter: $N \in \mathbb{R}$ (the turns ratio, $\in (0, \infty)$). Device laws:

$$egin{aligned} V_3 - V_4 &= N(V_1 - V_2); I_1 &= -NI_3; \ I_1 + I_2 &= 0; I_3 + I_4 &= 0. \end{aligned}$$

<u>Connector</u>: many-terminal module.

Parameter: n (number of terminals, an integer). Device laws:

$$V_1 = V_2 = \cdots = V_n$$
; $I_1 + I_2 + \cdots + I_n = 0$.

In more advanced applications, we also meet the

Gyrator: 4-terminal module; (1,2): primary; (3,4): secondary. Parameter: $R \in \mathbb{R}$ (gyrator resistance, in Ohms, say). Device laws:

$$V_1 - V_2 = RI_3; V_3 - V_4 = -RI_1;$$

 $I_1 + I_2 = 0; I_3 + I_4 = 0.$

Assume that terminal 1, with terminal variables V_1, I_1 , is connected to terminal 2, with terminal variables V_2, I_2 . \rightsquigarrow Interconnection constraint:

 $I(V_1, I_1, V_2, I_2):$ $V_1 = V_2, I_1 + I_2 = 0.$

Assume that terminal 1, with terminal variables V_1, I_1 , is connected to terminal 2, with terminal variables V_2, I_2 . \rightarrow Interconnection constraint:

 $I(V_1, I_1, V_2, I_2):$ $V_1 = V_2, I_1 + I_2 = 0.$

Now interconnect terminals of a (finite) number of building blocks. The result is called a(n electrical) circuit.

Assume that terminal 1, with terminal variables V_1, I_1 , is connected to terminal 2, with terminal variables V_2, I_2 . \rightarrow Interconnection constraint:

 $I(V_1, I_1, V_2, I_2):$ $V_1 = V_2, I_1 + I_2 = 0.$

Call the 'unconnected' terminals, the external terminals.

Number them: (1, 2, ..., |E|). Take as manifest variables of the circuit, the external terminal voltages and currents : $\Pi_{k\in |E|}$ (V_k, I_k) . Denote $\Pi_{k\in |E|}$ (V_k, I_k) as $(V, I) \in \mathbb{R}^{2|E|}$.

By carrying out the interconnections, we end up with a system

$$(\mathbb{R},\mathbb{R}^{2|E|},\mathfrak{B}),$$

with external behavior: $\mathfrak{B} \subseteq (\mathbb{R}^{2|E|})^{\mathbb{R}}$.

The electrical circuit synthesis problem can be stated as follows:

Realizability: Which external behaviors can be obtained by interconnecting a finite number of R's, C's, L's, and T's? (or without T's, or with also G's?)

The electrical circuit synthesis problem can be stated as follows:

Realizability: Which external behaviors can be obtained by interconnecting a finite number of R's, C's, L's, and T's? (or without T's, or with also G's?)

Synthesis: If a behavior is realizable, give a wiring diagram (an architecture) that leads to the desired external behavior.

This problem is of great importance (historical and otherwise) in electrical engineering. Important names:

Otto Brune	R.M. Foster	W. Cauer
E.A. Guillemin	Sidney Darlington	A.D. Fialkow
B.D.H. Tellegen	Dante Youla	Vitold Belevitch
etc., etc.		

We list seven necessary conditions!

We now discuss these conditions, aiming at demonstrating

- the relevance of passivity and positive realness
- the ease of analysis provided by the behavioral approach

We list seven necessary conditions!

1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$

i.e., $\Sigma = (\mathbb{R}, \mathbb{R}^{2|E|}, \mathfrak{B})$ is a LTIDS. There are ∞ ways of stating what this means.

For example, there exists a polynomial matrix $R^{ullet imes 2|E|} \in \mathbb{R}[\xi]$ such that \mathfrak{B} consists of the solutions of

$$R(rac{d}{dt}) egin{bmatrix}V\I\end{bmatrix} = 0.$$

Proof: Elimination th'm.

We list seven necessary conditions!

1.
$$\mathfrak{B} \in \mathfrak{L}^{2|E|}$$

2. KVL

$(V,I)\in\mathfrak{B}$ and $lpha\in\mathfrak{C}^\infty(\mathbb{R},\mathbb{R})\Rightarrow(V+lpha e,I)\in\mathfrak{B}$

with

$$e = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Proof: Verify for each of the modules, and for the int. constraint.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL

$(V,I)\in\mathfrak{B}\Rightarrow e^{ op}I=0$

with

 $e = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$

Proof: Verify for each of the modules, and for the int. constraint.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$

In other words, there exist a partition of (V, I) in |E| inputs and |E| outputs, with, if you insist, a proper transfer function.

