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Problematique

o N

Develop a suitable mathematical framework
for discussing dynamical systems

aimed at modeling, analysis, and synthesis.

~~ control, sighal processing, system identification, . . .
~~ engineering systems, economics, physics, . ..

o |
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Motivational Examples

-

Electrical circuit

I

+

Y%

environmen

system

Il Model the relation between the voltage V' and the current 1
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-

Electromechanical system

force, position, torque, angle

force, position

Il between the positions, forces, torque, angle, voltages, currents

o |
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Il between the positions, forces, torque, angle, voltages, currents
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-

Features: Systems are typically T

dynamical

open, they interact with their environment
interconnected, with many subsystems
modular, consisting of standard components

We are looking for a mathematical framework that is adapted to
these features, and hence to computer assisted modeling.

o |
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Historical remarks

-

Early 20-th century: emergence of the notion of a
transfer function (Rayleigh, Heaviside).

input SYSTEM output

o |
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Historical remarks

-

Early 20-th century: emergence of the notion of a
transfer function (Rayleigh, Heaviside).

input SYSTEM output

Since the 1920’s: routinely used in circuit theory
(Foster, Brune, Cederbaum, - - - )

~~» impedances, admittances, scattering matrices, etc.
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-

1930’s: control embraces transfer functions
(Nyquist, Bode, - - - )
~~» plots and diagrams, classical control.
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The BEHAVIORAL APPROACH to SYSTEMS and CONTROL — p.8/63



-

1930’s: control embraces transfer functions
(Nyquist, Bode, - - - )
~~» plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox,
attempts nonlinear generalization (via Volterra series).
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o N

1960’s: Kalman’s state space ideas (incl. controllability,
observability, recursive filtering, state models and representations)
come in vogue
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o N

1960’s: Kalman’s state space ideas (incl. controllability,
observability, recursive filtering, state models and representations)
come in vogue

~~ input/state/output systems, and the ubiquitous

%a:zAa:—l—Bu, y = Cx + Du,

o |
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o N

1960’s: Kalman’s state space ideas (incl. controllability,
observability, recursive filtering, state models and representations)
come in vogue

or its nonlinear counterpart

%CB = f(z,u), y = h(z,u).
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o N

These mathematical structures, transfer functions, + their
discrete-time analogs, are nowadays the basic models used in
control and signal processing (cfr. MATLAB©).
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-

These mathematical structures, transfer functions, + their
discrete-time analogs, are nowadays the basic models used in
control and signal processing (cfr. MATLAB©).

All these theories: input/output; cause = effect.

input ____» | SYSTEM output

o |
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Beyond input/output

o N

What’s wrong with input/output thinking?

Let’s look at examples: Our electrical circuit.

I

+

\Y%

environment

system

Is V the input? Or I ? Or both, or are they both outputs?

o |
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Let’s look at examples: Our electrical circuit.

I

+

\Y%

environment

system

environment

Is V the input? Or I ? Or both, or are they both outputs?
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-

An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.

What are the inputs?

o |
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-

An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.

What are the inputs?
at the wind terminal: the force,
at the tires: forces, or, more likely, positions?
at the steering wheel: the torque or the angle?
at the gas-, or brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired)
L interconnection variables! J
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o N

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

D, f, Pl’, ’
Reasonable input choices: the pressures,
output choices: the flows.
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-

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

p. f p. £
Reasonable input choices: the pressures,

output choices: the flows.
Assume that we model the interconnection of the two tanks.
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o N

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

1

B fy P i p2” 2" B, fz

Reasonable input choices: the pressures,
output choices: the flows.
Assume that we model the interconnection of the two tanks.

p.f p,f

Interconnection: p7; = p5, fi + f3 =

L input=input; output=output! —< SIMULINK® J
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o N

Interconnections contradicting SIMULINK® are in fact

the rule, not the exception,

in mechanics, fluidics, heat transfer, etc.

o |
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Mathematical difficulties

Isasystema map wu(:) — y(:) ?

|
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Mathematical difficulties

Isasystema map wu(:) — y(:) ?

How to incorporate ’initial conditions’?
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Mathematical difficulties

Isasystema map wu(:) — y(:) ?
How to incorporate ’initial conditions’?

Is it a parameterized map’  (u(:),a) — y(-) ?
All sorts of new difficulties...

T Cfr. the book of Kalman, Falb, and Arbib

|
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Mathematical difficulties

Isasystema map wu(:) — y(:) ?
How to incorporate ’initial conditions’?

Is it a parameterized map’  (u(:),a) — y(-) ?
All sorts of new difficulties...

Construct the state!
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Mathematical difficulties

Isasystema map wu(:) — y(:) ?
How to incorporate ’initial conditions’?

