The BEHAVIORAL APPROACH to SYSTEMS and CONTROL

Jan C. Willems

K.U. Leuven, Belgium

University of California at Santa Barbara

December 5, 2003

The BEHAVIORAL APPROACH to SYSTEMS and CONTROL - p.1/63

Problematique

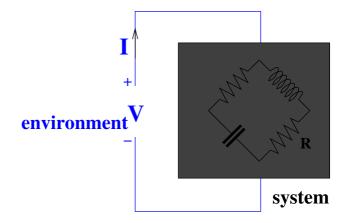
Develop a suitable *mathematical* framework for discussing dynamical systems

aimed at modeling, analysis, and synthesis.

 \sim control, signal processing, system identification, . . . \sim engineering systems, economics, physics, . . .

Motivational Examples

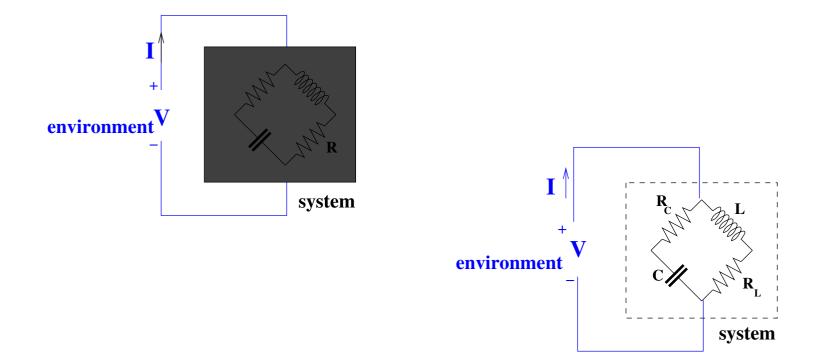
Electrical circuit



!! Model the relation between the voltage V and the current I

Motivational Examples

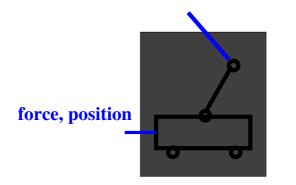
Electrical circuit



!! Model the relation between the voltage V and the current I

Electromechanical system

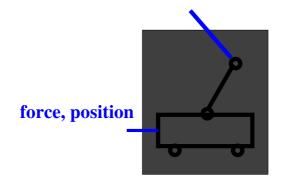
force, position, torque, angle

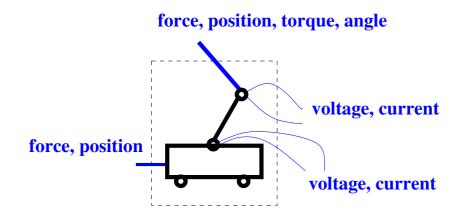


!! between the positions, forces, torque, angle, voltages, currents

Electromechanical system

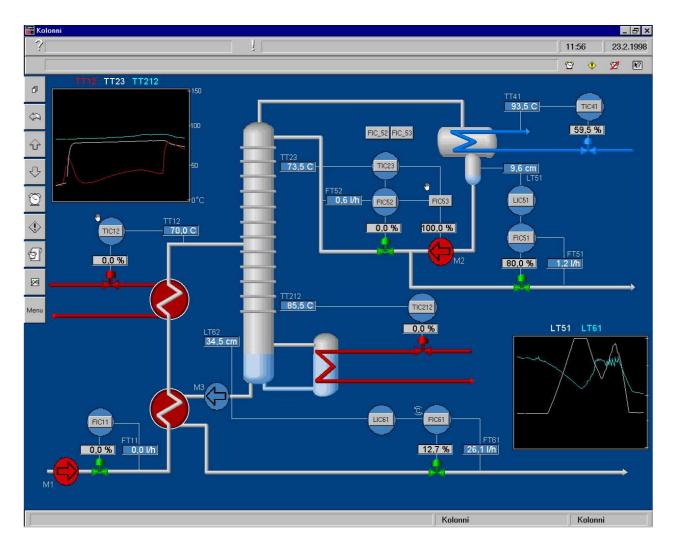
force, position, torque, angle





!! between the positions, forces, torque, angle, voltages, currents

Distillation column



Features: Systems are typically

dynamical open, they interact with their environment interconnected, with many subsystems modular, consisting of standard components

We are looking for a mathematical framework that is adapted to these features, and hence to computer assisted modeling.

