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Introduction

Given: a linear differential system, with variables w

Often necessary to study functionals of w and its derivatives
di

25 W, for example in

i B Lyapunov functions for high-order diff. eq’ns;
B Performance criteria in control and filtering problems;

B Modeling physical quantities/properties,

as power, energy; dissipativity, conservation laws;

Of special interest quadratic and bilinear functionals.
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Introduction

Given: a linear differential system, with variables w

Often necessary to study functionals of w and its derivatives
di

25 W, for example in

B Lyapunov functions for high-order diff. eq’ns;

B Performance criteria in control and filtering problems;

B Modeling physical quantities/properties,

as power, energy; dissipativity, conservation laws;

Of special interest quadratic and bilinear functionals.

Could reduce to 1-st order eg’ns and constant functionals;
but why not address such issues in the original representation?
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Example: Lyapunov stability

Consider trajectories (u, y) € €°°(R, R?) described by

Py = a(5

Lyapunov stability: assume u = 0; ¢lim;_, . y(t) =02

QDF’s — p.4/35



Example: Lyapunov stability

Consider trajectories (u, y) € €°°(R, R?) described by
d d
P(E)y = CI(E)’UJ

Lyapunov stability: assume u = 0; ¢lim;_, . y(t) =02
Check if there exists a quadratic functional

dF dt
Qy) = %Qk,z(@y)(@y)
with Q(y)(t) >0 and 2Q(y)(t) <O

along solutions of p(%)y =0...

Why cast this into state form (nontrivial for multivariable case!)?
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Bilinear differential forms

Let Py, € R"17X¥2, k, £ =0,1,2,...,Land w; € €°(R, R%).

The functional
Ls : €°°(R, R"l) X E° (]R, R"?) — E*° (]R, IR{) defined by

Lg(wy,wz) := Zke O(dtkwl)T(I)k e(dtewz)

Is called a bilinear differential form (BDF).

QDF’s — p.5/35



Quadratic differential forms

Let P, € R"*", k, £ =0,1,2,...,Land w € €°(R, R").

The functional Q4 : €° (R, R") — €*°(R, R) defined by

Q‘I’(w) _Zke O(dtkw)T(I)ke(dte )

is called a quadratic differential form (QDF).

QDF’s — p.6/35



Example

QDF: Total energy in spring-mass system

2

) -
Ei_lir 0 Tl)(:ti)

Eot(t) = |w(t) Lw(t)] 0 M| |La(t)
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Two-variable polynomial matrices

Entries are polynomials with real coefficients in two

indeterminates:

L
®(¢,m) = > Ppeltn’

k,.=0

with ®;, , € R¥1X¥2,
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Two-variable polynomial matrices

Entries are polynomials with real coefficients in two
indeterminates:

L
®(¢,m) = > Ppeltn’

k,.=0

with @, , € R" "2, In 1431 relation with the BDF Ly
C*°(R,R") X €°(R, R"?) — €*°(R, R)

Lg(wy, wz) := ch ()(dtk:wl)T(I)k: e(dtewz)

the bilinear differential form L4 (BDF) induced by ®({, )

QDF’s — p.8/35



Two-variable polynomial matrices and QDF’s
Letw; = wo = win

L
®(¢,m) = Z ®.,0¢ 0"
ke, £=0

The QDF € (R, R") — € (R, R)

£
Ly(w,w) = Qp(w) = Zke O(dt,cw)TcI)M%w

is called the quadratic differential form Q¢ induced by ®({, 1)
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Two-variable polynomial matrices and QDF’s

Letw; = wo = win

L
®(¢,m) = > Ppeln’

k=0

The QDF € (R, R") — € (R, R)
2
Ly (w,w) = Qe(w) = Zk = o(dtkw)T(I)k,E%w
is called the quadratic differential form Q¢ induced by ®({, 1)

WLOG P , = (I)Zk ie. ®(¢,n) = P(n,¢)" (symmetry)
1 <+ 1 relation with QDF’s
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Examples

M Total energy for oscillator M%w + Kw = 0 induced by

1 1
®(¢,n) = EMCW + EK

since Qo (w) = 1M (Lw)? 4+ I Kw>.

