LAUDATIO

2004 Johann Bernoulli Lecture BART L.R. DE MOOR

University of Groningen

March 23, 2004

Biography

Biography

^o Halle, Vlaams Brabant, Belgium, in 1960

Studied engineering, Ph.D., at K.U. Leuven

Post-doc at Stanford University

Presently, Professor and head of the research group SISTA, K.U. Leuven

Biography

1991-92 Chief of Staff of Wivina De Meester, Belgian minister of Science and Education

1992-94 Chief of Staff of Wilfried Martens, Belgian prime minister

1994-98 Science Advisor, Government of Flanders

Research

- Subspace Identification
- MPC, etc.
- Quantum control and information theory
- Learning algorithms
- Bio-informatics

System identification

Observed data \mapsto **System model**

System identification

Observed data \mapsto **System model**

Case on interest:

Data = a finite vector time-series record

$$egin{aligned} ilde{w}(1), ilde{w}(2), \dots, ilde{w}(T) & w(t) \in \mathbb{R}^{ ilde{w}} \end{aligned}$$

Model:

a dynamical system that 'explains' this time-series

Subspace Identification

subspace algorithms (oblique projection of 'future' on 'past') pass directly from

$$ilde{w}(1),\ldots, ilde{w}(t),\ldots$$

$$\downarrow \downarrow$$
 to $\downarrow \downarrow$

$$ilde{x}(1),\ldots, ilde{x}(t),\ldots$$

a state trajectory of the system that produced the data.

Subspace Identification

 \rightsquigarrow Reduce the state dimension, split w = (u, y)into inputs and outputs, and solve by least squares, using the reduced \tilde{x} ,

$$\begin{bmatrix} \tilde{x}(t_1+1) & \cdots & \tilde{x}(t_2) \\ \tilde{y}(t_1) & \cdots & \tilde{y}(t_2-1) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(t_1) & \cdots & \tilde{x}(t_2-1) \\ \tilde{u}(t_1) & \cdots & \tilde{u}(t_2-1) \end{bmatrix}$$

Subspace Identification

 \rightsquigarrow Reduce the state dimension, split w = (u, y)into inputs and outputs, and solve by least squares, using the reduced \tilde{x} ,

$$\begin{bmatrix} \tilde{x}(t_1+1) \cdots \tilde{x}(t_2) \\ \tilde{y}(t_1) \cdots \tilde{y}(t_2-1) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \tilde{x}(t_1) \cdots \tilde{x}(t_2-1) \\ \tilde{u}(t_1) \cdots \tilde{u}(t_2-1) \end{bmatrix}$$

This leads to the identified model:

$$egin{aligned} x(t+1) &= Ax(t) + Bu(t) \ y(t) &= Cx(t) + Du(t) \end{aligned}$$

These subspace algorithms have very nice properties...