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory (Foster, Brune, Cederbaum, \cdots)

 \rightsquigarrow impedances, admittances, scattering matrices, etc.

<u>1930's</u>: control embraces transfer functions

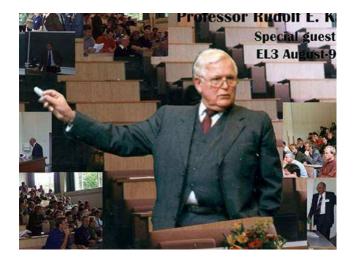
(Nyquist, Bode, $m \cdot m \cdot$)

 \rightsquigarrow plots and diagrams, classical control.

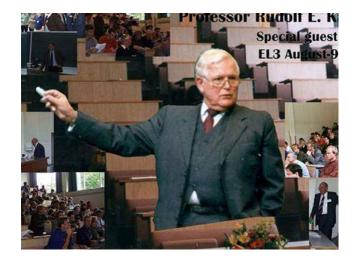
<u>1930's</u>: control embraces transfer functions (Nyquist, Bode, \cdots) \rightarrow plots and diagrams, classical control.

<u>Around 1950</u>: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

<u>1960's</u>: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue



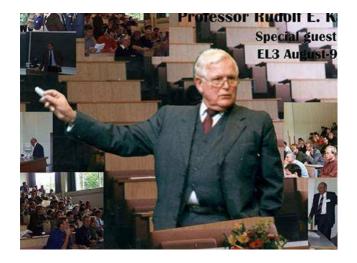
<u>1960's</u>: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue



 \sim input/state/output systems, and the ubiquitous

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx + Du,$$

<u>1960's</u>: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue



or its nonlinear counterpart

$$\frac{d}{dt}x = f(x, \mathbf{u}), \ \ \mathbf{y} = h(x, \mathbf{u}).$$

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB^c).

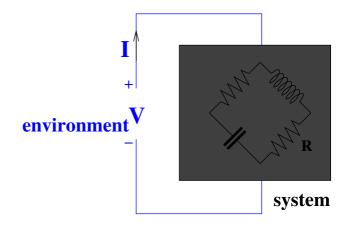
These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB^{\hat{c}}).

All these theories: input/output; cause \Rightarrow effect.

Beyond input/output

What's wrong with input/output thinking?

Let's look at examples: Our electrical circuit.

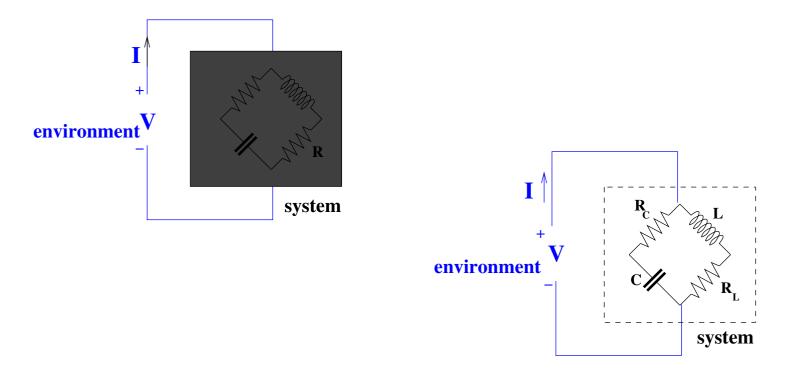


Is V the input? Or I? Or both, or are they both outputs?

