A TUTORIAL INTRODUCTION то
 QUADRATIC DIFFERENTIAL FORMS

Paolo Rapisarda (Un. of Maastricht, NL) \&

Jan C. Willems (K.U. Leuven, Belgium)

Part I

THEORY

■ Introduction
■ Basic definitions: bilinear/quadratic differential forms (BDF's, QDF's)

- Two-variable polynomial matrices

■ Calculus of BDF's, QDF's

Introduction

Given: a linear differential system, with variables \boldsymbol{w}
Often necessary to study functionals of w and its derivatives $\frac{d^{j}}{d t^{j}} w$, for example in

- Lyapunov functions for high-order diff. eq'ns;
- Performance criteria in control and filtering problems;
- Modeling physical quantities/properties, as power, energy; dissipativity, conservation laws;

Of special interest quadratic and bilinear functionals.

Introduction

Given: a linear differential system, with variables \boldsymbol{w}
Often necessary to study functionals of w and its derivatives $\frac{d^{j}}{d t^{j}} w$, for example in

- Lyapunov functions for high-order diff. eq'ns;
- Performance criteria in control and filtering problems;
- Modeling physical quantities/properties, as power, energy; dissipativity, conservation laws;

Of special interest quadratic and bilinear functionals.
Could reduce to 1-st order eq'ns and constant functionals; but why not address such issues in the original representation?

Example: Lyapunov stability

Consider trajectories $(u, y) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ described by

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

Lyapunov stability: assume $u=0 ; \quad ¿ \lim _{t \rightarrow \infty} y(t)=0$?

Example: Lyapunov stability

Consider trajectories $(u, y) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{2}\right)$ described by

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

Lyapunov stability: assume $u=0 ; \quad ¿ \lim _{t \rightarrow \infty} y(t)=0$? Check if there exists a quadratic functional

$$
Q(y)=\sum_{k, \ell} Q_{k, \ell}\left(\frac{d^{k}}{d t^{k}} y\right)\left(\frac{d^{\ell}}{d t^{\ell}} y\right)
$$

with $\quad Q(y)(t) \geq 0$ and $\frac{d}{d t} Q(y)(t)<0$ along solutions of $p\left(\frac{d}{d t}\right) y=0 \ldots$

Why cast this into state form (nontrivial for multivariable case!)?

Bilinear differential forms

Let $\Phi_{k, \ell} \in \mathbb{R}^{\mathrm{w}_{1} \times \mathrm{w}_{2}}, k, \ell=0,1,2, \ldots, L$ and $w_{i} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}_{i}}\right)$.

The functional
$L_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbb{W}_{1}}\right) \times \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}_{2}}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ defined by

$$
L_{\Phi}\left(w_{1}, w_{2}\right):=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w_{1}\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d t^{\ell}} w_{2}\right)
$$

is called a bilinear differential form (BDF).

Quadratic differential forms

Let $\Phi_{k, \ell} \in \mathbb{R}^{w \times w}, k, \ell=0,1,2, \ldots, L$ and $w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.

The functional $Q_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \quad$ defined by

$$
Q_{\Phi}(w):=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d t^{\ell}} w\right)
$$

is called a quadratic differential form (QDF).

Example

QDF: Total energy in spring-mass system

$$
\begin{gathered}
M \frac{d^{2}}{d t^{2}} w+K w=0 \\
E_{\text {tot }}(t)=\frac{1}{2} M\left(\frac{d}{d t} w(t)\right)^{2}+\frac{1}{2} K w(t)^{2} \\
E_{\text {tot }}(t)=\left[\begin{array}{ll}
w(t) & \frac{d}{d t} w(t)
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} K & 0 \\
0 & \frac{1}{2} M
\end{array}\right]\left[\begin{array}{c}
w(t) \\
\frac{d}{d t} w(t)
\end{array}\right]
\end{gathered}
$$

Two-variable polynomial matrices

Entries are polynomials with real coefficients in two indeterminates:

$$
\Phi(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

with $\Phi_{k, \ell} \in \mathbb{R}^{w_{1} \times w_{2}}$.

Two-variable polynomial matrices

Entries are polynomials with real coefficients in two indeterminates:

$$
\Phi(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

with $\Phi_{k, \ell} \in \mathbb{R}^{w_{1} \times w_{2}}$. In $1 \leftrightarrow 1$ relation with the BDF L_{Φ} $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W_{1}}\right) \times \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w_{2}}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$
L_{\Phi}\left(w_{1}, w_{2}\right):=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w_{1}\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d t^{\ell}} w_{2}\right)
$$

the bilinear differential form L_{Φ} (BDF) induced by $\Phi(\zeta, \eta)$

Two-variable polynomial matrices and QDF's

Let $\mathrm{w}_{1}=\mathrm{w}_{2}=\mathrm{w}$ in

$$
\Phi(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

The QDF $\mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$
L_{\Phi}(w, w)=Q_{\Phi}(w)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w\right)^{\top} \Phi_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} \boldsymbol{w}
$$

is called the quadratic differential form Q_{Φ} induced by $\Phi(\zeta, \eta)$

Two-variable polynomial matrices and QDF's

Let $\mathrm{w}_{1}=\mathrm{w}_{2}=\mathrm{w}$ in

$$
\Phi(\zeta, \eta)=\sum_{k, \ell=0}^{L} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