QDF’s — p.10/35



Examples

¢, Polynomial matrix for Q& ?

d _17a d 0 1 w1
wz(awl)—i[mwl E'w2] [0 o s

Therefore (I)(C, 77) — %
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The calculus of QDF’s

1. Basics of linear differential systems
Differentiation
Integration

QDF’s along behaviors

o & O b

Positivity
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Linear differential systems

d d?
R0+R1£W+R2dt2w ... —|—RL—’LU =0

R, € R&*¥ ¢ = 0,..., L. Associated one-variable polynomial

matrix:

R(¢) = Ry + Ri&+ ...+ R g™ € REV[¢]
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Linear differential systems

d d?
R0+R1£W+R2dt2w ... —|—RL—’LU =0

R, € R&*¥ ¢ = 0,..., L. Associated one-variable polynomial

matrix:
R(¢) = Ry + Ri&+ ...+ R g™ € REV[¢]

( )w =0 kernel representation
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Linear differential systems

Ry + R d + R @ —+ + R & 0
— — e o o —Ww =
0 tar’ 2412 7 L deL

R, € R&*¥ ¢ = 0,..., L. Associated one-variable polynomial

matrix:

R(¢) = Ry + Ri&+ ...+ R g™ € REV[¢]

R(Z)w =0 kernel representation

More than a representation issue:
W d calculus of representations;

B Time-domain properties < algebraic properties

QDF’s — p.12/35



Linear differential systems

Often in order to model the behavior of w (‘manifest’ variable), we

need to consider the £ ('latent’ variable) as well:

( Jw = M ( - )L latent variable repr’on

QDF’s — p.13/35



Linear differential systems

Often in order to model the behavior of w (‘manifest’ variable), we
need to consider the £ ('latent’ variable) as well:

( Jw = M ( - )L latent variable repr’on

‘State’ variable is special latent variable ('Markovian’)

1-st order representation is consequence of state property!
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Linear differential systems

Often in order to model the behavior of w (‘manifest’ variable), we

need to consider the £ ('latent’ variable) as well:

( Jw = M ( - )L latent variable repr’on

‘State’ variable is special latent variable ('Markovian’)

1-st order representation is consequence of state property!

Observability of £ from w: (w = 0) = (£ = 0)

QDF’s — p.13/35



The calculus of QDF’s: differentiation

Consider Q4 induced by & € R"*¥[(, 7]

The derivative of Q4 is
d
aQq, : € (R, RY) — € (R, R)

(7Q2)(w) := £Qs(w)

Also a QDF!
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The calculus of QDF’s: differentiation

Consider Q4 induced by & € R"*¥[(, 7]

The derivative of Q4 is
d
aQq, : € (R, RY) — € (R, R)

(5£Qs)(w) := £ Qq(w)
Also a QDF!

¢ Which matrix in RY*"[(, 17] induces %Qq, ?
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The calculus of QDF’s: differentiation

Consider Q4 induced by & € R"*¥[(, 7]

The derivative of Q& is
d
aQq, : € (R, RY) — € (R, R)

(5£Qs)(w) := £ Qq(w)
Also a QDF!

¢ Which matrix in RY*"[(, 17] induces %ch ?

The matrix ‘i’(C, n) = (¢ +n)®(¢,n)!

QDF’s — p.14/35



Calculus of QDF’s: integration

Consider compact-support €°-trajectories (denoted ® (R, R®)),
let

Ls : ®(R,R") x D(R, R"?) —» D(R, R)
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Calculus of QDF’s: integration

Consider compact-support €°-trajectories (denoted ® (R, R®)),
let

Ls : DR, R") X D(R,R"?) - D(R, R)
Integral of L 3 defined

[Le : D(R,R") x D(R,R?) — R
qu,(wl, wg) pp— fioo ch(wl, ’U]g)dt
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Calculus of QDF’s: integration

Consider compact-support €°-trajectories (denoted ® (R, R®)),
let

Ls : ®(R,R") x D(R, R"?) —» D(R, R)

Integral of L 3 defined
qu, : O(R,R") x D(R,R"?) — R
[ Le(wy,ws) := ffoo Lg(wq,ws)dt
Is it a BDF? Not always, but when? Analogous question for QDF’s.