Beyond input/output

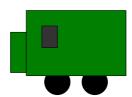
What's wrong with input/output thinking?

Let's look at examples: Our electrical circuit.



Is V the input? Or I? Or both, or are they both outputs?

An automobile:

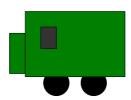


External terminals:

wind, tires, steering wheel, gas/brake pedal.

What are the inputs?

An automobile:



External terminals:

wind, tires, steering wheel, gas/brake pedal.

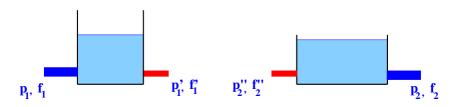
What are the inputs?

at the wind terminal: the force, at the tires: forces, or, more likely, positions? at the steering wheel: the torque or the angle? at the gas-, or brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired) interconnection variables!

Input/output is awkward in modeling interconnections.

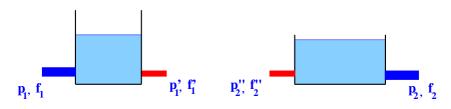
Consider a two-tank example.



Reasonable input choices: the pressures, output choices: the flows.

Input/output is awkward in modeling interconnections.

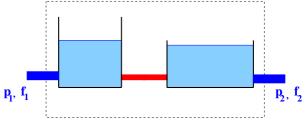
Consider a two-tank example.



Reasonable input choices: the pressures,

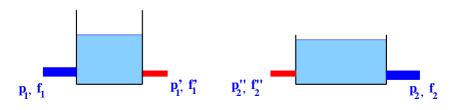
output choices: the flows.

Assume that we model the interconnection of the two tanks.



Input/output is awkward in modeling interconnections.

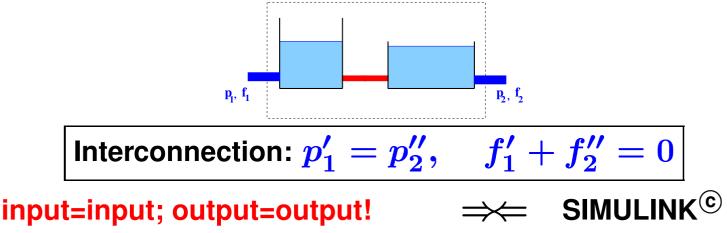
Consider a two-tank example.



Reasonable input choices: the pressures,

output choices: the flows.

Assume that we model the interconnection of the two tanks.



Interconnections contradicting SIMULINK[©] are in fact

the rule, not the exception,

in mechanics, fluidics, heat transfer, etc.

Is a system a map $u(\cdot) \mapsto y(\cdot)$?

Is a system a map $u(\cdot) \mapsto y(\cdot)$?

How to incorporate 'initial conditions'?

Is a system a map $u(\cdot) \mapsto y(\cdot)$?

How to incorporate 'initial conditions'?

Is it a parameterized map[†] $(u(\cdot), \alpha) \mapsto y(\cdot)$? All sorts of new difficulties...

[†] Cfr. the book of Kalman, Falb, and Arbib

Is a system a map $u(\cdot) \mapsto y(\cdot)$?

How to incorporate 'initial conditions'?

Is it a parameterized map[†] $(u(\cdot), \alpha) \mapsto y(\cdot)$? All sorts of new difficulties...

Construct the state!

Is a system a map $u(\cdot) \mapsto y(\cdot)$?

How to incorporate 'initial conditions'?

Is it a parameterized map[†] $(u(\cdot), \alpha) \mapsto y(\cdot)$? All sorts of new difficulties...

Construct the state!

But from what? From the system model! What system?

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) *

External variables are basic, but <u>what 'drives' what</u>, not.

- ★ for physical systems (⇒ ⇐ signal processors) ★
- External variables are basic, but <u>what 'drives' what</u>, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.

- * for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but <u>what 'drives' what</u>, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.

- * for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but <u>what 'drives' what</u>, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.
- Interconnection, variable sharing, rather that input selection, is the basic mechanism by which a system interacts with its environment.