The QDF $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$

$$
L_{\Phi}(\boldsymbol{w}, \boldsymbol{w})=Q_{\Phi}(w)=\sum_{k, \ell=0}^{L}\left(\frac{d^{k}}{d t^{k}} w\right)^{\top} \Phi_{k, \ell} \frac{d^{\ell}}{d t^{\ell}} w
$$

is called the quadratic differential form Q_{Φ} induced by $\Phi(\zeta, \eta)$

WLOG $\Phi_{k, \ell}=\Phi_{\ell, k}^{\top}$ i.e. $\Phi(\zeta, \eta)=\Phi(\eta, \zeta)^{\top}$ (symmetry)
$1 \leftrightarrow 1$ relation with QDF's

Examples

\square Total energy for oscillator $M \frac{d^{2}}{d t^{2}} \boldsymbol{w}+K w=0$ induced by

$$
\Phi(\zeta, \eta)=\frac{1}{2} M \zeta \eta+\frac{1}{2} K
$$

since $Q_{\Phi}(w)=\frac{1}{2} M\left(\frac{d}{d t} w\right)^{2}+\frac{1}{2} K w^{2}$.

Examples

$\square Q_{\Phi}\left(w_{1}, w_{2}\right)=w_{2} \frac{d}{d t} w_{1}$
¿Polynomial matrix for Q_{Φ} ?

$$
\begin{aligned}
& w_{2}\left(\frac{d}{d t} w_{1}\right)=\frac{1}{2}\left[\begin{array}{ll}
\frac{d}{d t} w_{1} & \frac{d}{d t} w_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \\
& +\frac{1}{2}\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\frac{d}{d d} w_{1} \\
\frac{d}{d t} w_{2}
\end{array}\right] \\
& \mathrm{re} \quad \Phi(\zeta, \eta)=\frac{1}{2}\left[\begin{array}{ll}
0 & \zeta \\
\eta & 0
\end{array}\right]
\end{aligned}
$$

Therefore

The calculus of QDF's

1. Basics of linear differential systems
2. Differentiation
3. Integration
4. QDF's along behaviors
5. Positivity

Linear differential systems

$$
R_{0}+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\ldots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

$\boldsymbol{R}_{i} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}, i=0, \ldots, L$. Associated one-variable polynomial matrix:

$$
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L} \xi^{L} \in \mathbb{R}^{g \times w}[\xi]
$$

Linear differential systems

$$
R_{0}+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\ldots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

$R_{i} \in \mathbb{R}^{g \times w}, i=0, \ldots, L$. Associated one-variable polynomial matrix:

$$
\begin{gathered}
R(\xi)=R_{0}+R_{1} \xi+\ldots+R_{L} \xi^{L} \in \mathbb{R}^{g \times w}[\xi] \\
R\left(\frac{d}{d t}\right) \boldsymbol{w}=0 \quad \text { kernel representation }
\end{gathered}
$$

Linear differential systems

$$
R_{0}+R_{1} \frac{d}{d t} w+R_{2} \frac{d^{2}}{d t^{2}} w+\ldots+R_{L} \frac{d^{L}}{d t^{L}} w=0
$$

$\boldsymbol{R}_{i} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}, i=0, \ldots, L$. Associated one-variable polynomial matrix:

$$
\begin{gathered}
\boldsymbol{R}(\xi)=\boldsymbol{R}_{0}+\boldsymbol{R}_{1} \xi+\ldots+\boldsymbol{R}_{L} \xi^{L} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}[\xi] \\
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0 \quad \text { kernel representation }
\end{gathered}
$$

More than a representation issue:
$■ \exists$ calculus of representations;
■ Time-domain properties \longleftrightarrow algebraic properties

Linear differential systems

Often in order to model the behavior of \boldsymbol{w} ('manifest' variable), we need to consider the ℓ ('latent' variable) as well:

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

latent variable repr'on

Linear differential systems

Often in order to model the behavior of \boldsymbol{w} ('manifest' variable), we need to consider the ℓ ('latent' variable) as well:

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad \text { latent variable repr'on }
$$

'State' variable is special latent variable ('Markovian')
1-st order representation is consequence of state property!

Linear differential systems

Often in order to model the behavior of \boldsymbol{w} ('manifest' variable), we need to consider the ℓ ('latent' variable) as well:

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad \text { latent variable repr'on }
$$

'State' variable is special latent variable ('Markovian')
1-st order representation is consequence of state property!

Observability of ℓ from $w:(w=0) \Rightarrow(\ell=0)$

The calculus of QDF's: differentiation

Consider Q_{Φ} induced by $\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta]$
The derivative of Q_{Φ} is

$$
\begin{aligned}
& \frac{d}{d t} Q_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
&\left(\frac{d}{d t} Q_{\Phi}\right)(w):=\frac{d}{d t} Q_{\Phi}(w)
\end{aligned}
$$

Also a QDF!

The calculus of QDF's: differentiation

Consider Q_{Φ} induced by $\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta]$
The derivative of Q_{Φ} is

$$
\begin{aligned}
\frac{d}{d t} Q_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) & \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
\left(\frac{d}{d t} Q_{\Phi}\right)(w) & :=\frac{d}{d t} Q_{\Phi}(w)
\end{aligned}
$$

Also a QDF!
¿Which matrix in $\mathbb{R}_{s}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$ induces $\frac{d}{d t} Q_{\Phi}$?

