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Problematique

Develop a suitable mathematical framework
for discussing dynamical systems

aimed at modeling, analysis, and synthesis.

� control, signal processing, system identification, � � �� engineering systems, economics, physics, � � �
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Motivational Examples

Electrical circuit
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Electromechanical system

force, position

force, position, torque, angle

� � �� � �� � �� � �� � �� � �

voltage, current

voltage, current

force, position, torque, angle

force, position

!! between the positions, forces, torque, angle, voltages, currents
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Distillation column
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Features: Systems are typically

dynamical
open, they interact with their environment
interconnected, with many subsystems
modular, consisting of standard components

We are looking for a mathematical framework that is adapted to
these features, and hence to computer assisted modeling.
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Historical remarks

Early 20-th century: emergence of the notion of a
transfer function (Rayleigh, Heaviside).

SYSTEM outputinput

Since the 1920’s: routinely used in circuit theory
(Foster, Brune, Cederbaum,

impedances, admittances, scattering matrices, etc.
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� impedances, admittances, scattering matrices, etc.
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1930’s: control embraces transfer functions
(Nyquist, Bode, 
 
 
 �

� plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox,
attempts nonlinear generalization (via Volterra series).

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.8/63



1930’s: control embraces transfer functions
(Nyquist, Bode, 
 
 
 �

� plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox,
attempts nonlinear generalization (via Volterra series).

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.8/63



1960’s: Kalman’s state space ideas (incl. controllability,
observability, recursive filtering, state models and representations)
come in vogue

or its nonlinear counterpart
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� input/state/output systems, and the ubiquitous�� �� � � � ���� �� � � � ���
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These mathematical structures, transfer functions, + their
discrete-time analogs, are nowadays the basic models used in
control and signal processing (cfr. MATLAB c

�
).

All these theories: input/output; cause effect.

SYSTEM outputinput
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Beyond input/output

What’s wrong with input/output thinking?

Let’s look at examples: Our electrical circuit.
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An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.

What are the inputs?

at the wind terminal: the force,
at the tires: forces, or, more likely, positions?
at the steering wheel: the torque or the angle?
at the gas-, or brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired)
interconnection variables!
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Input/output is awkward in modeling interconnections.

Consider a two-tank example.

p
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f, 1 p f
2 2,, 22
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1

f’, 1 p"

Reasonable input choices: the pressures,
output choices: the flows.

Assume that we model the interconnection of the two tanks.

, 22
fp

1
f, 1 p

Interconnection:

input=input; output=output! SIMULINK c
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Interconnections contradicting SIMULINK c

�

are in fact

the rule, not the exception,

in mechanics, fluidics, heat transfer, etc.
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Mathematical difficulties

Is a system a map � � 
 �#" � � 
 � ?

How to incorporate ’initial conditions’?

Is it a parameterized map ?
All sorts of new difficulties...

Construct the state!

But from what?
From the system model!

What system?
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Is a system a map � � 
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How to incorporate ’initial conditions’?

Is it a parameterized map

$ �%� � 
 �� & �" � � 
 � ?
All sorts of new difficulties...

Construct the state!

But from what?
From the system model!

What system?

'

Cfr. the book of Kalman, Falb, and Arbib
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Conclusions

( for physical systems ( signal processors) (
External variables are basic, but what ‘drives’ what, not.

It is impossible to make an a priori, fixed, input/output
selection for off-the-shelf modeling.

What can be the input, and the output should be deduced from
a dynamical model. Therefore, we need a more general notion
of ‘system’, of ‘dynamical model’.

Interconnection, variable sharing, rather that input selection, is
the basic mechanism by which a system interacts with its
environment.

We need a better framework for discussing ‘open’ systems!

Behavioral systems.
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The basic concepts

Behavioral systems

A dynamical system =

) � �*� � �

* +

, the time-axis

(= the relevant time instances),

, the signal space

(= where the variables take on
their values),

,

: the behavior

(= the admissible trajectories).
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-/. 0*21 1 3 4

For a trajectory 56 * � we thus have:5 7

: the model allows the trajectory 5�5 8 7

: the model forbids the trajectory 5 �

Usually, , or (in continuous-time systems),
or or (in discrete-time systems).