‘Path independence’ (cfr. Brockett’s work in the 1960’s)
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Integration

¢Given Q g, does there exista ¥ ({, )
such that %Q\p = Q3?

QDF’s — p.16/35



Integration

¢Given (3, does there exista ¥ ((, n)
such that %Q\p = Qa?

Theorem: Let & € R"*¥|(, n7]. The following are
equivalent:

1. there exists ¥ € RY*¥[(, 1] such that

®(¢,m) = (C+n)¥(E,n),

equivalently, %qu = Qas;

2. P(—§,8) = 0.

QDF’s — p.16/35



QDF’s along behaviors: example

Often need to evaluate QDF’s on w € *B (“along *55”)
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QDF’s along behaviors: example

Often need to evaluate QDF’s on w € *B (“along *55”)

Example: Mass- spring system
_{'w|Mdt2'w Kw = 0}

Total energy ~ P ((, 1) = %M(jn + %K
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QDF’s along behaviors: example

Often need to evaluate QDF’s on w € *B (“along *55”)

Example: Mass- spring system
B ={w| M2 tsz Kw = 0}

Total energy ~ P ((, 1) = %M(jn + %K

%Qq)(w) — O for all w € B expressed as

(€ +n)®(¢5n)

(¢ +m)(5 M¢n + 5 K)

1 1
5 (ME+K)  n+ ¢ (Mn®+K)

—o if evaluated on wes —o if evaluated on wes

QDF’s — p.17/35



QDF’s which are zero along behaviors

() is zero on B, written Q4 = 0,if Qa(w) = O for
allw € 8

QDF’s — p.18/35



QDF’s which are zero along behaviors

() is zero on B, written Q4 = 0,if Qa(w) = O for
allw € B

B
Theorem: Let 5 = ker R(%). Then Q3 = 0 if and
only if there exists F' € R***[(, 1] such that

®(¢,m) = R()"F(¢,n) + F(n,¢) " R(n)

QDF’s — p.18/35



Equivalence of QDF’s along behaviors

Qs =2 Qy iff exists F' € R *'[(, 1] such that

®(¢,n) —¥(¢,m) = R(C)'F(¢,n) + F(n,¢) " R(n)

QDF’s — p.19/35



Equivalence of QDF’s along behaviors

Qs = Quy iff exists F € R'**[¢, 1] such that

®(¢,n) —¥(¢,m) = R(C)'F(¢,n) + F(n,¢) " R(n)

Example: ¢31% + 1 = ¢n + 1 when B = ker (% + 1).

Indeed,

d? 0 — d3 B d
@w—l—w = ——Ww

> w
dt3 dt
In two-variable polynomial terms:

'+ 1= (Cn+1)+ (¢ +1)(n°) + (Pn)(n* + 1)
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Positivity of QDF’s

® ¢ R"*¥|[(, n] is nonnegative (written ® > 0)if Qs (w) > 0
forallw € € (R, R").

® € R"*¥[(, n] is positive (written & > 0) if & > 0 and
(Qe(w) = 0) = (w = 0).

QDF’s — p.20/35



Positivity of QDF’s

® ¢ R"*¥|[(, n] is nonnegative (written ® > 0)if Qs (w) > 0
forallw € € (R, R").

® € R"*¥[(, n] is positive (written & > 0) if & > 0 and
(Qe(w) = 0) = (w = 0).

® >0 < exists D € R*[¢]: @(¢,n) = D' (¢)D(n)

® >0« exists D € R**¥[¢] : @(¢,n) = D' (¢)D(n)

andrank D(A) = w VA € C
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Positivity of QDF’s along behaviors

D2
® € R"*¥[(, n] is nonnegative along 25 (written ® > 0) if
Qas(w) > Oforallw € B.

43 D3]
® € R"*"|[(, n] is positive along 23 (written & > 0)if ® > 0
and (Qs(w) = 0) = (w = 0).
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Qas(w) > Oforallw € B.