The calculus of QDF's: differentiation

Consider Q_{Φ} induced by $\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta]$
The derivative of Q_{Φ} is

$$
\begin{aligned}
& \frac{d}{d t} Q_{\Phi}: \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\
&\left(\frac{d}{d t} Q_{\Phi}\right)(\boldsymbol{w}):=\frac{d}{d t} Q_{\Phi}(\boldsymbol{w})
\end{aligned}
$$

Also a QDF!
¿Which matrix in $\mathbb{R}_{s}^{w \times w}[\zeta, \eta]$ induces $\frac{d}{d t} Q_{\Phi}$?
The matrix $\dot{\Phi}(\zeta, \eta):=(\zeta+\eta) \Phi(\zeta, \eta)$!

Calculus of QDF's: integration

Consider compact-support \mathfrak{C}^{∞}-trajectories (denoted $\mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$), let

$$
L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{2}}\right) \rightarrow \mathfrak{D}(\mathbb{R}, \mathbb{R})
$$

Calculus of QDF's: integration

Consider compact-support \mathfrak{C}^{∞}-trajectories (denoted $\mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$), let

$$
L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{2}}\right) \rightarrow \mathfrak{D}(\mathbb{R}, \mathbb{R})
$$

Integral of L_{Φ} defined

$$
\begin{aligned}
& \int L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{2}}\right) \rightarrow \mathbb{R} \\
& \int L_{\Phi}\left(w_{1}, w_{2}\right):=\int_{-\infty}^{t} L_{\Phi}\left(w_{1}, w_{2}\right) d t
\end{aligned}
$$

Calculus of QDF's: integration

Consider compact-support \mathfrak{C}^{∞}-trajectories (denoted $\mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$), let

$$
L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}_{2}}\right) \rightarrow \mathfrak{D}(\mathbb{R}, \mathbb{R})
$$

Integral of L_{Φ} defined

$$
\begin{aligned}
& \int L_{\Phi}: \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{1}}\right) \times \mathfrak{D}\left(\mathbb{R}, \mathbb{R}^{w_{2}}\right) \rightarrow \mathbb{R} \\
& \int L_{\Phi}\left(w_{1}, w_{2}\right):=\int_{-\infty}^{t} L_{\Phi}\left(w_{1}, w_{2}\right) d t
\end{aligned}
$$

Is it a BDF? Not always, but when? Analogous question for QDF's.
'Path independence' (cfr. Brockett's work in the 1960's)

Integration

¿Given Q_{Φ}, does there exist a $\Psi(\zeta, \eta)$

$$
\text { such that } \frac{d}{d t} Q_{\Psi}=Q_{\Phi} ?
$$

Integration

¿Given Q_{Φ}, does there exist a $\Psi(\zeta, \eta)$

$$
\text { such that } \frac{d}{d t} Q_{\Psi}=Q_{\Phi} ?
$$

Theorem: Let $\Phi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta]$. The following are equivalent:

1. there exists $\Psi \in \mathbb{R}_{s}^{w \times w}[\zeta, \eta]$ such that
$\Phi(\zeta, \eta)=(\zeta+\eta) \Psi(\zeta, \eta)$,
equivalently, $\frac{d}{d t} Q_{\Psi}=Q_{\Phi} ;$
2. $\Phi(-\xi, \xi)=0$.

QDF's along behaviors: example

Often need to evaluate QDF's on $\boldsymbol{w} \in \mathfrak{B}$ ("along \mathfrak{B} ")

QDF's along behaviors: example

Often need to evaluate QDF's on $\boldsymbol{w} \in \mathfrak{B}$ ("along $\mathfrak{\mathfrak { B }}$ ")
Example: Mass-spring system

$$
\mathfrak{B}=\left\{\boldsymbol{w} \left\lvert\, M \frac{d^{2}}{d t^{2}} \boldsymbol{w}+\boldsymbol{K} \boldsymbol{w}=0\right.\right\}
$$

Total energy $\leadsto \Phi(\zeta, \eta)=\frac{1}{2} M \zeta \eta+\frac{1}{2} K$

QDF's along behaviors: example

Often need to evaluate QDF's on $w \in \mathfrak{B}$ ("along \mathfrak{B} ")
Example: Mass-spring system

$$
\mathfrak{B}=\left\{\boldsymbol{w} \left\lvert\, \boldsymbol{M} \frac{d^{2}}{d t^{2}} \boldsymbol{w}+\boldsymbol{K} \boldsymbol{w}=\mathbf{0}\right.\right\}
$$

Total energy $\leadsto \Phi(\zeta, \eta)=\frac{1}{2} M \zeta \eta+\frac{1}{2} K$

$$
\frac{d}{d t} Q_{\Phi}(w)=0 \text { for all } \boldsymbol{w} \in \mathfrak{B} \text { expressed as }
$$

$$
(\zeta+\eta) \Phi(\zeta, \eta)=(\zeta+\eta)\left(\frac{1}{2} M \zeta \eta+\frac{1}{2} K\right)
$$

$$
=\frac{1}{2} \quad \underbrace{\left(M \zeta^{2}+K\right)} \quad \eta+\frac{1}{2} \zeta \quad \underbrace{\left(M \eta^{2}+K\right)}
$$