Usually, (in lumped systems),
a function space (in distributed systems),
or a finite set (in DES).

Emphasis later today:
sol’ns of system of linear constant coefficient ODE’s.
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Examples

1. Planetary orbits

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

6. Formal languages
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Examples

1. Planetary orbits

* � +

(time),� + >

(position),� planetary orbits

?� Kepler’s laws:

ellipses, = areas in = time,

@
period

A B@
axis

AC � constant.

Planet

Sun

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

6. Formal languages
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Examples

1. Planetary orbits

2. Input / output systems

3. Flows F
FD � �ED � � � � � �ED � ��

� all state trajectories.

... of very marginal value as a paradigm for dynamics ...

Modeling closed systems by tearing and zooming� open systems.

4. Observed flows

5. Convolutional codes

6. Formal languages
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Latent variable systems

Consider once again our electrical RLC - circuit:
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!! Model the relation between
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How does this modeling proceed?
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LRI
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+ +−
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The circuit graph

Introduce the following additional variables:
the voltage across and the current in each branch:�IHKJ � � HKJ � �ML� � L� �IHON � � HN � �IP� � P �
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System equations

Constitutive equations (CE):

�QHKJ � R L � HKJ � �QHON � R P � HON � � F
FD �SL � � L� T F
FD � P � �QP

Kirchhoff’s voltage laws (KVL):

�� �QHUJ � �SL� �� �QP � �QHVN � �QHJ � �SL � �QP � �QHVN

Kirchhoff’s current laws (KCL):�� � HVJ � � P� � HVJ � � L� � P � � HWN � � L � � HWN � �
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The preceding is a complete model, but it is not an explicit relation
the between

�

and

�

. Here it is:

Case 1:

XY J Z\[ ]Y N .

^ Y JY N _ ^` _ Y JY N a X Y J bbc _ XY J ]Y N b Bbc B ad

[ ^` _ X Y J bbc a ^` _ ]Y N bbc a Y J ef

Case 2: .

These are the exact relations between and !
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First principles models invariably contain auxiliary variables,
in addition to the variables the model aims at.

� Manifest and latent variables.

Manifest = the variables the model aims at,
Latent = auxiliary variables.

We want to capture this in mathematical definitions.
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Latent variable systems

A dynamical system with latent variables =

) P � �*� � g� hji k k �

* +

, the time-axis

(= the set of relevant time instances).

, the signal space

(= the variables that the model aims at).

g

, the latent variable space

(= auxiliary modeling variables).

hji k k � l g � ,
: the full behavior

(= the pairs
that the model declares possible).
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The manifest behavior

Call the elements of ‘manifest’ variables ,

those of

g

‘latent’ variables .

The latent variable system

) P � �*� � g� hji k k � induces
the manifest system

) � �*� � �� with manifest behavior

� n 56 * op m6 * g
such that

� 5� m � 7 h i k k q

In convenient equations for , the latent variables are ‘eliminated’.

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.26/63



The manifest behavior

Call the elements of ‘manifest’ variables ,

those of

g

‘latent’ variables .

The latent variable system

) P � �*� � g� hji k k � induces
the manifest system

) � �*� � �� with manifest behavior

� n 56 * op m6 * g
such that

� 5� m � 7 h i k k q

In convenient equations for , the latent variables are ‘eliminated’.

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.26/63



Examples

1. The RLC - circuit before elimination.

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

6. Grammars
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Examples
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,hji k k � all

�� � �� � � 6 + r l s l t
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Examples

1. The RLC - circuit

before elimination.

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

Latent variables = the transition nodes;
the language generated = the manifest behavior

6. Grammars
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Recapitulation

Central notions:

The behavior � a model.

Distinction between manifest and latent variables
manifest behavior specifies what the model aims at.

First principles models latent variables.

(Full) behavioral equations
a specification of the (full) behavior.