Positivity of QDF’s along behaviors

D2
® € R"*¥[(, n] is nonnegative along 25 (written ® > 0) if

43 D3]
® c R"*¥[(, n] is positive along 25 (written ® > 0)if & > 0

and (Qs(w) = 0) = (w = 0).

B
® >0 39 € RF[¢,n]st (¢, m) = @(C,n) and @ > 0

) § 0 < 38’ € R¥XV[¢, 0] st. ®(C,m) = @ (C,m)

®'(¢,m) = D' (¢)D(n) and rank

oy

R

=w VA e C
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Part Il

APPLICATIONS

= Lyapunov theory
®m The construction of storage functions

QDF’s — p.22/35



Is there

a Lyapunov theory for systems described by high order
differential equations?

cfr. early work by Fuhrmann.
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An example

Consider the mechanical system

Kw-+ D d + M d’ 0
w —w —w =
dt dt2

QDF’s — p.24/35



Consider the mechanical system

Kw+ D d 4+ M d’ 0
w —w —w =
dt dt?

The stored energy equals

d 1 1, d d
E(w, E'w) = E'wTK'w + E(a'w)TM(a'w)

The dissipation equals

L B(w, w) 2 —(SLw)TD(w)

An example

QDF’s — p.24/35



Consider the mechanical system

Kw-+ D d + M d’ 0
w —w —w =
dt dt2

The stored energy equals

d 1 1, d d
E(w, a'w) = E'wTK'w + E(a'w)TM(a'w)

The dissipation equals

L B(w, w) 2 —(SLw)TD(w)

Conclude stability if e.g.

An example

K=KT>0M=MT>0,D+DT >0

QDF’s — p.24/35



Consider the mechanical system

Kw-+ D d + M d’ 0
w —w —w =
dt dt2

The stored energy equals

d 1 1, d d
E(w, a'w) = E'wTK'w + E(a'w)TM(a'w)

The dissipation equals

L B(w, w) 2 —(SLw)TD(w)

asymptotic stability if e.g.

An example

K=K'">0M=M">0D+D" >0

QDF’s — p.24/35



An example

Consider the mechanical system

Kw+ D d 4+ M d’ 0
w —w —w =
dt dt?

The stored energy equals

d 1 1, d d
E(w, a'w) = E'wTK'w + E(a'w)TM(a'w)

The dissipation equals

L B(w, w) 2 —(SLw)TD(w)

1. No need to put the system in state form.

2. Draw conclusions directly from polynomial matrix calculus.

QDF’s — p.24/35



An example

Consider the mechanical system

d d? . o 2

The stored energy equals

d 1 1 d d 1 1

The dissipation equals

4w Ly E (LTl = YpipT
= B(w, w) 2 — (S w)TD(w) (D +DT)¢r

Which R(&),V(¢,m), 17’95 (¢,m) lead to stability?
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Lyapunov theorem

Given: B, w variables, autonomous. Is *35 stable?

¢ limy o w(t) =O0forallw € B ?

QDF’s — p.25/35



Lyapunov theorem

Given: $B, w variables, autonomous. Is %33 stable?

¢ limy o w(t) =O0forallw € B ?

Theorem: %5 is stable << there exists
® c R"*¥[(, n] such that

B B
Qs > 0 and Q&) < 0.

Recall  ®(C,n) = (C+ 1) B(C,n)

The general theory teaches us how to verify 23 -positivity.
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Construction of Lyapunov functions

Recall the construction for first order representations

d
—x = Ax, A Hurwitz.
dt

Take Q@ = Q' < 0 and solve the Lyapunov eq’n
AP+ PA=Q

forP =P" > 0.
Lyapunov function is x| Pz, its derivative is a:TQac.

This completely generalizes to high order differential equations.
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Construction of Lyapunov functions

Given B = ker(R(%)), R € R"*¥[£],det(R) # 0.