Consider this together with the next property.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity

There exists an I/O repr. for which the input and output var.

$$(u_1, u_2, \ldots, u_{|E|}), \ (y_1, y_2, \cdots, y_{|E|})$$

pair as follows:

$$\{u_{\mathtt{k}},y_{\mathtt{k}}\}=\{V_{\mathtt{k}},I_{\mathtt{k}}\}$$

In other words, each terminal is either

current controlled or voltage controlled.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity. From hybridicity, \mathfrak{B} admits a representation as • X

$$\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \ \mathbf{y} = C\mathbf{x} + D\mathbf{u}$$

This system is dissipative w.r.t. the supply rate $u^{ op}y = V^{ op}I$, and with a quadratic positive definite storage f'n

$$V(\mathbf{x}) = \mathbf{x}^{\top} K \mathbf{x}, K = K^{\top} > 0.$$

This states that the net electrical energy goes into the circuit.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. **Passivity.** It is easiest to prove properties 4, 5, and 6 together.

6: a circuit is an interconnection of passive elements, with neutral interconnection laws.

4 and 5: holds for passive circuits, prove it by considering one interconnection at the time.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity. The transfer f'n G is signature symmetric, i.e.

$$\Sigma G = G^{ op} \Sigma$$
 .

 Σ is the signature matrix $\Sigma = \operatorname{diag}(s_1, s_2, \dots, s_{|E|})$, with $s_k = +1$ if terminal k is voltage controlled, and $s_k = -1$ if terminal k is current controlled.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity.

This curious properties may be translated as:

The influence of terminal k' on terminal k'' is equal to the influence of terminal k'' on terminal k'.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity.

Proof: Show that each of the modules satisfy property (7). Show that this property remain valid after interconnection, i.e. proceed again one interconnection at the time.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity.

If \mathfrak{B} is controllable then these conditions are also sufficient for realizability. However, in order to obtain a 'clean' statement, it is convenient to eliminate $I_{|E|} = -I_1 - I_2 - \cdots - I_{|E|-1}$, and look at the behavior of $(V_1 - V_{|E|}, V_2 - V_{|E|}, \dots, V_{|E|-1} - V_{|E|}, I_1, I_2, \dots, I_{|E|-1})$.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity.

The transfer function $G \in \mathbb{R}^{(|E|-1) \times (|E|-1)}$ is realizable using RLCT's if and only if it is signature symmetric and positive real.

We list seven necessary conditions!

- 1. $\mathfrak{B} \in \mathfrak{L}^{2|E|}$
- 2. KVL
- 3. KCL
- 4. The input cardinality, $m(\mathfrak{B}) = |E|$
- 5. Hybridicity
- 6. Passivity.
- 7. Reciprocity.

The transfer function $G \in \mathbb{R}^{(|E|-1) \times (|E|-1)}$ is realizable using RLCTG's if and only if it is positive real.

Consider a 2-terminal circuit

 $\mathsf{KCL} \Rightarrow I_1 + I_2 = 0.$ Set $I := I_1 = -I_2$.

KVL \Rightarrow the beh. eq'ns involve only $V_1 - V_2$. Set $V := V_1 - V_2$. The behavior of (V, I) is called the port description.

Port description:

Z, the transfer f'n $I \mapsto V$ is called the driving point impedance. Note that Z need not be proper.

Which driving point impedances are realizable?

Which driving point impedances are realizable?

 $Z \in \mathbb{R}(\xi)$ is the driving point impedance of an electrical circuit that consists of an interconnection of a finite number of positive R's, positive L's, positive C's, and transformers if and only if Z is positive real.

Which driving point impedances are realizable?

 $Z \in \mathbb{R}(\xi)$ is the driving point impedance of an electrical circuit that consists of an interconnection of a finite number of positive R's, positive L's, positive C's, and transformers if and only if Z is positive real.

This result led to the introduction of **positive real functions**. First proven by Otto Brune in his M.I.T. Ph.D. dissertation (see O. Brune, *Synthesis of a finite two-terminal network whose driving point impedance is a prescribed function of frequency,* Journal of Mathematics and Physics, volume 10, pages 191-236, 1931).

Which driving point impedances are realizable?

 $Z \in \mathbb{R}(\xi)$ is the driving point impedance of an electrical circuit that consists of an interconnection of a finite number of positive R's, positive L's, positive C's, and transformers if and only if Z is positive real.

Are transformers needed?

In 1949, Bott and Duffin proved 'no' in a one-page (!) paper (see R. Bott and R.J. Duffin, *Impedance synthesis without transformers,* Journal of Applied Physics, vol. 20, page 816, 1949). However, their synthesis has common factors, non-controllability!

REMARK

TERMINALS versus PORTS

Note that we have used throughout the terminal description of circuits. It is simply more appropriate and more general (even when using only 'port' devices).

Example:

However, port descriptions are more parsimonious in the choice of variables (it halves their number).

RECAP

- Realizability theory: an important engineering oriented problem area.
- The analysis and synthesis of RLCT circuits is an important application of passive systems.
- 7 necessary conditions for realizability by passive R,L,C,T's: differential system, KVL, KCL, input cardinality, hybridicity, passivity, and reciprocity.
- In the controllable case these conditions are also sufficient.
- It is the circuit synthesis problem that led to positive realness.