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Part I

THEORY

Introduction

Basic definitions:
bilinear/quadratic differential forms (BDF’s, QDF’s)

Two-variable polynomial matrices

Calculus of BDF’s, QDF’s
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Introduction

Given: a linear differential system, with variables �
Often necessary to study functionals of � and its derivatives� ��� � � , for example in

Lyapunov functions for high-order diff. eq’ns;

Performance criteria in control and filtering problems;

Modeling physical quantities/properties,

as power, energy; dissipativity, conservation laws;

Of special interest quadratic and bilinear functionals.

Could reduce to 1-st order eq’ns and constant functionals;

but why not address such issues in the original representation?

QDF’s – p.3/35
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Example: Lyapunov stability

Consider trajectories

��� � � 	 
 �� � �  � 	
described by

� � �
�� ��� � � � �
�� ���

Lyapunov stability: assume � � �
; ¿

� ��� �� � � � � 	 ! "

?

Check if there exists a quadratic functional

with and

along solutions of

Why cast this into state form (nontrivial for multivariable case!)?
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Bilinear differential forms

Let

+$ % & , -./ 0 .1

,

243 5 � �3 6 3 7 3 ) ) ) 3 8

and 9: , ; � � -3 -.< �

.

The functional8>= ? ;� � -3 -./ �A@ ;� � -3 - .1 � B ;� � -3 - �

defined by

C = � �ED � � � 	GF ! H$ % &JI K � � L�� L �ED 	 MON $ % & � � P�� P � � 	

is called a bilinear differential form (BDF).
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Quadratic differential forms

Let

+$ % & , -. 0 .

,

Q � R ! " � S � T �U U U � C

and 9 , ;� � -3 - . �

.

The functional

# = ? ;� � -3 -. � B ;� � -3 - �
defined by

# = � 9 � ? � H$ % &JI K � � L�� L 9 � M +$ % & � � P�� P 9 �

is called a quadratic differential form (QDF).
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Example

QDF: Total energy in spring-mass system

V �
V� � � W � ! "

X

tot

� � 	 ! D � � ��� � � � 	 	 � W D � � � � 	 �

X

tot

� � 	 ! Y � � � 	 ��� � � � 	 Z [
\

D � "
" D �

]
^

[
\ � � � 	

��� � � � 	
]

^
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Two-variable polynomial matrices

Entries are polynomials with real coefficients in two

indeterminates:

N �_ � ` 	 ! H
$ % &JI K

N $ % &_ $ ` &

with

N $ % & 
  ./ 0 .1

.

In 1 1 relation with the BDF

the bilinear differential form (BDF) induced by
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Two-variable polynomial matrices

Entries are polynomials with real coefficients in two

indeterminates:

N �_ � ` 	 ! H
$ % &JI K

N $ % &_ $ ` &

with

N $ % & 
  ./ 0 .1

. In 1 1 relation with the BDF

C =�� � �  ./ 	ba �� � �  .1 	 �� � �  	

C = � �ED � � � 	GF ! H$ % &JI K � � L�� L �ED 	 MON $ % & � � P�� P � � 	

the bilinear differential form

C = (BDF) induced by

N �_ � ` 	
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Two-variable polynomial matrices and QDF’s

Let cD ! c � ! c in

N �_ � ` 	 ! H
$ % &JI K

N $ % &_ $ ` &

The QDF

�� � �  . 	 �� � �  	

C = � � � � 	 ! = � � 	 ! H$ % &JI K � � L�� L � 	 MN $ % & � P�� P �

is called the quadratic differential form = induced by

N �_ � ` 	

WLOG i.e. (symmetry)

relation with QDF’s
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Examples

Total energy for oscillator

�1 ��1 9 d e 9 � �
induced by

+ �f 3 g � � 6
7 f g d 6
7 e

since = � � 	 ! D � � ��� � 	 � W D � � �

.

¿Polynomial matrix for ?