QDF's which are zero along behaviors

Q_{Φ} is zero on \mathfrak{B}, written $Q_{\Phi} \stackrel{\mathfrak{B}}{=} 0$, if $Q_{\Phi}(w)=0$ for all $\boldsymbol{w} \in \mathfrak{B}$

QDF's which are zero along behaviors

Q_{Φ} is zero on \mathfrak{B}, written $Q_{\Phi} \stackrel{\mathfrak{B}}{=} 0$, if $Q_{\Phi}(w)=0$ for all $\boldsymbol{w} \in \mathfrak{B}$

Theorem: Let $\mathfrak{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$. Then $Q_{\Phi} \stackrel{\mathfrak{B}}{=} 0$ if and only if there exists $F \in \mathbb{R}^{\bullet \times}[\zeta, \eta]$ such that

$$
\Phi(\zeta, \eta)=\boldsymbol{R}(\zeta)^{\top} \boldsymbol{F}(\zeta, \eta)+\boldsymbol{F}(\eta, \zeta)^{\top} \boldsymbol{R}(\eta)
$$

Equivalence of QDF's along behaviors

$$
\begin{gathered}
Q_{\Phi} \stackrel{\text { 色 }}{=} Q_{\Psi} \text { iff exists } F \in \mathbb{R}^{\cdot \times \cdot}[\zeta, \eta] \text { such that } \\
\Phi(\zeta, \eta)-\Psi(\zeta, \eta)=\boldsymbol{R}(\zeta)^{\top} \boldsymbol{F}(\zeta, \eta)+\boldsymbol{F}(\eta, \zeta)^{\top} \boldsymbol{R}(\eta)
\end{gathered}
$$

Equivalence of QDF's along behaviors

$$
\begin{gathered}
Q_{\Phi} \stackrel{\mathfrak{Z}}{=} Q_{\Psi} \text { iff exists } F \in \mathbb{R}^{\cdot \times \cdot}[\zeta, \eta] \text { such that } \\
\Phi(\zeta, \eta)-\Psi(\zeta, \eta)=\boldsymbol{R}(\zeta)^{\top} \boldsymbol{F}(\zeta, \eta)+\boldsymbol{F}(\eta, \zeta)^{\top} \boldsymbol{R}(\eta)
\end{gathered}
$$

Example: $\zeta^{3} \eta^{3}+1 \stackrel{\mathfrak{B}}{=} \zeta \eta+1$ when $\mathfrak{B}=\operatorname{ker}\left(\frac{d^{2}}{d t^{2}}+1\right)$. Indeed,

$$
\frac{d^{2}}{d t^{2}} w+w=0 \Longrightarrow \frac{d^{3}}{d t^{3}} w=-\frac{d}{d t} w
$$

In two-variable polynomial terms:

$$
\zeta^{3} \eta^{3}+1=(\zeta \eta+1)+\left(\zeta^{2}+1\right)\left(\zeta \eta^{3}\right)+\left(\zeta^{3} \eta\right)\left(\eta^{2}+1\right)
$$

Positivity of QDF's

$\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ is nonnegative (written $\Phi \geq 0$) if $Q_{\Phi}(w) \geq 0$ for all $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.
$\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ is positive (written $\Phi>0$) if $\Phi \geq 0$ and
$\left(Q_{\Phi}(w)=0\right) \Rightarrow(w=0)$.

Positivity of QDF's

$\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ is nonnegative (written $\Phi \geq 0$) if $Q_{\Phi}(w) \geq 0$ for all $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.
$\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ is positive (written $\Phi>0$) if $\Phi \geq 0$ and $\left(Q_{\Phi}(w)=0\right) \Rightarrow(w=0)$.

$$
\Phi \geq 0 \Leftrightarrow \text { exists } D \in \mathbb{R}^{\bullet \times w}[\xi]: \Phi(\zeta, \eta)=D^{\top}(\zeta) D(\eta)
$$

$$
\Phi>0 \Leftrightarrow \text { exists } D \in \mathbb{R}^{\bullet \times w}[\xi]: \Phi(\zeta, \eta)=D^{\top}(\zeta) D(\eta)
$$

$$
\text { and rank } D(\lambda)=\text { w } \forall \lambda \in \mathbb{C}
$$

Positivity of QDF's along behaviors

$$
\begin{aligned}
& \Phi \in \mathbb{R}^{w \times w}[\zeta, \eta] \text { is nonnegative along } \mathfrak{B}(\text { written } \Phi \geq 0) \text { if } \\
& Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{B} . \\
& \Phi \in \mathbb{R}^{w \times w}[\zeta, \eta] \text { is positive along } \mathfrak{B} \text { (written } \Phi>^{\mathfrak{B}} 0 \text {) if } \Phi \geq 0 \\
& \text { and }\left(Q_{\Phi}(w)=0\right) \Rightarrow(w=0) .
\end{aligned}
$$

