LAUDATIO

2004 Johann Bernoulli Lecture BART L.R. DE MOOR

Biography

Biography

- ${ }^{\circ}$ Halle, Vlaams Brabant, Belgium, in 1960

■ Studied engineering, Ph.D., at K.U. Leuven

■ Post-doc at Stanford University

■ Presently, Professor and head of the research group SISTA, K.U. Leuven

Biography

■ 1991-92 Chief of Staff of Wivina De Meester, Belgian minister of Science and Education

■ 1992-94 Chief of Staff of Wilfried Martens, Belgian prime minister

- 1994-98 Science Advisor, Government of Flanders

Research

- Applications of SVD, numerical analysis
- Subspace Identification
$■$ MPC, etc.
■ Quantum control and information theory
- Learning algorithms

■ Bio-informatics

System identification

Observed data \mapsto System model

System identification

Observed data \mapsto System model

Case on interest:

Data $=$ a finite vector time-series record

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) \quad w(t) \in \mathbb{R}^{w}
$$

Model:
a dynamical system that 'explains' this time-series

Subspace Identification

subspace algorithms (oblique projection of 'future' on 'past') pass directly from

$$
\tilde{w}(1), \ldots, \tilde{w}(t), \ldots
$$

$$
\downarrow \downarrow \text { to } \downarrow \downarrow
$$

$$
\tilde{x}(1), \ldots, \tilde{x}(t), \ldots
$$

a state trajectory of the system that produced the data.

Subspace Identification

$\leadsto \quad$ Reduce the state dimension, split $w=(u, y)$ into inputs and outputs, and solve by least squares, using the reduced $\tilde{\boldsymbol{x}}$,

$$
\left[\begin{array}{ccc}
\tilde{x}\left(t_{1}+1\right) & \cdots & \tilde{x}\left(t_{2}\right) \\
\tilde{y}\left(t_{1}\right) & \cdots & \tilde{y}\left(t_{2}-1\right)
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ccc}
\tilde{x}\left(t_{1}\right) & \cdots & \tilde{x}\left(t_{2}-1\right) \\
\tilde{u}\left(t_{1}\right) & \cdots & \tilde{u}\left(t_{2}-1\right)
\end{array}\right]
$$

Subspace Identification

$\leadsto \quad$ Reduce the state dimension, split $w=(u, y)$ into inputs and outputs, and solve by least squares, using the reduced $\tilde{\boldsymbol{x}}$,

$$
\left[\begin{array}{ccc}
\tilde{x}\left(t_{1}+1\right) & \cdots & \tilde{x}\left(t_{2}\right) \\
\tilde{y}\left(t_{1}\right) & \cdots & \tilde{y}\left(t_{2}-1\right)
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ccc}
\tilde{x}\left(t_{1}\right) & \cdots & \tilde{x}\left(t_{2}-1\right) \\
\tilde{u}\left(t_{1}\right) & \cdots & \tilde{u}\left(t_{2}-1\right)
\end{array}\right]
$$

This leads to the identified model:

$$
\begin{gathered}
x(t+1)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{gathered}
$$

These subspace algorithms have very nice properties...