QDF’s — p.26/35



Construction of Lyapunov functions

Given B = ker(R(%)), R € R"*¥[£],det(R) # 0.
B Choose ¥ € R"*¥[(, n]

W Solve the polynomial Lyapunov equationin X € R"*¥[]

R(—€)" X (&) + X(—€) "R(§) = ¥(—¢&,¢)

_ T
H Define ®({, 1) = ‘I’(C”?)—R(C)Té_(:) X ()T R(n)

QDF’s — p.26/35



Construction of Lyapunov functions

Given B = ker(R(%)), R € R"*[¢],det(R) # 0.
B Choose ¥ € R"*¥[(, n]

W Solve the polynomial Lyapunov equationin X € R"*V[£]

R(—€)" X (&) + X(—€) "R(§) = ¥(—¢&,¢)

H Define ®({, 1) = ‘I’(C”?)—R(C)Té(:)—X(C)TR(n)

2
e —
P

D3]
Then Q Qe ie. 2Qs = Qu

B B
and Qg >0 if *Bisstableand Q¢ <0

QDF’s — p.26/35



Example

12

5

w+%w—|—%w=0 ~ R(§) =1+ € + &2
U(,m) =—-2(1n,<0:Qu(w) = —2(%10)2; negative on 8.
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Example

12

5

2
w4+ Lw+ Lw=0 ~ R(&) =1+&+ &
U(,m) =—-2(1n,<0:Qu(w) = —2(%11))2; negative on 8.
The polynomial Lyapunov equation becomes

(o —218) (1 + &+ &%) + (1 — € + €%) (w0 + z1€) = —2€2

QDF’s — p.27/35



Example

12

5

(¢, =—-2(n<0:Qg(w) = —2(%11))2; negative on 5.

w—l—%w—l—%w:O ~ R(§) =1+ € + &2

The polynomial Lyapunov equation becomes

(o —218) (1 + &+ &%) + (1 — € + €%) (w0 + z1€) = —2€2

Solution is ¢ (£) = —&, induces

z(QOr(n) +r(Qzmn) _ CA+n+n?)+n0+¢+¢?)

=1
C+n C+n +n

®(¢,m) =
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Example

12

5

(¢, =—-2(n<0:Qg(w) = —2(%11))2; negative on 5.

w—l—%w—l—%w:O ~ R(€) =1+ &+ &2

The polynomial Lyapunov equation becomes

(o —218) (1 + &+ &%) + (1 — € + €%) (w0 + z1€) = —2€2

Solution is ¢ (£) = —&, induces

z(QOr(n) +r(Qzmn) _ CA+n+n?)+n0+¢+¢?)

=1
C+n C+n +n

®(¢,m) =

~ L Qo (w) = w? + (%w)z,derivative: %Qq; = Qu(w) = —2(%10)2.

QDF’s — p.27/35



Example

12

5

(¢, =—-2(n<0:Qg(w) = —2(%11))2; negative on 5.

w—l—%w—l—%w:O ~ R(§) =1+ € + &2

The polynomial Lyapunov equation becomes

(o —218) (1 + &+ &%) + (1 — € + €%) (w0 + z1€) = —2€2

Solution is ¢ (£) = —&, induces

z(QOr(n) +r(Qzmn) _ CA+n+n?)+n0+¢+¢?)

=1
C+n C+n +em

®(¢,m) =

This construction theorem leads to Lyapunov proofs of
the Hurwitz criterion, and the Kharitonov theorem.
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Dissipative systems

both the supply rate and the storage function in linear
system theory lead to QDF’s.
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Dissipative systems

Definition: B € £¥ is said to be dissipative
w.r.t. the supply rate Q4 with storage function Q< if the

dissipation inequality

Q. (€) = £Qu () < Qs (w)

holds for all (w, £) € By, a latent variable repr. of 5.
If equality holds: ‘conservative’.

QDF’s — p.29/35



Dissipative systems

If the storage function acts on w, i.e., if

Q; (w) = £Qu(w) < Qs(w)

for all w € B, then we call the storage function observable.

We consider only observable storage functions and dissipation

rates.

QDF’s — p.29/35



Dissipative systems

Qs (w) — Qa(w) = —||D(L)(w)|?