Positivity of QDF's along behaviors

$\Phi \in \mathbb{R}^{\mathrm{w} \times \mathrm{W}}[\zeta, \eta]$ is nonnegative along \mathfrak{B} (written $\Phi \geq 0$) if $Q_{\Phi}(w) \geq 0$ for all $w \in \mathfrak{B}$.
$\Phi \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$ is positive along \mathfrak{B} (written $\Phi>^{\mathfrak{B}} 0$) if $\Phi \geq 0$ and $\left(Q_{\Phi}(w)=0\right) \Rightarrow(w=0)$.

$$
\begin{aligned}
& \Phi \stackrel{\mathcal{B}}{\geq} 0 \Leftrightarrow \exists \Phi^{\prime} \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\zeta, \eta] \text { s.t. } \Phi(\zeta, \eta) \stackrel{\mathcal{B}}{=} \Phi^{\prime}(\zeta, \eta) \text { and } \Phi^{\prime} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Phi^{\prime}(\zeta, \eta)=D^{\top}(\zeta) D(\eta) \text { and rank }\left[\begin{array}{l}
D(\lambda) \\
R(\lambda)
\end{array}\right]=w \forall \lambda \in \mathbb{C}
\end{aligned}
$$

Part II

APPLICATIONS

- Lyapunov theory
- The construction of storage functions

Is there

a Lyapunov theory for systems described by high order differential equations?

cfr. early work by Fuhrmann.

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0
$$

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0
$$

The stored energy equals

$$
E\left(w, \frac{d}{d t} w\right)=\frac{1}{2} w^{\top} K w+\frac{1}{2}\left(\frac{d}{d t} w\right)^{\top} M\left(\frac{d}{d t} w\right)
$$

The dissipation equals

$$
\frac{d}{d t} E\left(w, \frac{d}{d t} w\right) \stackrel{\mathscr{B}}{=}-\left(\frac{d}{d t} w\right)^{\top} D\left(\frac{d}{d t} w\right)
$$

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0
$$

The stored energy equals

$$
E\left(w, \frac{d}{d t} w\right)=\frac{1}{2} w^{\top} K w+\frac{1}{2}\left(\frac{d}{d t} w\right)^{\top} M\left(\frac{d}{d t} w\right)
$$

The dissipation equals

$$
\frac{d}{d t} E\left(w, \frac{d}{d t} w\right) \stackrel{\mathfrak{B}}{=}-\left(\frac{d}{d t} w\right)^{\top} D\left(\frac{d}{d t} w\right)
$$

Conclude stability if e.g.

$$
K=K^{\top} \geq 0, M=M^{\top} \geq 0, D+D^{\top} \geq 0
$$

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0
$$

The stored energy equals

$$
E\left(w, \frac{d}{d t} w\right)=\frac{1}{2} w^{\top} K w+\frac{1}{2}\left(\frac{d}{d t} w\right)^{\top} M\left(\frac{d}{d t} w\right)
$$

The dissipation equals

$$
\frac{d}{d t} E\left(w, \frac{d}{d t} w\right) \stackrel{\mathscr{B}}{=}-\left(\frac{d}{d t} w\right)^{\top} D\left(\frac{d}{d t} w\right)
$$

asymptotic stability if e.g.

$$
K=K^{\top}>0, M=M^{\top}>0, D+D^{\top}>0
$$

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0
$$

The stored energy equals

$$
E\left(w, \frac{d}{d t} w\right)=\frac{1}{2} w^{\top} K w+\frac{1}{2}\left(\frac{d}{d t} w\right)^{\top} M\left(\frac{d}{d t} w\right)
$$

The dissipation equals

$$
\frac{d}{d t} E\left(w, \frac{d}{d t} w\right) \stackrel{\mathfrak{B}}{=}-\left(\frac{d}{d t} w\right)^{\top} D\left(\frac{d}{d t} w\right)
$$

1. No need to put the system in state form.
2. Draw conclusions directly from polynomial matrix calculus.

An example

Consider the mechanical system

$$
K w+D \frac{d}{d t} w+M \frac{d^{2}}{d t^{2}} w=0 \quad \leadsto R(\xi)=K+D \xi+M \xi^{2}
$$

The stored energy equals

$$
E\left(w, \frac{d}{d t} w\right)=\frac{1}{2} w^{\top} K w+\frac{1}{2}\left(\frac{d}{d t} w\right)^{\top} M\left(\frac{d}{d t} w\right) \quad \sim \frac{1}{2} M+\frac{1}{2} K \zeta \eta
$$

The dissipation equals

$$
\frac{d}{d t} E\left(w, \frac{d}{d t} w\right) \stackrel{\mathfrak{B}}{=}-\left(\frac{d}{d t} w\right)^{\top} D\left(\frac{d}{d t} w\right) \quad \leadsto \frac{1}{2}\left(D+D^{\top}\right) \zeta \eta
$$

Which

Lyapunov theorem

Given: \mathfrak{B}, w variables, autonomous. Is \mathfrak{B} stable?
¿ $\lim _{t \rightarrow \infty} w(t)=0$ for all $w \in \mathfrak{B}$?