- * for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but <u>what 'drives' what</u>, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.
- Interconnection, variable sharing, rather that input selection, is the basic mechanism by which a system interacts with its environment.
- \Rightarrow We need a better framework for discussing 'open' systems!

 \sim Behavioral systems.

The basic concepts

Behavioral systems

A dynamical system =

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

 $\mathbb{T} \subseteq \mathbb{R}$, the <u>time-axis</u>

 \mathbb{W} , the *signal space*

 $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$: <u>the behavior</u>

The basic concepts

Behavioral systems

A dynamical system =

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

 $\mathbb{T} \subseteq \mathbb{R}$, the <u>time-axis</u> (= the relevant time instances),

W, the <u>signal space</u> (= where the variables take on their values),

 $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$: <u>the behavior</u>

(= the admissible trajectories).

 $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

For a trajectory $w : \mathbb{T} \to \mathbb{W}$, we thus have:

- $w \in \mathfrak{B}$: the model allows the trajectory w,
- $w
 otin \mathfrak{B}$: the model forbids the trajectory w.

 $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

For a trajectory $w : \mathbb{T} \to \mathbb{W}$, we thus have:

- $w \in \mathfrak{B}$: the model allows the trajectory w, $w \notin \mathfrak{B}$: the model forbids the trajectory w.
- Usually, $\mathbb{T} = \mathbb{R}$, or $[0, \infty)$ (in continuous-time systems), or \mathbb{Z} , or \mathbb{N} (in discrete-time systems).

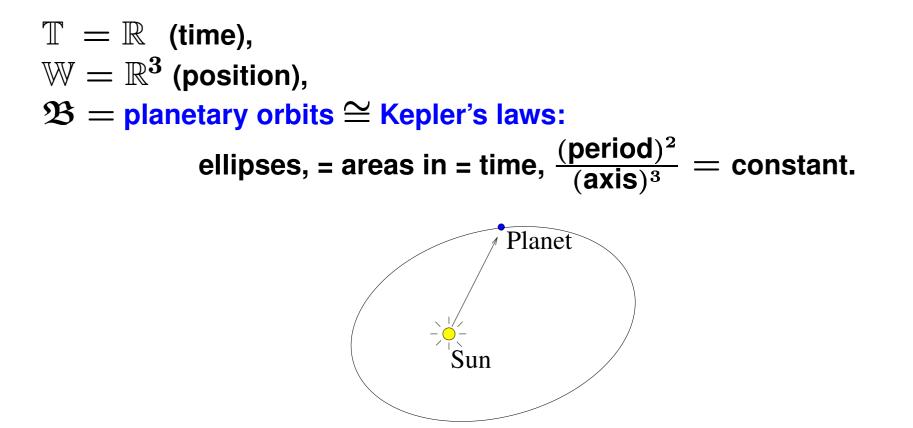
Usually, $\mathbb{W} \subseteq \mathbb{R}^{\mathbb{W}}$ (in lumped systems), a function space (in distributed systems), or a finite set (in DES).

Emphasis later today: $\mathbb{T} = \mathbb{R}, \quad \mathbb{W} = \mathbb{R}^{W},$

 $\mathfrak{B} = sol'ns$ of system of linear constant coefficient ODE's.

1. Planetary orbits

1. Planetary orbits



1. Planetary orbits

2. Input / output systems

1. Planetary orbits

2. Input / output systems

$$egin{aligned} f_1(oldsymbol{y}(oldsymbol{t}), rac{d^2}{dt^2}oldsymbol{y}(oldsymbol{t}), \dots, t) \ &= f_2(oldsymbol{u}(oldsymbol{t}), rac{d}{dt}oldsymbol{u}(oldsymbol{t}), rac{d^2}{dt^2}oldsymbol{u}(oldsymbol{t}), \dots, t) \end{aligned}$$

1. Planetary orbits

2. Input / output systems

3. Flows

1. Planetary orbits

2. Input / output systems

3. Flows

$$\frac{d}{dt}\boldsymbol{x(t)} = f(\boldsymbol{x(t)}),$$

 $\mathfrak{B} =$ all state trajectories.