Therefore
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Examples

# = � 9D 3 9 � � � 9 � ��� 9D

¿Polynomial matrix for = ?

h1 i ��� h/ j I D � kmlln h/ lln h1 o pq K DK K
rs pq h/ h1
rs

t D � k h/ h1 o pq K KD K
rs pqlln h/lln h1
rs

Therefore
N �_ � ` 	 ! D �

[
\ " _

` "
]

^
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The calculus of QDF’s

1. Basics of linear differential systems

2. Differentiation

3. Integration

4. QDF’s along behaviors

5. Positivity
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Linear differential systems

u K W uD V
V� � W u � V �
V� � � W U U U W u H V H
V� H � ! "

u: 
 v 0 .

,

w ! " �U U U � C

. Associated one-variable polynomial

matrix:

u �x 	 ! u K W uD x W U U U W u H x H 
  v 0 . yx z

kernel representation

More than a representation issue:

calculus of representations;

Time-domain properties algebraic properties
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Linear differential systems

Often in order to model the behavior of � (‘manifest’ variable), we

need to consider the

R

(’latent’ variable) as well:

u � ��� 	 � ! � ��� 	 R

latent variable repr’on

‘State’ variable is special latent variable (’Markovian’)

1-st order representation is consequence of state property!

Observability of from :
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Observability of
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The calculus of QDF’s: differentiation

Consider = induced by

N 
  . 0 .| y_ � ` z
The derivative of = isV

V� = F �� � �  . 	 �� � �  	

� ��� = 	 � � 	 F ! ��� = � � 	

Also a QDF!

¿Which matrix in induces ?

The matrix !

QDF’s – p.14/35



The calculus of QDF’s: differentiation

Consider = induced by

N 
  . 0 .| y_ � ` z
The derivative of = isV

V� = F �� � �  . 	 �� � �  	

� ��� = 	 � � 	 F ! ��� = � � 	

Also a QDF!

¿Which matrix in

 . 0 . | y_ � ` z

induces

��� = ?

The matrix !

QDF’s – p.14/35



The calculus of QDF’s: differentiation

Consider = induced by

N 
  . 0 .| y_ � ` z
The derivative of = isV

V� = F �� � �  . 	 �� � �  	

� ��� = 	 � � 	 F ! ��� = � � 	

Also a QDF!

¿Which matrix in

 . 0 . | y_ � ` z

induces

��� = ?

The matrix

}N �_ � ` 	GF ! �_ W ` 	 N �_ � ` 	

!

QDF’s – p.14/35



Calculus of QDF’s: integration

Consider compact-support

� �

-trajectories (denoted

� �  } 	

),

let C = F � �  ./ 	a � �  .1 	 � �  	

Integral of defined

Is it a BDF? Not always, but when? Analogous question for

QDF’s. ‘Path independence’ (cfr. Brockett’s work in the 1960’s)
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Integration

¿Given � , does there exist a

�� � �
such that

��� � � � ?

Theorem: Let . The following are
equivalent:

1. there exists such that
,

equivalently, ;

2. .
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Integration
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�� � �
such that

��� � � � ?

Theorem: Let

� � � �� �� � �
. The following are

equivalent:

1. there exists
� � � �� �� � �

such that�� � � � � � � �� � �

,

equivalently,

��� � � � ;
2.
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QDF’s along behaviors: example

Often need to evaluate QDF’s on � �
(“along ”)

Example: Mass-spring system

Total energy

for all expressed as

if evaluated on if evaluated on
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QDF’s along behaviors: example

Often need to evaluate QDF’s on � �
(“along ”)

Example: Mass-spring system� � � � ��� � � � � �
Total energy

�� � � � �� � ��

��� � � � � � �
for all � �

expressed as

i� tO� j = i� %� j I i� t� j i D � �� � t D � � j

I D � i �� 1 t � j� �� �� � if evaluated on   ¡ ¢
� t D � � i �� 1 t � j� �� �� � if evaluated on   ¡ ¢
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QDF’s which are zero along behaviors

� is zero on , written � £ � �
, if � � � � � �

for
all � �

Theorem: Let ker . Then if and

only if there exists such that
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for
all � �

Theorem: Let � ker

� ��� �
. Then � £ � �

if and

only if there exists

� ¤ � ¤ �� � �

such that
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Equivalence of QDF’s along behaviors

= ¦ ! § iff exists

¨ 
 ª© 0© y_ � ` z
such that

N �_ � ` 	¬«  �_ � ` 	 ! u �_ 	 M ¨ �_ � ` 	 W ¨ � ` � _ 	 M u � ` 	

Example: when ker .