Lyapunov theorem

Given: \mathfrak{B}, w variables, autonomous. Is \mathfrak{B} stable?

$$
¿ \lim _{t \rightarrow \infty} w(t)=0 \text { for all } w \in \mathfrak{B} ?
$$

Theorem: \mathfrak{B} is stable \Leftrightarrow there exists $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ such that

$$
Q_{\Phi} \stackrel{\mathfrak{B}}{\geq} 0 \quad \text { and } \quad Q_{\Phi} \quad \stackrel{\mathfrak{B}}{<} 0 .
$$

Recall

$$
\dot{\Phi}(\zeta, \eta):=(\zeta+\eta) \Phi(\zeta, \eta)
$$

The general theory teaches us how to verify \mathfrak{B}-positivity.

Construction of Lyapunov functions

Recall the construction for first order representations

$$
\frac{d}{d t} x=A x, \quad A \text { Hurwitz }
$$

Take $Q=Q^{\top}<0$ and solve the Lyapunov eq'n

$$
A^{\top} P+P A=Q
$$

for $P=P^{\top}>0$.
Lyapunov function is $\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}$, its derivative is $\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x}$.

This completely generalizes to high order differential equations.

Construction of Lyapunov functions

Given $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right), \quad \boldsymbol{R} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi], \operatorname{det}(\boldsymbol{R}) \neq 0$.

Construction of Lyapunov functions

Given $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right), \quad R \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi], \operatorname{det}(\boldsymbol{R}) \neq 0$.

- Choose $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$

■ Solve the polynomial Lyapunov equation in $X \in \mathbb{R}^{w \times w}[\xi]$

$$
R(-\xi)^{\top} X(\xi)+X(-\xi)^{\top} R(\xi)=\Psi(-\xi, \xi)
$$

\square Define $\Phi(\zeta, \eta)=\frac{\Psi(\zeta, \eta)-R(\zeta)^{\top} X(\eta)-X(\zeta)^{\top} R(\eta)}{\zeta+\eta}$

Construction of Lyapunov functions

Given $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right), \quad \boldsymbol{R} \in \mathbb{R}^{\mathrm{w} \times \mathrm{W}}[\boldsymbol{\xi}], \operatorname{det}(\boldsymbol{R}) \neq 0$.
■ Choose $\Psi \in \mathbb{R}^{w \times{ }^{w}}[\zeta, \eta]$
■ Solve the polynomial Lyapunov equation in $X \in \mathbb{R}^{\mathrm{w} \times{ }^{w}}[\boldsymbol{\xi}]$

$$
R(-\xi)^{\top} X(\xi)+X(-\xi)^{\top} R(\xi)=\Psi(-\xi, \xi)
$$

\square Define $\Phi(\zeta, \eta)=\frac{\Psi(\zeta, \eta)-R(\zeta)^{\top} X(\eta)-X(\zeta)^{\top} R(\eta)}{\zeta+\eta}$

Then

$$
Q_{\dot{\Phi}} \stackrel{\mathfrak{B}}{=} Q_{\Psi} \quad \text { i.e. } \quad \frac{d}{d t} Q_{\Phi} \stackrel{\mathfrak{B}}{=} Q_{\Psi}
$$

and $\quad Q_{\Phi}{ }^{\mathfrak{B}} 0 \quad$ if $\quad \mathfrak{B}$ is stable and $Q_{\Psi} \stackrel{\mathfrak{B}}{<} 0$

Example

$$
\begin{aligned}
& \mathfrak{B} \cong w+\frac{d}{d t} w+\frac{d^{2}}{d t^{2}} w=0 \leadsto R(\xi)=1+\xi+\xi^{2} \\
& \Psi(\zeta, \eta)=-2 \zeta \eta, \leq 0: Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} ; \text { negative on } \mathfrak{B} .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathfrak{B} \cong w+\frac{d}{d t} w+\frac{d^{2}}{d t^{2}} w=0 \leadsto R(\xi)=1+\xi+\xi^{2} \\
& \Psi(\zeta, \eta)=-2 \zeta \boldsymbol{\eta}, \leq 0: Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} ; \text { negative on } \mathfrak{B} .
\end{aligned}
$$

The polynomial Lyapunov equation becomes

$$
\left(x_{0}-x_{1} \xi\right)\left(1+\xi+\xi^{2}\right)+\left(1-\xi+\xi^{2}\right)\left(x_{0}+x_{1} \xi\right)=-2 \xi^{2}
$$

Example

$$
\begin{aligned}
& \mathfrak{B} \cong w+\frac{d}{d t} w+\frac{d^{2}}{d t^{2}} w=0 \leadsto R(\xi)=1+\xi+\xi^{2} \\
& \Psi(\zeta, \eta)=-2 \zeta \boldsymbol{\eta}, \leq 0: Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} ; \text { negative on } \mathfrak{B} .
\end{aligned}
$$

The polynomial Lyapunov equation becomes

$$
\left(x_{0}-x_{1} \xi\right)\left(1+\xi+\xi^{2}\right)+\left(1-\xi+\xi^{2}\right)\left(x_{0}+x_{1} \xi\right)=-2 \xi^{2}
$$

Solution is $x(\xi)=-\xi$, induces

$$
\Phi(\zeta, \eta)=\frac{x(\zeta) r(\eta)+r(\zeta) x(\eta)}{\zeta+\eta}=\frac{\zeta\left(1+\eta+\eta^{2}\right)+\eta\left(1+\zeta+\zeta^{2}\right)}{\zeta+\eta}=1+\zeta \eta
$$