Is it a parameterized map’  (u(:),a) — y(-) ?
All sorts of new difficulties...

Construct the state!
But from what?

From the system model!
What system?

|
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Conclusions

o N

* for physical systems (=><= signal processors) x*

® External variables are basic, but what ‘drives’ what, not.

o |
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Conclusions

o N

* for physical systems (=><= signal processors) x*

® External variables are basic, but what ‘drives’ what, not.

® Itis impossible to make an a priori, fixed, input/output
selection for off-the-shelf modeling.

o |
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Conclusions

o N

* for physical systems (=><= signal processors) x*

® External variables are basic, but what ‘drives’ what, not.

® Itis impossible to make an a priori, fixed, input/output
selection for off-the-shelf modeling.

® What can be the input, and the output should be deduced from
a dynamical model. Therefore, we need a more general notion
of ‘system’, of ‘dynamical model’.
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-

* for physical systems (=><= signal processors) x*

L

Conclusions

-

External variables are basic, but what ‘drives’ what, not.

It is Impossible to make an a priori, fixed, input/output
selection for off-the-shelf modeling.

What can be the input, and the output should be deduced from
a dynamical model. Therefore, we need a more general notion
of ‘system’, of ‘dynamical model’.

Interconnection, variable sharing, rather that input selection, is
the basic mechanism by which a system interacts with its
environment.

|
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Conclusions

o N

* for physical systems (=><= signal processors) x*

°

External variables are basic, but what ‘drives’ what, not.

°

It is Impossible to make an a priori, fixed, input/output
selection for off-the-shelf modeling.

® What can be the input, and the output should be deduced from
a dynamical model. Therefore, we need a more general notion
of ‘system’, of ‘dynamical model’.

® Interconnection, variable sharing, rather that input selection, is
the basic mechanism by which a system interacts with its
environment.

—> We need a better framework for discussing ‘open’ systems!

\— ~» Behavioral systems. J
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A dynamical system =

T C R, the time-axis

W, the signal space

The basic concepts

Behavioral systems

> = (T, W, B)

B C W' : the behavior

|
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The basic concepts

Behavioral systems

A dynamical system= | X = (T, W, 23)

T C R, the time-axis (= the relevant time instances),

W, the signal space (= where the variables take on

B C W' : the behavior

their values),

(= the admissible trajectories).

|
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> = (T, W, B)

For a trajectory w : T — W, we thus have:

w € *B : the model the trajectory w,
w ¢ B : the model forbids the trajectory w.

|
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-

> = (T, W, B)

For a trajectory w : T — W, we thus have:

w € *B : the model the trajectory w,
w ¢ B : the model forbids the trajectory w.

Usually, T = R, or [0, o) (in continuous-time systems),
or Z, or N (in discrete-time systems).

Usually, W C RR" (in lumped systems),
a function space (in distributed systems),
or a finite set (in DES).

Emphasis later today: T =R, W = R",

B — sol’ns of system of linear constant coefficient ODE’s.

|
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Examples

-

1. Planetary orbits

o |
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Examples

-

1. Planetary orbits

T =R (time),
W = R3 (position),
B — planetary orbits = Kepler’s laws:

(period)?
(axis)3

ellipses, = areas in = time, = constant.

o |

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL — p.19/63



Examples

-

1. Planetary orbits

2. Input / output systems

o |
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Examples

-

1. Planetary orbits

2. Input / output systems

2

Fa(y(t), — y( ) 2y(t), .oy t)
d2

= f2(u(t)7 u(t), dt2

—Su(t),...,t)

o |
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Examples

-

1. Planetary orbits

2. Input / output systems

3. Flows

o |
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Examples

-

1. Planetary orbits

2. Input / output systems

3. Flows

d
- 2(t) = f(=z(1)),

83 — all state trajectories.
... of very marginal value as a paradigm for dynamics ...

Modeling closed systems by tearing and zooming
~~»  open systems.

o |
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Examples

f 1. Planetary orbits T

2. Input / output systems

3. Flows

4. Observed flows

o |
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Examples

f 1. Planetary orbits T

2. Input / output systems

3. Flows

4. Observed flows

%w(t) — f(z(1); y(t) = h(z(1)),

% — all possible output trajectories.

o |
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Examples

f 1. Planetary orbits T

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

o |
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Examples

f 1. Planetary orbits T

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

6. Formal languages

o |
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Latent variable systems

-

Consider once again our electrical RLC - circuit:

environment

I! Model the relation between V and I !!