Equivalent equations
the manifest behaviors are equal.
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Linear differential systems

We now discuss the fundamentals of the theory of systems) � � +� +=� �

that are

1. linear, meaning

;

2. time-invariant, meaning

,
where denotes the shift,

3. differential, meaning
consists of the sol’ns of a system of differential eq’ns.
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� R|{ 5 � R � F
FD 5 � 
 
 
 � R~} F }
FD } 5 � !�

with

R|{� R �� 
 
 
� R~} 7 + � � = �

With the polynomial matrix

we obtain the short notation

But, the theory has also been developed for PDE’s .

by Oberst, Zerz, Shankar, Pillai, e.a.
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�-D systems

* � +}� � independent variables,� +=� � dependent variables,� the sol‘ns of a system of linear constant coeff. of PDE’s.

Let

R 7 + � � = 9� �� 
 
 
� � } �� and consider

R � ��\��� � 
 
 
� ��\��� � 5 � ! � ( �

Define its behavior by

holds

mainly for convenience, but important for some
results.
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Example: Maxwell’s Equations

��� ��� [ `�� ���

�� �\� [ � �� c ����� � � � [   �¡ B � � � � [ `�� �j¢ _ �� c �\�f

(time and space),

(electric field, magnetic field, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables.
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NOMENCLATURE

© =} 6 the set of such systems with � independent,
and � dependent variables

© � 6 with any - finite - number of (in)dependent variables

Elements of

© � 6 ‘linear differential systems’

R � ��\�� � 
 
 
� ��\�\� � 5 � !6 a kernel representation of the

corresponding

) 7 © �
or

7 © �
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Algebraization of

ª«

Note that R � F
FD � 5 � !

and ¬ � F
FD � R � F
FD � 5 � !

have the same behavior if the polynomial matrix

¬

is uni-modular
(i.e., when

 � ® � ¬ �

is a non-zero constant).

defines , but not vice-versa!

¿¿ ‘intrinsic’ characterization of
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p

‘intrinsic’ characterization of

7 © =} ¯ ¯
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Define the annihilators of

7 © =} by

° 6 � n%± 7 += 9� �� 
 
 
� � } � o ± ² � ��\�� � 
 
 
� ��\��� � � ! q �

° is clearly an

+ 9� �� 
 
 
� � } �

sub-module of

+= 9� �� 
 
 
� � } � �

Let the sub-module of generated by the
transposes of the rows of . Obviously . But,
indeed:

Note: Depends on ; false for compact support sol’ns: for any

has only as compact support sol’n.
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Conclusion

(i)

© =} �ÁÀ �

sub-modules of

+= 9� �� 
 
 
� � } �

(ii) and

define the same system iff

i.e., iff such that

(iii) For a ‘minimal’ of full row rank, and
unimodular, generates all minimal kernel representations.
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Elimination

First principle models � latent variables. In the case of
systems described by linear constant coefficient PDE’s: �

R � Ä
Ä � �� 
 
 
�

Ä
Ä � }

� 5 � � Ä
Ä � �� 
 
 
�

Ä
Ä � }

� m

with

R� 7 + � � � 9� �

.

This is the natural model class to start a study of finite dimensional
linear time-invariant systems! Much more so than
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But is it(s manifest behavior) really a differential system ??

Consider

R � ��\��� � 
 
 
� ��\��� � 5 � � ��\��� � 
 
 
� ��\��� � m �

Full behavior:

belongs to , by definition.

Its manifest behavior equals

such that
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Does belong to

© =} ?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle states that

is solvable for iff
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Does belong to

© =} ?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle states that

Ç ^ ��ÉÈ� �� � � � ��ÉÈ� a È [ Ê

ÇË Ì� ¼ Í�Î ÏÐ� �� � � � Ð� Ñ� Ê Ë ¶ · ^ Ì� � Ì� ¼ a
is solvable for È Ë ¶ · ^ Ì� � Y �Î a

iff

ÒË Ì� ¼ ÏÐ� �� � � � Ð� ÑÓ Ò Ô Ç [   Õ Ò Ô ^ ��ÉÈ� �� � � � ��ÉÈ� a Ê [   f

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.39/63



Example: Consider

F
FD �� � � � ��� �� � � � � G 5 � �%��� � � �

¡¡ Eliminate � !!