Indeed,

In two-variable polynomial terms:
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= ¦ ! § iff exists

¨ 
 ª© 0© y_ � ` z
such that

N �_ � ` 	¬«  �_ � ` 	 ! u �_ 	 M ¨ �_ � ` 	 W ¨ � ` � _ 	 M u � ` 	

Example:

_ ® ` ® W S ¦ ! _ ` W S
when ! ker

� �1 ��1 W S 	

.

Indeed, V �
V� � � W � ! " ! V ®
V� ® � ! « V
V� �

In two-variable polynomial terms:

_ ® ` ® W S ! �_ ` W S 	 W �_ � W S 	 �_ ` ® 	 W �_ ® ` 	 � ` � W S 	
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Positivity of QDF’s

N 
  . 0 . y_ � ` z

is nonnegative (written

N "
) if = � � 	 "

for all � 
 �� � �  . 	

.

N 
  . 0 . y_ � ` z

is positive (written
N ¯ "

) if

N "

and� = � � 	 ! " 	 � � ! " 	
.

exists

exists

and rank

QDF’s – p.20/35
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  . 0 . y_ � ` z

is nonnegative (written

N "
) if = � � 	 "

for all � 
 �� � �  . 	

.

N 
  . 0 . y_ � ` z

is positive (written
N ¯ "

) if

N "

and� = � � 	 ! " 	 � � ! " 	
.

N "

exists

  } 0 . yx z F N �_ � ` 	 ! M �_ 	 � ` 	

N ¯ "
exists


  } 0 . yx z F N �_ � ` 	 ! M �_ 	 � ` 	

and rank

�° 	 ! c ±° 
 ²
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Positivity of QDF’s along behaviors

N 
  . 0 . y_ � ` z

is nonnegative along (written
N ¦ "

) if= � � 	 "

for all � 


.

N 
  . 0 . y_ � ` z

is positive along (written

N ¦ ¯ "

) if

N ¦ "

and

� = � � 	 ! " 	 � � ! " 	
.

s.t. and

s.t.

and rank
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Positivity of QDF’s along behaviors

N 
  . 0 . y_ � ` z

is nonnegative along (written
N ¦ "

) if= � � 	 "

for all � 


.

N 
  . 0 . y_ � ` z

is positive along (written

N ¦ ¯ "

) if

N ¦ "

and

� = � � 	 ! " 	 � � ! " 	
.

= ¢´³ Kµ ¶ = ·¹¸ º » ¼ » ½� %� ¾
s.t.

= i � %� j ¢I = · i� %� j

and

= · ³ K

= ¢´¿ K µ ¶= ·À¸ º » ¼ » ½� %� ¾

s.t.

= i� %� j ¢I = · i� %� j

= · i� %� j I Á Â i� j Á i� j and rank

pÃÄÃÅq
Æ �Ç �

È �Ç �
rÉÄÉÅs I . ÊË ¸ Ì
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Part II

APPLICATIONS

Lyapunov theory

The construction of storage functions

...
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Is there

a Lyapunov theory for systems described by high order
differential equations?

cfr. early work by Fuhrmann.
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An example

Consider the mechanical system

� h t Á ��� h t � �1 ��1 h I K

The stored energy equals

The dissipation equals

1. No need to put the system in state form.

2. Draw conclusions directly from polynomial matrix calculus.
Which lead to stability?

QDF’s – p.24/35
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An example

Consider the mechanical system

� h t Á ��� h t � �1 ��1 h I K Î Ï iÐ j I � t ÁÐ t �Ð 1ÒÑ

The stored energy equals

Í i h % ��� h j I D � h Â � h t D � i ��� h j Â � i ��� h j Î D � � t D � �� �

The dissipation equals��� Í i h % ��� h j ¢I ~ i ��� h j Â Á i ��� h j Î D � i Á t Á Â j � �

1. No need to put the system in state form.

2. Draw conclusions directly from polynomial matrix calculus.

Which
u �x 	 � Ó �_ � ` 	 � } Ó ¦ �_ � ` 	

lead to stability?
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Lyapunov theorem

Given: , c variables, autonomous. Is stable?