How does this modeling proceed?
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I

+

Y

environmen

system
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]

+

environment
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The circuit graph

Introduce the following additional variables:
the voltage across and the current in each branch:

L VRchRca VC’aICa VRLaIRLa VLaIL° J
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System equations

o N

d d
Ve.= Rclr., VrR,= RiIR,, Cd Ve = I, LEIL = Vi

Constitutive equations (CE):

Kirchhoff’s voltage laws (KVL):

V:VRC_I_VC, V:VL_I_VRL’ VRC_I_VC:VL_I_VRL

Kirchhoff’s current laws (KCL):
I=1Ig,+1I, Ig, =Ic, It =1Ig,, Ic+Ig, =1

o |
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o N

The preceding is a complete model, but it is not an explicit relation
the between V' and I. Here it is:

Case 1: CJ'RO;&Ri
L
—-|- 1—|——)CR —-|—C’ L &
( ( c C R, a2
L d
—(1+CRC—)( + o g0 Rel-

o |
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o N

The preceding is a complete model, but it is not an explicit relation
the between V' and I. Here it is:

Case 1: CRC#RL
L
—-|- 1—|——)CR —-|-C’ L 4
( ( c C R, a2
L d
—(1+C’Rc—)( + o g0 Rel-

L
Case2: CRg = —.
Ry,

( -I-C'RC—)V— (1+CRC—)RCI

LThese are the exact relations between V and I ! J
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o N

First principles models invariably contain auxiliary variables,
in addition to the variables the model aims at.

~> Manifest and latent variables.

o |
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o N

First principles models invariably contain auxiliary variables,
in addition to the variables the model aims at.

~> Manifest and latent variables.

Manifest = the variables the model aims at,
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-

|7First principles models invariably contain auxiliary variables,
in addition to the variables the model aims at.

~> Manifest and latent variables.

Manifest = the variables the model aims at,
Latent = auxiliary variables.

We want to capture this in mathematical definitions.

o |
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Latent variable systems

-

A dynamical system with latent variables =

2L — (Ty Wa Lv %full)

T C R, the time-axis
W, the signal space
L, the latent variable space

Brar C (W x L)' : the full behavior

o |
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Latent variable systems

-

A dynamical system with latent variables =

2L — (Ty Wa La %full)

T C R, the time-axis (= the set of relevant time instances).
W, the signal space (= the variables that the model aims at).
IL, the /atent variable space (= auxiliary modeling variables).

Brar C (W x L)' : the full behavior

(= the pairs (w,£) : T — W X L
that the model declares possible).

o |
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The manifest behavior

Call the elements of W

those of L

‘manifest’ variables |,

‘latent’ variables |.

The latent variable system X7 = (T, W, L, B¢,11) induces
the manifest system > = (T, W, 28), with manifest behavior

B={w: T—>W|3 £:T — L suchthat (w,£) € B}

|
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The manifest behavior

Call the elements of W

those of L

‘manifest’ variables |,

‘latent’ variables |.

The latent variable system X7 = (T, W, L, B¢,11) induces
the manifest system > = (T, W, 28), with manifest behavior

B={w: T—>W|3 £:T — L suchthat (w,£) € B}

In convenient equations for *33, the latent variables are ‘eliminated’.

|
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Examples

ft The RLC - circuit before elimination. T

o |
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Examples

ft The RLC - circuit T

2. Models obtained by tearing and zooming

o |
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Examples

ft The RLC - circuit T

2. Models obtained by tearing and zooming

3. Input / state / output systems

%w(t) — F(2(),u(®); y(t) = h(z(t), u(t)),

T=RW=UXY,L =X,

B e = all (u,y,ac) :R—>UXY X X
that satisfy these equations,

B — all (input / output)-pairs.

o |
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Examples

ft The RLC - circuit T

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

o |
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Examples

ft The RLC - circuit T

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

o |
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Examples

ft The RLC - circuit T

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

Latent variables = the transition nodes;
the language generated = the manifest behavior

o |
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Examples

ft The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

6. Grammars

o |
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Recapitulation

-

Central notions:

® The behavior ~~» a model.

o |
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Recapitulation

-

Central notions:

® The behavior ~» a model.

® Distinction between manifest and latent variables
~~ manifest behavior specifies what the model aims at.
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Recapitulation

-

Central notions:

® The behavior ~» a model.

® Distinction between manifest and latent variables
~~ manifest behavior specifies what the model aims at.

® First principles models  ~» latent variables.
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Recapitulation

-

Central notions:

® The behavior ~» a model.

® Distinction between manifest and latent variables
~~ manifest behavior specifies what the model aims at.

® First principles models  ~» latent variables.

® (Full) behavioral equations
~~ a specification of the (full) behavior.

o |
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Recapitulation

-

Central notions:

® The behavior ~» a model.