Respect the uncontrollable!

the elimination algorithms

Calculations via transfer f’ns may give erroneous results.
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Example: Consider the RLC circuit.

First principles modeling (

?� CE’s, KVL, & KCL)� 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear

constant coefficient differential equations.
2. The elimination theorem .

Why is there exactly one equation? Passivity!
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constant coefficient differential equations.
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$
.

Why is there exactly one equation? Passivity!

'

capacitor

Ö �JØ× , inductor

Ö ]ÚÙ , series, parallel, may give erroneous results
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Which PDE’s describe (

ÛÝÜ1 Û¥Þ

) in Maxwell’s equations ?

Eliminate from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

Elimination theorem
this exercise would be exact & successful.
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Remarks:

Number of eq’ns (for �� Ã

: constant coeff. lin. ODE’s)
number of variables.

Elimination fewer, higher order equations.

There exist effective computer algebra/Gröbner bases
algorithms for elimination

Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?
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It follows from all this that

© �

has very nice properties. It is closed
under:

Intersection:

� ��  7 © =} � � � á  7 © =} �

.

Addition:

� ��  7 © =} � � � �  7 © =} �

.

Projection:

� 7 © =� Å = B} � �â ã� 7 © =� } �

.

Action of a linear differential operator:� 7 © =� } � ä 7 += B � =� 9� �� 
 
 
� � } � �

� ä � ��\��� � 
 
 
� ��\��� � 7 © = B} � �

Inverse image of a linear differential operator:� 7 © = B} � ä 7 += B � =� 9� �� 
 
 
� � } � �

� ä � ��\�� � 
 
 
� ��\�\� � �Éå � 7 © =� } � �
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Controllability

Controllability 6

system trajectories must be ‘patch-able’, ‘concatenable’.

Case �� Ã

:

Controllability := concatenability

0 T

2

1
w

w

w time

W W
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Controllability

Controllability 6

system trajectories must be ‘patch-able’, ‘concatenable’.

Case �� Ã

:

Consider two arbitrary elements 5 �� 5  7

2

0

1
w

w

W

time

Controllability := concatenability

0 T

2

1
w

w

w time

W W
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Controllability

Controllability 6

system trajectories must be ‘patch-able’, ‘concatenable’.

Case �� Ã

:

Controllability := concatenability

0 T

2

1
w

w

w time

W W
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General �:
Consider arbitrary patches of two solutions:

1 2

2
1

O O

ww

æ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ ææ æ æ æ æ æ æ æ

ç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç çç ç ç ç ç ç ç ç
è è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è èè è è è è è è è

é é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é éé é é é é é é é
W

êêê
êêê

ê
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Controllability := patchability

ë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ëë ë ë ë ë ë ë ë ë

ì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ìì ì ì ì ì ì ì ì
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Is the system defined by

Rý{ 5 � R � F
FD 5 � 
 
 
 � Rþ} F }
FD } 5 � !�

with 5 � � 5 �� 5  � 
 
 
� 5 = �

and

R|{� R �� 
 
 
� R~} 7 + � � =�

i.e.,

R � �� � 5 � !� controllable?

We are looking for conditions on the polynomial matrix , and
algorithms in the coefficient matrices .
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Is the system defined by

Rý{ 5 � R � F
FD 5 � 
 
 
 � Rþ} F }
FD } 5 � !�

with 5 � � 5 �� 5  � 
 
 
� 5 = �

and

R|{� R �� 
 
 
� R~} 7 + � � =�

i.e.,

R � �� � 5 � !� controllable?

We are looking for conditions on the polynomial matrix

R

, and
algorithms in the coefficient matrices

R {� R �� 
 
 
� R~} .
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Thm:

R � �� � 5 � !

defines a controllable system if and only if

� ÿ� � � R � � � �

is independent of

�

for
� 7 �

.

Example: scalar)

controllable iff and have no common factor.

Example: The electrical circuit is controllable unless

and .

Non-example: constant
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Thm:

R � �� � 5 � !

defines a controllable system if and only if

� ÿ� � � R � � � �

is independent of

�

for
� 7 �

.