¿

� ��� �� � � � � 	 ! "

for all � 

?

Theorem: is stable there exists

such that

and

Recall

The general theory teaches us how to verify -positivity.
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Lyapunov theorem

Given: , c variables, autonomous. Is stable?

¿

� ��� �� � � � � 	 ! "

for all � 

?

Theorem: is stable there existsN 
  . 0 . y_ � ` z
such that

= ¦ "
and Ô=

¦Õ "U

Recall

}N �_ � ` 	GF ! �_ W ` 	 N �_ � ` 	

The general theory teaches us how to verify -positivity.
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Construction of Lyapunov functions

Recall the construction for first order representationsV
V� Ö ! × Ö � ×

HurwitzU

Take ! M Õ "

and solve the Lyapunov eq’n

× MOØ W Ø × !

for

Ø ! Ø M ¯ "
.

Lyapunov function is Ö MOØ Ö, its derivative is Ö M ÖU

This completely generalizes to high order differential equations.

Given ker , .

Choose

Solve the polynomial Lyapunov equation in

Define

Then i.e.

and if is stable and
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Construction of Lyapunov functions

Given ! ker

� u � ��� 	 	

,

u 
  . 0 . yx z � ÙÛÚ Ü � u 	 Ý ! "
.

Choose
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Construction of Lyapunov functions

Given ! ker

� u � ��� 	 	

,

u 
  . 0 . yx z � ÙÛÚ Ü � u 	 Ý ! "
.

Choose

 
  . 0 . y_ � ` z

Solve the polynomial Lyapunov equation in


  . 0 . yx z

u �« x 	 M �x 	 W �« x 	 M u �x 	 !  �« x � x 	

Define

N �_ � ` 	 ! § i� %� j ~ Ï i � j ÂÞ i� j ~ Þ i� j Â Ï i� j� t�

Then i.e.

and if is stable and
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Construction of Lyapunov functions

Given ! ker

� u � ��� 	 	

,

u 
  . 0 . yx z � ÙÛÚ Ü � u 	 Ý ! "
.

Choose

 
  . 0 . y_ � ` z

Solve the polynomial Lyapunov equation in


  . 0 . yx z

u �« x 	 M �x 	 W �« x 	 M u �x 	 !  �« x � x 	

Define

N �_ � ` 	 ! § i� %� j ~ Ï i � j ÂÞ i� j ~ Þ i� j Â Ï i� j� t�

Then Ô= ¦ ! § i.e.

��� = ¦ ! §

and = ¦ ¯ "
if is stable and § ¦Õ "
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Example

ß! � W ��� � W �1 ��1 � ! " à u �x 	 ! S W x W x �

á �f 3 g � �ãâ 7f g, ä � ? # § � 9 � �â 7 � ��� 9 � �
; negative on

å

.

The polynomial Lyapunov equation becomes

Solution is , induces

This construction theorem leads to Lyapunov proofs of

the Hurwitz criterion, and the Kharitonov theorem.
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lln êìë I êìí i h j I ~ � i lln h j1îÑ
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Dissipative systems

both the supply rate and the storage function in linear
system theory lead to QDF’s.
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Dissipative systems

Definition:


 ïð

is said to be dissipative

w.r.t. the supply rate ñ with storage function § if the

dissipation inequality

Ô § òó ôöõ ÷÷ø § òó ô ñ ò�ù ô

holds for all

ò�ùûú ó ôýü þÿ � �, a latent variable repr. of .

If equality holds: ‘conservative’.

Defines the dissipation rate .

Central problem: Given and , construct .
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Dissipative systems

If the storage function acts on ù , i.e., if

��� ò�ù ôõ ÷÷ø � ò�ù ô ñ ò�ù ô

for all ù ü

, then we call the storage function observable.

Defines the dissipation rate .

We consider only observable storage functions and dissipation

rates.

Central problem: Given and , construct .
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Dissipative systems

��� ò�ù ô � ñ ò�ù ô õ � � � ò ÷÷ø ô ò�ù ô � � �

Defines the dissipation rate .

Central problem: Given and , construct .
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Dissipative systems

��� ò�ù ô � ñ ò�ù ô õ � � � ò ÷÷ø ô ò�ù ô � � �

Defines the dissipation rate .