® Distinction between manifest and latent variables
~~ manifest behavior specifies what the model aims at.

® First principles models  ~» latent variables.

® (Full) behavioral equations
~~ a specification of the (full) behavior.

® Equivalent equations
: < the manifest behaviors are equal.

o |
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Linear differential systems

o N

We now discuss the fundamentals of the theory of systems

> = (R, R¥, 5B)

that are

o |
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-

We now discuss the fundamentals of the theory of systems

that are

1.

linear,

Linear differential systems

> = (R, R¥, 5B)

-

|
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-

that are

1.

linear,

Linear differential systems

We now discuss the fundamentals of the theory of systems

> = (R, R¥, 5B)

meaning

-

((wla w2 c %) A\ (a,IB = R)) = (awl +/8w2 c %)5

|
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-

We now discuss the fundamentals of the theory of systems

Linear differential systems

that are

1.

> = (R, R¥, 5B)

linear, meaning

-

((wla w2 c %) A\ (a,IB = R)) = (awl +/Bw2 c %)5

time-invariant,

|
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Linear differential systems

-

that are

We now discuss the fundamentals of the theory of systems

-

> = (R, R¥, 5B)

1. | linear, meaning
(w1, w2 € B) A (o, B € R)) = (awi + w2 € B);

2. | time-invariant,

meaning

(w € B)A(t €R)) = (ctw € B)),
where o! denotes the t—shift, o’ f (') := f(t' + t)

|
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Linear differential systems

-

that are

We now discuss the fundamentals of the theory of systems

-

> = (R, R¥, 5B)

1. | linear, meaning
(w1, w2 € B) A (o, B € R)) = (awi + w2 € B);

2. | time-invariant,

meaning

(w € B)A(t €R)) = (ctw € B)),
where o! denotes the t—shift, o’ f (') := f(t' + t)

3. | differential,

|
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Linear differential systems

-

that are

We now discuss the fundamentals of the theory of systems

-

> = (R, R¥, 5B)

1. | linear, meaning
(w1, w2 € B) A (o, B € R)) = (awi + w2 € B);

2. | time-invariant,

meaning

(w € B)A(t €R)) = (ctw € B)),
where o! denotes the t—shift, o’ f (') := f(t' + t)

3. | differential,

meaning

3 consists of the sol’ns of a system of differential eq’ns.

.

|
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o N

n

d
R R — oo+ R —w =20
~> oW —+ 1dtw+ -+ dtnw |

with Rg, R1,- -+ , R, € R®**Y, With the polynomial matrix

R(¢) = Ro + R1€ + - -+ + Ry&",

we obtain the short notation

d
R(—)w = 0.
(@

o |
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-

d
~> R0w+R1£w—|—---—|—Rn—nw:O,

with Rg, R1,- -+ , R, € R®**Y, With the polynomial matrix

R(¢) = Ro + R1€ + - -+ + Ry&",

we obtain the short notation

d
R(—)w = 0.
(@

But, the theory has also been developed for PDE’s’.

T by Oberst, Zerz, Shankar, Pillai, e.a.

|
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n-D systems

-

T = R", n independent variables, T
W = RY, w dependent variables,
% — the sol‘ns of a system of linear constant coeff. of PDE’s.

Let R € R**¥[&y, -+ , &, and consider

0 0
R(a_wla'” ’a_wn)w:() (%)

o |
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n-D systems

-

T = R", n independent variables, T
W = RY, w dependent variables,
% — the sol‘ns of a system of linear constant coeff. of PDE’s.

Let R € R**¥[&y, -+ , &, and consider

0 0
R(a_wla'” ,a—wn)w:O (%)

Define its behavior by

B = {w € €°(R*,R") | (*) holds }

= ker(R(52-,+ , 52-))

o |
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n-D systems

-

T = R", n independent variables, T
W = RY, w dependent variables,
% — the sol‘ns of a system of linear constant coeff. of PDE’s.

Let R € R**¥[&y, -+ , &, and consider

R(aiwla Tt Bwn)w =0 (*)

Define its behavior by

B = {w € €°(R*,R") | (*) holds }

0
— ker(R(a—wl, ey, 8:13 ))
¢°° (R, R") mainly for convenience, but important for some

Lresults. J
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Example: Maxwell’s Equations

- 1
V-E = — P
€0
— 8—»
VXE = ——
ot
V'E —_ 0,
2 3
c’VXB = — —
Eog+3t

|
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Example: Maxwell’s Equations

- 1
V.-E = — P
€0
— a—»
VXFE = ——
ot "’
V'g — 0,
2
c’VXB = — —
sog+3t

T = R x R3 (time and space),
w = (FE,B,j,p)
(electric field, magnetic field, current density, charge density),
W =R3 x R3 x R x R,
'8 — set of solutions to these PDE’s.

|
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Example: Maxwell’s Equations

- 1
V.-E = — P
€0
— a —
VXE = ——
ot ’
V.-B = o,
2V X B = —_"+£E'
o 60'7 ot

T = R x R3 (time and space),
w = (FE,B,j,p)
(electric field, magnetic field, current density, charge density),
W =R3 x R3 x R x R,
'8 — set of solutions to these PDE’s.