Defines the dissipation rate .

QDF’s — p.29/35



Dissipative systems

Q&,(w) — Qa(w)

—[1D(g)(w)]?

Defines the dissipation rate .

Central problem: Given iR and ®, construct ¥ < D.

QDF’s — p.29/35



Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:
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Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.
fj;o Qs(w)dt > 0

for all w € *B of compact support.

QDF’s — p.30/35



Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.
fj;o Qa(w)dt >0

2. Dissipativity : 3 W such that
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Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.

fj;o Qs(w)dt > 0
2. Dissipativity
3. Dissipativity : 3 W, D such that

Qs (¢;m) = Qa(¢sm) + DT (¢)D(n)

QDF’s — p.30/35



Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.
fj;o Qs(w)dt > 0
2. Dissipativity

> MT (—iw)®(—iw, w) M (iw) > 0

forall w € R, withw = M(%)K any image repr. of ‘8.

QDF’s — p.30/35



Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.

fj;o Qs(w)dt > 0
2. Dissipativity
> MT (—iw)®(—iw, w) M (iw) > 0
4. Dissipation function : d F' such that

M (=£)®(=§,&)M(E) = F' (=€) F(§)
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Existence of storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1.
fj;o Qs(w)dt > 0

2. Dissipativity
M'" (—iw)®(—iw,w)M (iw) > 0

4. Dissipation function

5. Other representations, adapted conditions ...

QDF’s — p.30/35



Non-negative storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:
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Non-negative storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

I°_Qs(w)dt >0

for all w € *B of compact support.
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Non-negative storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:
1. ‘half-line dissipativity’

2. Dissipativity with a non-negative storage function
3 W such that

5
Q\Il 2 0 and Qo S Q¢°
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Non-negative storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with a non-negative storage function

3. A Pick matrix conditionon M ' (—&)®(—&, &) M (€)
withw = M (%)E any image representation of ‘3.
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Non-negative storage f'ns

Theorem: Let 2B € £7, controllable, Q3 a QDF, the supply rate.
The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with a non-negative storage function

3. A Pick matrix conditionon M ' (—&)®(—&, &) M (€)

4. Other representations, adapted conditions ...
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Storage functions

Remarks:

1. If there exists a storage function, there exists one that is a QDF.

Every observable storage f'n is a memoryless state f'n!
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Storage functions

Algorithmic issues.

2. The set of observable storage functions is

convex, compact, and attains its maximum and minimum:

DS 5
Q\Pavailable S Q‘Il S Q\I"required

Q‘I’available (’UJ)(O) = Supremum{_/(; Q@('lb) dt}
0)
Qu requirea ()(0) = infimum{ [ Qa () dt}
with the sup and inf over all W such that the concatenations,

’li]/\()w, ’lU/\(]’lf] € 8.
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Storage functions

Algorithmic issues.
3. The condition: Given R(%)’w = 0 and ®,|; 3 ¥ |such that

Qs < Qu

is actually an LMI.

Most easily seen by going to image representation:
= given @ | ; J W |such that

(C+m)¥(,n) < 2(¢,n)-

Obviously an LMI in the coefficients of W.
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Storage functions

Algorithmic issues.

4. We can also compute the dissipation rate first: Given P,
¢, 3 A |such that

_ _T - -
I I

—1I¢ I¢

A+AT >0 and ®(—&,¢) = : Al
el e

Obviously an LMI in the coefficients of A.
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there is much more ...

... many more applications, many more to be expected from

various areas:

B B/QDF’s for distributed systems (Pillai e.a) ;

B SOS (Parrilo)

B Representation-free H ., control- and filtering

(Trentelman, Belur)
B LQ-control for higher-order systems (Valcher)
B Balancing and model reduction

M Bilinear- and quadratic difference forms (discrete-time)
(Fujii & Kaneko)
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Conclusion

State systems <= quadratic functionals

High order linear differential eq’ns << QDF’s
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Conclusion

State systems <= quadratic functionals

High order linear differential eq’ns << QDF’s

Stay with the original, parsimonious, model

No need to put things in state form...
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Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

Thank you
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