Central problem: Given

	
and



, construct

�

.
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Existence of storage f’ns

Theorem: Let

ü ïð

, controllable, ñ a QDF, the supply rate.

The following are equivalent:

1.

2. Dissipativity

3.

4. Dissipation function

5. Other representations, adapted conditions ...
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Non-negative storage f’ns

Theorem: Let

ü ïð

, controllable, ñ a QDF, the supply rate.

The following are equivalent:

1. ‘half-line dissipativity’

2. Dissipativity with a non-negative storage function

3. A Pick matrix condition on

4. Other representations, adapted conditions ...
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Storage functions

Remarks:

1. If there exists a storage function, there exists one that is a QDF.

Every observable storage f’n is a memoryless state f’n!

Algorithmic issues.
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Storage functions

Algorithmic issues.

2. The set of observable storage functions is

convex, compact, and attains its maximum and minimum:

�$#% # &' # ( '*)
� � � �,+ )- . &+ ) /

0í21 31 451 6587 9;: < 9  <>= ? @ ÿA B CD ÿ D E � F
G 0IH 9JK: < ÷ø L

0íNM 7O P 4M 7 Q 9 : < 9  <= ? RTS U D ÿ D E G
VF 0H 9 J: < ÷ø L

with the sup and inf over all

Wù such that the concatenations,

Wù X  ùûú ù X  Wù ü !
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Storage functions

Algorithmic issues.

3. The condition: Given

	 ò ÷÷ø ô ù õ �
and



, ¿

� �

such that

���
� ñ

is actually an LMI.

Most easily seen by going to image representation:Yõ given




¿

� �
such that

ò� � � ô � ò�ú � ô 
 ò�ú � ô !

Obviously an LMI in the coefficients of

�

.
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Storage functions

Algorithmic issues.

4. We can also compute the dissipation rate first: Given




,

¿

� Z

such that

Z � Z � �

and

 ò � �ú � ô õ

[
\]\_^

`
� ` a

...9 � b <c ac
d

e]e_f
�

Z
[

\]\_^
`` a

...ac
d

e]e_f

Obviously an LMI in the coefficients of

Z

.
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there is much more ...

... many more applications, many more to be expected from

various areas:

B/QDF’s for distributed systems (Pillai e.a) ;

SOS (Parrilo)

Representation-free  control- and filtering

(Trentelman, Belur)

LQ-control for higher-order systems (Valcher)

Balancing and model reduction

Bilinear- and quadratic difference forms (discrete-time)

(Fujii & Kaneko)
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Conclusion

State systems quadratic functionals

High order linear differential eq’ns QDF’s

Stay with the original, parsimonious, model

No need to put things in state form...
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Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

QDF’s – p.35/35


	small hfill yb {Part I}
	small hfill yb { Introduction}
	small hfill yb { Example: Lyapunov stability }
	small hfill yb { Bilinear differential forms }
	small hfill yb { Quadratic differential forms}
	small hfill yb { Example}
	small hfill yb { Two-variable polynomial matrices}
	small hfill yb { Two-variable polynomial matrices and QDF's}
	small hfill yb {Examples}
	small hfill yb {The calculus of QDF's}
	small hfill yb {Linear differential systems}
	small hfill yb {Linear differential systems}
	small hfill yb {The calculus of QDF's: differentiation }
	small hfill yb {Calculus of QDF's: integration}
	small hfill yb {Integration}
	small hfill yb {QDF's along behaviors: example}
	small hfill yb {QDF's which are zero along behaviors}
	small hfill yb {Equivalence of QDF's along behaviors}
	small hfill yb {Positivity of QDF's}
	small hfill yb {Positivity of QDF's along behaviors }
	small hfill yb {Part II}
	small hfill yb {Is there}
	small hfill yb {An example}
	small hfill yb {Lyapunov theorem}
	small hfill yb {Construction of Lyapunov functions}
	small hfill yb {Example}
	small hfill yb {Dissipative systems}
	small hfill yb {Dissipative systems}
	small hfill yb {Existence of storage f'ns}
	small hfill yb {Non-negative storage f'ns}
	small hfill yb {Storage functions}
	small hfill yb {there is much more ...}
	small hfill yb {Conclusion}
	 