Note: 10 variables, 8 equations! = d free variables.

o |
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NOMENCLATURE

e

o : the set of such systems with n independent,
and w dependent variables

£° : with any - finite - number of (in)dependent variables
Elements of £°® : ‘linear differential systems’

R(aiml, oo, aimn)w — 0 : a kernel representation of the
corresponding XY € £%or®B € £°

o |
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Algebraization of £°

fNote that T

R( d) 0
— )W =
dt

and
d d
U(—)R(— =0
(G BG)v

have the same behavior if the polynomial matrix U is uni-modular
(i.e., when det(U) is a non-zero constant).

o |
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Algebraization of £°

fNote that T

R( d) 0
— )W =
dt

and
d d
U(—)R(— =0
(G BG)v

have the same behavior if the polynomial matrix U is uni-modular
(i.e., when det (U) is a non-zero constant).

= R defines B = ker(R(%)), but not vice-versal!

o |
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Algebraization of £°

fNote that T

R( d) 0
— )W =
dt

and
d d
U(—)R(— =0
(G BG)v

have the same behavior if the polynomial matrix U is uni-modular
(i.e., when det (U) is a non-zero constant).

= R defines B = ker(R(%)), but not vice-versal!

(¢ 3 ‘intrinsic’ characterization of 25 € £ 77

o |
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-

Define the | annihilators |of B € £ by

My 1= {’I’L € RW[‘Sla te 7£n] | nT(almla " 321311)% — O}
Iy is clearly an R[&1, - - - , &,] sub-module of R¥[&7,- -+ , &y].

|
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o N

Define the | annihilators |of B € £ by

Ty 1= {n S RW[‘Sla "o aSn] | nT(aimla "y awn)% — O}
Iy is clearly an R[&1, - - - , &,] sub-module of R¥[&7,- -+ , &y].
Let < R >:= the sub-module of R"[£q, - - - , &,]| generated by the

transposes of the rows of R. Obviously < R >C 9ig. But,
indeed:

My =< R >!

o |
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o N

Define the | annihilators |of B € £ by

Ty 1= {n S RW[‘Sla "o aSn] | nT(aimla "y awn)% — O}
Iy is clearly an R[&1, - - - , &,] sub-module of R¥[&7,- -+ , &y].
Let < R >:= the sub-module of R"[£q, - - - , &,]| generated by the

transposes of the rows of R. Obviously < R >C 9ig. But,
indeed:

My =< R >!

Note: Depends on €°°; false for compact support sol’ns: for any p # 0,

o o —_ - ’
p(a—ml, ' Ban )w = 0 has only w = 0 as compact support sol’n.

|
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(i)

Conclusion

1:1
£¥ <~ sub-modules of R¥[£1, -+ , &)

|
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Conclusion

(i) £ <1—1> sub-modules of R"[£1,« - - , &y

(i)  Ri(ge) e )w =0and Ry(z2—,--- , 30 )w =0

Y Oz,

define the same system iff
<Ri> = <R2>.
i.e., iff 3 Fy, Fo € R**®[&1,- -+ , &) such that

R = F2R2, Ro = F1 R;.

|
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Conclusion

(i) £ <1—1> sub-modules of R"[£1,« - - , &y

(i)  Ri(ge) e )w =0and Ry(z2—,--- , 30 )w =0

Y Oz,

define the same system iff
<R > = <Rz>.
i.e., iff 3 Fy, Fo € R**®[&1,- -+ , &) such that
Ry = FoR2, Ry = F1R;.

(iii) Forn = 1, d a‘minimal’ R of full row rank, and R — U R,
U unimodular, generates all minimal kernel representations.
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Elimination

o N

First principle models ~~» latent variables. In the case of
systems described by linear constant coefficient PDE’s: ~~»

with R, M € R®***[£].

o |
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Elimination

-

|7First principle models ~~» latent variables. In the case of
systems described by linear constant coefficient PDE’s: ~~»

o 0, o 0,
R(—,--- —)w:M(a—aaa—)e
X L1 Ln

with R, M € R®***[£].