Example

$$
\begin{aligned}
& \mathfrak{B} \cong w+\frac{d}{d t} w+\frac{d^{2}}{d t^{2}} w=0 \leadsto R(\xi)=1+\xi+\xi^{2} \\
& \Psi(\zeta, \eta)=-2 \zeta \boldsymbol{\eta}, \leq 0: Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} ; \text { negative on } \mathfrak{B} .
\end{aligned}
$$

The polynomial Lyapunov equation becomes

$$
\left(x_{0}-x_{1} \xi\right)\left(1+\xi+\xi^{2}\right)+\left(1-\xi+\xi^{2}\right)\left(x_{0}+x_{1} \xi\right)=-2 \xi^{2}
$$

Solution is $x(\xi)=-\xi$, induces

$$
\begin{aligned}
\Phi(\zeta, \eta) & =\frac{x(\zeta) r(\eta)+r(\zeta) x(\eta)}{\zeta+\eta}=\frac{\zeta\left(1+\eta+\eta^{2}\right)+\eta\left(1+\zeta+\zeta^{2}\right)}{\zeta+\eta}=1+\zeta \eta \\
& \sim \text { L.f. } Q_{\Phi}(w)=w^{2}+\left(\frac{d}{d t} w\right)^{2}, \text { derivative: } \frac{d}{d t} Q_{\Phi}=Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathfrak{B} \cong w+\frac{d}{d t} w+\frac{d^{2}}{d t^{2}} w=0 \leadsto R(\xi)=1+\xi+\xi^{2} \\
& \Psi(\zeta, \eta)=-2 \zeta \eta, \leq 0: Q_{\Psi}(w)=-2\left(\frac{d}{d t} w\right)^{2} ; \text { negative on } \mathfrak{B} .
\end{aligned}
$$

The polynomial Lyapunov equation becomes

$$
\left(x_{0}-x_{1} \xi\right)\left(1+\xi+\xi^{2}\right)+\left(1-\xi+\xi^{2}\right)\left(x_{0}+x_{1} \xi\right)=-2 \xi^{2}
$$

Solution is $x(\xi)=-\xi$, induces

$$
\Phi(\zeta, \eta)=\frac{x(\zeta) r(\eta)+r(\zeta) x(\eta)}{\zeta+\eta}=\frac{\zeta\left(1+\eta+\eta^{2}\right)+\eta\left(1+\zeta+\zeta^{2}\right)}{\zeta+\eta}=1+\zeta \eta
$$

This construction theorem leads to Lyapunov proofs of the Hurwitz criterion, and the Kharitonov theorem.

Dissipative systems

both the supply rate and the storage function in linear system theory lead to QDF's.

Dissipative systems

Definition: $\quad \mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ is said to be dissipative w.r.t. the supply rate Q_{Φ} with storage function Q_{Ψ} if the dissipation inequality

$$
Q_{\dot{\Psi}}(\ell)=\frac{d}{d t} Q_{\Psi}(\ell) \leq Q_{\Phi}(w)
$$

holds for all $(\boldsymbol{w}, \ell) \in \mathfrak{B}_{\text {full }}$, a latent variable repr. of \mathfrak{B}. If equality holds: 'conservative’.

Dissipative systems

If the storage function acts on w, i.e., if

$$
Q_{\dot{\Psi}}(w)=\frac{d}{d t} Q_{\Psi}(w) \leq Q_{\Phi}(w)
$$

for all $\boldsymbol{w} \in \mathfrak{B}$, then we call the storage function observable.

We consider only observable storage functions and dissipation rates.

Dissipative systems

$$
Q_{\dot{\Psi}}(w)-Q_{\Phi}(w)=-\left\|D\left(\frac{d}{d t}\right)(w)\right\|^{2}
$$

Defines the dissipation rate D.

Dissipative systems

$$
Q_{\dot{\Psi}}(w)-Q_{\Phi}(w)=-\left\|D\left(\frac{d}{d t}\right)(w)\right\|^{2}
$$

Defines the dissipation rate D.

Central problem: Given R and Φ, construct $\Psi \leftrightarrow D$.

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF, the supply rate.
The following are equivalent:

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate.
The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support.

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate.
The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

2. Dissipativity $: \exists \Psi$ such that

$$
Q_{\dot{\Psi}} \stackrel{\mathfrak{B}}{\leq} Q_{\Phi}
$$

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate.
The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

2. Dissipativity
3. Dissipativity : $\exists \Psi, D$ such that

$$
Q_{\dot{\Psi}}(\zeta, \eta) \stackrel{\mathfrak{B}}{=} Q_{\Phi}(\zeta, \eta)+D^{\top}(\zeta) D(\eta)
$$

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate. The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

2. Dissipativity
3.

$$
M^{\top}(-i \omega) \Phi(-i \omega, \omega) M(i \omega) \geq 0
$$

for all $\omega \in \mathbb{R}$, with $\boldsymbol{w}=M\left(\frac{d}{d t}\right) \ell$ any image repr. of \mathfrak{B}.