Example: � � � F
FD � 5 � � �  � F
FD � 5  � 5 �� 5  scalar)

controllable iff � � and �  have no common factor.

Example: The electrical circuit is controllable unless

and .

Non-example: constant
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Thm:

R � �� � 5 � !

defines a controllable system if and only if

� ÿ� � � R � � � �

is independent of

�

for
� 7 �

.

Example: � � � F
FD � 5 � � �  � F
FD � 5  � 5 �� 5  scalar)

controllable iff � � and �  have no common factor.

Example: The electrical circuit is controllable unless

� R L � T
R P and

R L � R P .

Non-example: constant
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Thm:

R � �� � 5 � !

defines a controllable system if and only if

� ÿ� � � R � � � �

is independent of

�

for
� 7 �

.

Example: � � � F
FD � 5 � � �  � F
FD � 5  � 5 �� 5  scalar)

controllable iff � � and �  have no common factor.

Example: The electrical circuit is controllable unless

� R L � T
R P and

R L � R P .

Non-example:

R 7 += � = 9� ��  � ® � R � �� constant �
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Image representations

Representations of

© =} :

R � ��\�� � 
 
 
� ��\�\� � 5 � !
called a ‘kernel’ representation of � ���� � R � �� � �

called a ‘latent variable’ representation of the manifest behavior
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Image representations

Representations of

© =} :

R � ��\�� � 
 
 
� ��\�\� � 5 � !
called a ‘kernel’ representation of � ���� � R � �� � �

R � ��\�� � 
 
 
� ��\�\� � 5 � � ��\�� � 
 
 
� ��\�\� � m

called a ‘latent variable’ representation of the manifest behavior

� � R � Ä
Ä � �� 
 
 
�

Ä
Ä � }

� �å � � Ä
Ä � �� 
 
 
�

Ä
Ä � }

� � � � +}� + Æ � �

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL – p.50/63



Missing link: 5 � � ��\�� � 
 
 
� ��\��� � m
called an ‘image’ representation of

� � � � � Ä
Ä � �� 
 
 
� Ä
Ä � }

� � �

Elimination theorem every image is also a kernel.

¿¿ Which kernels are also images ??
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� ��\��� � m
called an ‘image’ representation of
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� Ä
Ä � }
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Elimination theorem every image is also a kernel.
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Missing link: 5 � � ��\�� � 
 
 
� ��\��� � m
called an ‘image’ representation of

� � � � � Ä
Ä � �� 
 
 
� Ä
Ä � }

� � �

Elimination theorem every image is also a kernel.

¿¿ Which kernels are also images ??
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Theorem: The following are equivalent for

7 © =} 6
1. is controllable,

2. admits an image representation,

3. for any � 7 += 9� �� 
 
 
� � } ��

� ² 9 ��\�� � 
 
 
� ��\��� �
equals

!
or all of

� � � +}� + �

,

4.

+= 9� �� 
 
 
� � } � 8 ° is torsion free,

etc.
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential

and the vector potential , generate exactly the
solutions to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential

�6 + l + > +

and the vector potential

£�6 + l + > + >

, generate exactly the
solutions to Maxwell’s equations:

�� [ � �� c �
	 � � ��� � [ � � ��	��¢ [ �� � B� c B �	 � �� ¡ B � B �	 _ �� ¡ B � ^ ��� �	 a _ �� �� c � ��

� [ � �� �� c � � �	 � �� � B �f
Proves controllability.

Illustrates the interesting connection

controllability potential!
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential

�6 + l + > +

and the vector potential

£�6 + l + > + >

, generate exactly the
solutions to Maxwell’s equations:

�� [ � �� c �
	 � � ��� � [ � � ��	��¢ [ �� � B� c B �	 � �� ¡ B � B �	 _ �� ¡ B � ^ ��� �	 a _ �� �� c � ��

� [ � �� �� c � � �	 � �� � B �f
Proves controllability. Illustrates the interesting connection

controllability

p

potential!
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Remarks:

Algorithm:

R

+ syzygies + Gröbner basis
numerical test for on coefficients of

R
.

partial results for nonlinear systems

Kalman controllability is a straightforward special case
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+ syzygies + Gröbner basis
numerical test for on coefficients of

R
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partial results for nonlinear systems

Kalman controllability is a straightforward special case
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Remarks:

Algorithm:

R

+ syzygies + Gröbner basis
numerical test for on coefficients of

R
.p

partial results for nonlinear systems

Kalman controllability is a straightforward special case
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Observability

Consider the system

) � �*� � l  � � �
Each element of the behavior hence consists of

a pair of trajectories

� 5 �� 5  � .