This Is the natural model class to start a study of finite dimensional
linear time-invariant systems! Much more so than

d
aw:Aaz—l—Bu, y = Cx + Du.

o |
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o N

But is it(s manifest behavior) really a differential system ??

ConsiderR(aiml,--- O Y = M(aiwl,--- , 22,

' Oxy ox,

o |
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But is it(s manifest behavior) really a differential system ??

ConsiderR(alwl,--- O Y = M(aiwl,--- , 22,

' Oxy ox,

Full behavior:

Berun = {(w7 e) c Q:OO(anRW—I_e) | tee }

Y, .
belongs to £7 1%, by definition.

Its manifest behavior equals

B ={w e €°(R",R¥) | I £suchthat ---}.

|
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Does *B belong to £ ?

|
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o N

Does 5 belong to £ ?

Theorem: It does!

Proof: The ‘fundamental principle’.

o |
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Does 5 belong to £ ?

Theorem: It does!

Proof: The ‘fundamental principle’.

The fundamental principle states that

o o
(3:131’ > Bxy

)x =1y

F € RMX™[€1, &,y € € (R, R ) is solvable for € € (R*, R2) i

0 o
nERn1[€17°'°7€n]/\nTF:O = nT(a—wla"'aam )y = 0.

o |
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-

Example: Consider

d
—@=Az+ Bu, y=Cz+ Du; w = (v,y).

ii Eliminate « !!

o |
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-

Example: Consider

d
—@=Az+ Bu, y=Cz+ Du; w = (v,y).

ii Eliminate x !!
Respect the uncontrollable!

~» the elimination algorithms

Calculations via transfer f’ns may give erroneous results.

o |
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-

Example: Consider the RLC circuit.

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

o |
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-

Example: Consider the RLC circuit.

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

o |
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fExample: Consider the RLC circuit.

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear
constant coefficient differential equations.

2. The elimination theoremT.

T capacitor — %, inductor — L s, series, parallel, may give erroneous results
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-

Example: Consider the RLC circuit.

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.
Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear
constant coefficient differential equations.

2. The elimination theoremT.

Why is there exactly one equation? Passivity!

o |
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Which PDE’s describe (E : f) in Maxwell’s equations ?

o N

o |
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Which PDE’s describe (E : f) in Maxwell’s equations ?

-

Eliminate B , p from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

0, -
—V - FE V.3 = 0,
€0, + J
EO?E—I-eOCVXVXE—F—] —

|
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Which PDE’s describe (E : f) in Maxwell’s equations ?

-

Eliminate B , p from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

8 — —
“V.E4+ V-] = o,
80(% + J
82E’+ 2V x VX E + 0= _
052 “0c at’

Elimination theorem =
this exercise would be exact & successful.

o |
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o N

Remarks:

® Number of eg’ns (for n = 1: constant coeff. lin. ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

o |
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o N

Remarks:

® Number of eg’ns (for n = 1: constant coeff. lin. ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

® There exist effective computer algebra/Grobner bases

algorithms for elimination
(R,M) — R’

o |
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fRemarks: T

® Number of eg’ns (for n = 1: constant coeff. lin. ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

® There exist effective computer algebra/Grobner bases

algorithms for elimination
(R,M) — R’

® Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?

o |
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o N

It follows from all this that £° has very nice properties. It is closed
under:
® Intersection: (2B1,B; € £¥) = (B1 NV, € £V).
® Addition: (%1, Bo € 23) = (%1 + B, € 2?1)
® Projection: (B € £11T") = (I1,,B € £").
® Action of a linear differential operator:
(B € &', P e R2X¥1[¢, .- £])
= (P(aimla IR 3%)% c £W2)
® Inverse image of a linear differential operator:
(B € £i2, P € R2*" [y, ,&)])
= (P(aimla ' Ox. )) 1% c £W1)

o |
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Controllability

o N

Controllability :&
system trajectories must be ‘patch-able’, ‘concatenable’.

Casen = 1:

o |
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-

Controllability

-

Controllability :&
system trajectories must be ‘patch-able’, ‘concatenable’.

Casen = 1:

Consider two arbitrary elements w{, wo € 5

N

0 time

|
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-

Controllability

Controllability

e

-

system trajectories must be ‘patch-able’, ‘concatenable’.

Casen = 1:

Controllability := concatenability

*
......

.
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-

General n:
Consider arbitrary patches of two solutions:

o |
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-

Is the system defined by

n

d
Row + Ry—w + -+ Rye—w = 0
ow + 1dtw‘|‘ + dtnw 5

with w = (wlawZa' . 9ww) and Ro, R1,--- , R, € R.Xwa

i.e., R(%)w = 0, controllable?

o |
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|7Is the system defined by T

n

d
Row + Ry w4 +++ + Ry =
ow + 1dtw+ + dtnw 5

withw = (w1, w2,-+ ,wy) and Ry, R1,:-- , R, € R**X¥,
i.e., R(%)w = 0, controllable?