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate. The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

2. Dissipativity
3.

$$
M^{\top}(-i \omega) \Phi(-i \omega, \omega) M(i \omega) \geq 0
$$

4. Dissipation function : $\exists \boldsymbol{F}$ such that

$$
M^{\top}(-\xi) \Phi(-\xi, \xi) M(\xi)=F^{\top}(-\xi) F(\xi)
$$

Existence of storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate.
The following are equivalent:
1.

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

2. Dissipativity
3.

$$
M^{\top}(-i \omega) \Phi(-i \omega, \omega) M(i \omega) \geq 0
$$

4. Dissipation function
5. Other representations, adapted conditions ...

Non-negative storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF, the supply rate.
The following are equivalent:

Non-negative storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate. The following are equivalent:

1. 'half-line dissipativity’

$$
\int_{-\infty}^{0} Q_{\Phi}(w) d t \geq 0
$$

for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support.

Non-negative storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF , the supply rate. The following are equivalent:

1. 'half-line dissipativity'
2. Dissipativity with a non-negative storage function
$\exists \Psi$ such that

$$
Q_{\Psi} \stackrel{\mathfrak{B}}{\geq} 0 \quad \text { and } \quad Q_{\dot{\Psi}} \stackrel{\mathfrak{B}}{\leq} Q_{\Phi}
$$

Non-negative storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF, the supply rate.
The following are equivalent:

1. 'half-line dissipativity'
2. Dissipativity with a non-negative storage function
3. A Pick matrix condition on $M^{\top}(-\xi) \Phi(-\xi, \xi) M(\xi)$ with $w=M\left(\frac{d}{d t}\right) \ell$ any image representation of \mathfrak{B}.

Non-negative storage f'ns

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, controllable, \boldsymbol{Q}_{Φ} a QDF, the supply rate. The following are equivalent:

1. 'half-line dissipativity'
2. Dissipativity with a non-negative storage function
3. A Pick matrix condition on $M^{\top}(-\xi) \Phi(-\xi, \xi) M(\xi)$
4. Other representations, adapted conditions ...

Storage functions

Remarks:

1. If there exists a storage function, there exists one that is a QDF.

Every observable storage f'n is a memoryless state f' n !

Storage functions

Algorithmic issues.
2. The set of observable storage functions is convex, compact, and attains its maximum and minimum:

$$
\begin{gathered}
Q_{\Psi_{\text {available }}} \stackrel{\mathfrak{B}}{\leq} Q_{\Psi} \stackrel{\mathfrak{B}}{\leq} Q_{\Psi_{\text {required }}} \\
Q_{\Psi_{\text {available }}(w)(0):=\operatorname{supremum}\left\{-\int_{0}^{\infty} Q_{\Phi}(\hat{w}) d t\right\}} \\
Q_{\Psi_{\text {required }}(w)(0)}:=\operatorname{infimum}\left\{\int_{-\infty}^{0} Q_{\Phi}(\hat{w}) d t\right\}
\end{gathered}
$$

with the sup and inf over all $\hat{\boldsymbol{w}}$ such that the concatenations,

$$
\hat{\boldsymbol{w}} \wedge_{\mathbf{0}} \boldsymbol{w}, \boldsymbol{w} \wedge_{\mathbf{0}} \hat{\boldsymbol{w}} \in \boldsymbol{\mathfrak { B }}
$$

Storage functions

Algorithmic issues.
3. The condition: Given $R\left(\frac{d}{d t}\right) w=0$ and $\Phi, ¿ \exists \Psi$ such that

$$
Q_{\dot{\Psi}} \stackrel{\mathfrak{B}}{\leq} Q_{\Phi}
$$

is actually an LMI.
Most easily seen by going to image representation:
\cong given Φ ¿ $\exists \Psi$ such that

$$
(\zeta+\eta) \Psi(\zeta, \eta) \leq \Phi(\zeta, \eta)
$$

Obviously an LMI in the coefficients of Ψ.

Storage functions

Algorithmic issues.
4. We can also compute the dissipation rate first: Given Φ,
$¿ \exists \Delta$ such that

$$
\Delta+\Delta^{\top} \geq 0 \quad \text { and } \quad \Phi(-\xi, \xi)=\left[\begin{array}{c}
I \\
-I \xi \\
\vdots \\
(-1)^{n} \xi^{n}
\end{array}\right]^{\top} \quad \Delta\left[\begin{array}{c}
I \\
I \xi \\
\vdots \\
\xi^{\mathrm{n}}
\end{array}\right]
$$

Obviously an LMI in the coefficients of Δ.

there is much more

... many more applications, many more to be expected from various areas:

■ B/QDF's for distributed systems (Pillai e.a) ;
■ SOS (Parrilo)
\square Representation-free \boldsymbol{H}_{∞} control- and filtering (Trentelman, Belur)

■ LQ-control for higher-order systems (Valcher)

- Balancing and model reduction

■ Bilinear- and quadratic difference forms (discrete-time) (Fujii \& Kaneko)

Conclusion

State systems \Leftrightarrow quadratic functionals

High order linear differential eq'ns \Leftrightarrow QDF's

Conclusion

State systems \Leftrightarrow quadratic functionals

High order linear differential eq'ns \Leftrightarrow QDF's

Stay with the original, parsimonious, model
No need to put things in state form...

Thank you

Thank you

Thank you

Thank you
Thank you

Thank you

Thank you