21 variables
to−be−deducedwSYSTEM

observed
variables w

observed; to-be-deduced.
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Observability

Consider the system

) � �*� � l  � � �
Each element of the behavior hence consists of

a pair of trajectories

� 5 �� 5  � .

21 variables
to−be−deducedwSYSTEM

observed
variables w

5 � 6 observed; 5  6 to-be-deduced.
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21 variables
to−be−deducedwSYSTEM

observed
variables w

5  is said to be observable from 5 �
if

� � 5 �� 5 �  � 7

, and

� 5 �� 5 � � � 7 � � 5 �  � 5 � � ��

i.e., if, on , there exists a map .
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21 variables
to−be−deducedwSYSTEM

observed
variables w

5  is said to be observable from 5 �
if

� � 5 �� 5 �  � 7

, and

� 5 �� 5 � � � 7 � � 5 �  � 5 � � ��

i.e., if, on , there exists a map 5 � " 5  .
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When is in R � � F
FD � 5 � � R  � F
FD � 5  

5  observable from 5 � ?

If and only if for all

Equivalently, if and only if there exists ‘consequences’
(i.e. elements of ) of the form
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When is in R � � F
FD � 5 � � R  � F
FD � 5  

5  observable from 5 � ?

If and only if � ÿ� � � R  � � � � � �� �  � � � R  � for all

� 7 � �

Equivalently, if and only if there exists ‘consequences’
(i.e. elements of ) of the form
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When is in R � � F
FD � 5 � � R  � F
FD � 5  

5  observable from 5 � ?

If and only if � ÿ� � � R  � � � � � �� �  � � � R  � for all

� 7 � �

Equivalently, if and only if there exists ‘consequences’
(i.e. elements of ° ) of the form 5  � Â � ��\��� � 
 
 
� ��\��� � 5 � �
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The RLC circuit is observable (branch variables observable from

external port variables) iff

� R L �� T
R P .

In Maxwell’s equations, is not observable from

a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

Observability is analogous (but not ‘dual’) to controllability.
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The RLC circuit is observable (branch variables observable from

external port variables) iff

� R L �� T
R P .

In Maxwell’s equations,

£�
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Controllability & Observability

Call a latent variable systems

R � Ä
Ä � �� 
 
 
� Ä
Ä � }

� 5 � � Ä
Ä � �� 
 
 
� Ä
Ä � }

� m

observable if in the full behavior,

m

is observable from 5.
I.e., iff

� ��\�� � 
 
 
� ��\��� �

is injective.

For every controllable system allows an observable image
representation.
For exceptionally so. For example, there is no potential
representation for Maxwell’s equations that is observable!

Observable image representations of - of course - controllable
systems are sometimes called differentially ‘flat’ . Cfr. Fliess c.s.
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Further results

Many additional problems have been studied from the behavioral
point of view.

System representations: input/output representations, state
representations and construction, model reduction,
symmetries

System identification the most powerful unfalsified model
(MPUM), approximate system ID

Observers, Control

Quadratic differential forms, dissipative systems, -control
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Conclusions

A (dynamical) system := a behavior

First principles model latent variables

a complete theory for linear constant coefficient ODE’s,
PDE’s.

Differential system submodule

Elimination theorem

Controllability := concatenability, patchability

Controllability an image representation

Observability := deducing one variable from another
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Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting influence! Especially in teaching.

Examples:

Probability and the theory of stochastic processes as an
axiomatization of uncertainty.

The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.

QM.
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Thank you for your kind attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/ ?jwillems
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