We are looking for conditions on the polynomial matrix R, and
algorithms in the coefficient matrices Rg, 1, , R,.

o |
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-

Thm: R(%)w — 0 defines a controllable system if and only if

rank(R(M\)) is independent of A for A € C.

o |
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-

Thm: R(%)w — 0 defines a controllable system if and only if

rank(R(M\)) is independent of A for A € C.

Example: rl(a)wl = rz(a)wz (w1, w2 scalar)
controllable iff 7y and o have ho common factor.

o |
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-

Thm: R(%)w — 0 defines a controllable system if and only if

rank(R(M\)) is independent of A for A € C.

Example: rl(a)wl = rz(a)wz (w1, w2 scalar)
controllable iff 7y and o have ho common factor.

Example: The electrical circuit is controllable unless

L
CRc = — and R¢c = Rj,.
Ry,

o |
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-

Thm: R(%)w — 0 defines a controllable system if and only if

rank(R(M\)) is independent of A for A € C.

Example: rl(a)wl = rz(a)wz (w1, w2 scalar)
controllable iff 7y and o have ho common factor.

Example: The electrical circuit is controllable unless

L
CRc = — and R¢c = Rj,.
Ry,

Non-example: R € R"*¥[£], det(R) # constant.

o |
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Image representations

-

Representations of £

R(a%l"" D Yy =0

called a ‘kernel’ representation of B8 —= ker(R(%))

o |
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Image representations

-

Representations of £

R(a%l"" D Yy =0

called a ‘kernel’ representation of B8 —= ker(R(%))

0 0

Y Oxy

called a ‘latent variable’ representation of the manifest behavior

0 . . .
B =(R(—,--»,— ) M(—, ... , — (R, RY).
( (35131 Bwn)) (3:1:1 8:13n) ( )

o |
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o N

Missing link: w= M2, -, 2)0

called an ‘image’ representation of

o o
B — im(M(— ey —)).
m(M (e o)

o |
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Missing link: w=M(2, -, 2)

called an ‘image’ representation of

) )
B = im(M(— -, —)).
im (aml’ ’amn))

Elimination theorem —=- every image is also a kernel.

|
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Missing link: w= M2, -, 2)0

called an ‘image’ representation of

o o
B — im(M(— ey —)).
m(M (e o)

Elimination theorem —=- every image is also a kernel.

¢¢ Which kernels are also images ??

|
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-

Theorem: The following are equivalent for 5 ¢ £ :

1. *B is controllable,

2.

'8 admits an image representation,

3. foranya € R¥[&1,: -« , &y,
al[2,--- ,aimn]% equals 0 or all of €>°(R", R),

etc.

8:131 ?

R¥[&1, -+ ,&n]/Dlas is torsion free,

-

|
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Are Maxwell’s equations controllable ?

|
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-

.

Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R? — R

-

and the vector potential A:R xRS — R3, generate exactly the

solutions to Maxwell’s equations:

- o -

E = —aA — Vo,

B = VX A:

~ o2

7= ot2

p = —:-:OEV -K—60V2¢.
ot

60—14’ — eoc2V2K+ 6062V(V . A’) —|— eo—qu,

0
ot

Proves controllability.

|
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Are Maxwell’s equations controllable ?

o N

The following equations in the scalar potential ¢ : R x R? — R

and the vector potential A:R xRS — R3, generate exactly the
solutions to Maxwell’s equations:

— 8 —
E = —A-V
oy ®,
B = ng,
] = € 8—2K e0c?V2A + €0c?V(V - A) + ¢ Equ
J = 08t2 0 0 Oat )
0 -
= —eg0—V-A—goV3¢p.
P €05 eo Vg

Proves controllability. Illlustrates the interesting connection

controllability < d potential!

o |

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL — p.53/63




o N

Remarks:

® Algorithm: R + syzygies + Grobner basis
=> numerical test for on coefficients of R.

o |
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o N

Remarks:

® Algorithm: R + syzygies + Grobner basis
=> numerical test for on coefficients of R.

® d partial results for nonlinear systems

o |
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o N

Remarks:

® Algorithm: R + syzygies + Grobner basis
=> numerical test for on coefficients of R.

® d partial results for nonlinear systems

® Kalman controllability is a straightforward special case

o |
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Observability

Consider the system > = (T, W; X W, B).

Each element of the behavior 3 hence consists of
a pair of trajectories (wi, w2).

|
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Consider the system > = (T, W; X W, B).

Observability

Each element of the behavior 3 hence consists of
a pair of trajectories (wi, w2).

observed
variables

W

SYSTEM

to—be—-ded
2 variables

w1 : observed; w»> : to-be-deduced.

|
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observed
variables

W

SYSTEM

to—be—-ded
2 variables

wo Is said to be

observable

from wq

if (w1, w}) € B, and (wy, w?) € B) = (wh, = wl),

|
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observed
variables

W

SYSTEM

to—be—-ded
2 variables

wo Is said to be

observable

from wq

if (w1, w}) € B, and (wy, w?) € B) = (wh, = wl),

i.e., if, on *B, there exists a map w; — wo.

|
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-

When is in

d d
Ri(=)wy = Ro(—
1(dt)w1 2(dt)w2

w9 observable from wq ?

o |
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-

When is in

w9 observable from wq ?

If and only if rank(R2(A)) = coldim(R2) forall A € C.

o |
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-

When is in

d d
Ri(=)wy = Ro(—
1(dt)w1 2(dt)w2

w9 observable from wq ?

If and only if rank(R2(A)) = coldim(R2) forall A € C.

Equivalently, if and only if there exists ‘consequences’
(i.e. elements of 1) of the form wy = F(aiwl, ey 5 )W

o |
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o N

The RLC circuit is observable (branch variables observable from

external port variables) iff C R¢c # e
L

o |
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o N

The RLC circuit is observable (branch variables observable from

external port variables) iff C R¢c # e
L

In Maxwell’s equations, B is not observable from (E, ;, p).

o |
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-

The RLC circuit is observable (branch variables observable from T

L
external port variables) iff C R¢c # e
L

In Maxwell’s equations, B is not observable from (E, 3, p).

a1 a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

o |
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-

The RLC circuit is observable (branch variables observable from T

L
external port variables) iff C Rc £ —.
Ry
In Maxwell’s equations, B is not observable from (E, 3, p).

a1 a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

Observability is analogous (but not ‘dual’) to controllability.

o |
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Controllability & Observability

-

Call a latent variable systems

observable if in the full behavior, ¢ is observable from w.
Le., iff M (32—, -+ , 32-) is injective.

o |
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Controllability & Observability

Call a latent variable systems
o o o o
R(—a' 9—)w — M(—,“ ,—)E
8331 a n a 1 a n

observable if in the full behavior, ¢ is observable from w.
Le., iff M (32—, -+ , 32-) is injective.

For n = 1 every controllable system allows an observable image
representation.

o |
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Controllability & Observability

Call a latent variable systems
o o o o
R(—a' 9—w:M(—,°° ,—)E
8331 a n a 1 a n

observable if in the full behavior, ¢ is observable from w.
Le., iff M (32—, -+ , 32-) is injective.

For n = 1 every controllable system allows an observable image
representation.

Forn > 1, exceptionally so. For example, there is no potential
representation for Maxwell’s equations that is observable!
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Controllability & Observability

Call a latent variable systems
o o o o
R(—a' 9—)w — M(—,“ ,—)E
8331 a n a 1 a n

observable if in the full behavior, ¢ is observable from w.
Le., iff M (32—, -+ , 32-) is injective.

For n = 1 every controllable system allows an observable image
representation.

Forn > 1, exceptionally so. For example, there is no potential
representation for Maxwell’s equations that is observable!

Observable image representations of - of course - controllable
Lsystems are sometimes called differentially ‘flat’. t Cir. Fliess c.s. J

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL — p.59/63



Further results
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Many additional problems have been studied from the behavioral
point of view.
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Further results

o N

Many additional problems have been studied from the behavioral
point of view.

® System representations: input/output representations, state
representations and construction, model reduction,
symmetries

® System identification = the most powerful unfalsified model
(MPUM), approximate system ID

® Observers, Control

#® Quadratic differential forms, dissipative systems, 7 5o-control
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Conclusions

A (dynamical) system := a behavior
First principles model ~~» latent variables

3 a complete theory for linear constant coefficient ODE’s,
PDE’s.

Differential system = submodule

Elimination theorem

Controllability := concatenability, patchability
Controllability <> d animage representation

Observability := deducing one variable from another
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Is is worth worrying about these ‘axiomatics’?
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Is is worth worrying about these ‘axiomatics’?

-

fThey have a deep and lasting influence! Especially in teaching.

Examples:

® Probability and the theory of stochastic processes as an
axiomatization of uncertainty.

® The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.

o QM.

o |

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL — p.62/63



Thank you for your kind attention

Details & copies of the lecture frames are available from/at

Jan.Willems(@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~jwillems
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