... of very marginal value as a paradigm for dynamics ...

Modeling closed systems by tearing and zooming \rightarrow open systems.

1. Planetary orbits

2. Input / output systems

3. Flows

4. Observed flows

1. Planetary orbits

2. Input / output systems

3. Flows

4. Observed flows

$$\frac{d}{dt}\boldsymbol{x(t)} = f(\boldsymbol{x(t)}); \ \ \boldsymbol{y(t)} = h(\boldsymbol{x(t)}),$$

 $\mathfrak{B} =$ all possible output trajectories.

1. Planetary orbits

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

1. Planetary orbits

2. Input / output systems

3. Flows

4. Observed flows

5. Convolutional codes

6. Formal languages

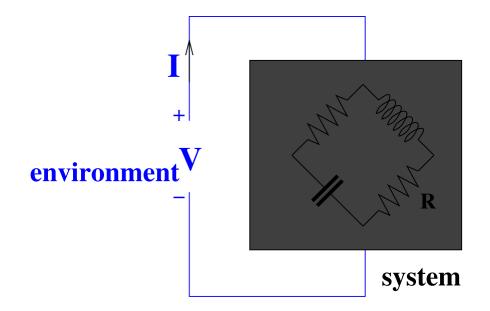
Latent variable systems

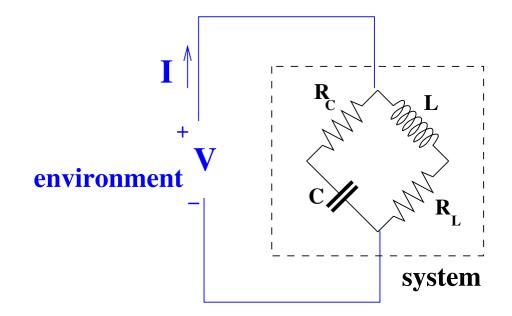
Consider once again our electrical RLC - circuit:

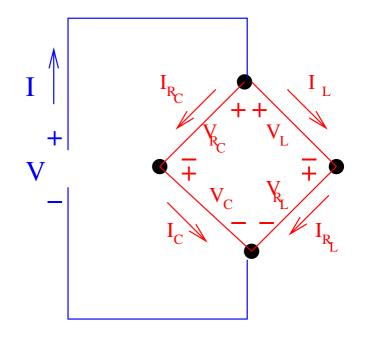


!! Model the relation between V and I **!!**

How does this modeling proceed?







The circuit graph

Introduce the following additional variables:

the voltage across and the current in each branch: $V_{R_C}, I_{R_C}, V_C, I_C, V_{R_L}, I_{R_L}, V_L, I_L$.

System equations

Constitutive equations (CE):

$$V_{R_C} = R_C I_{R_C}, \ V_{R_L} = R_L I_{R_L}, \ C \frac{d}{dt} V_C = I_C, \ L \frac{d}{dt} I_L = V_L$$

Kirchhoff's voltage laws (KVL):

 $V = V_{R_C} + V_C, V = V_L + V_{R_L}, V_{R_C} + V_C = V_L + V_{R_L}$

Kirchhoff's current laws (KCL):

 $I = I_{R_C} + I_L, \ I_{R_C} = I_C, \ I_L = I_{R_L}, \ I_C + I_{R_L} = I$

The preceding is a complete model, but it is not an explicit relation the between V and I. Here it is:

 $\begin{array}{ll} \underline{\text{Case 1}:} & CR_C \neq \frac{L}{R_L}.\\ & (\frac{R_C}{R_L} + (1 + \frac{R_C}{R_L})CR_C\frac{d}{dt} + CR_C\frac{L}{R_L}\frac{d^2}{dt^2})V\\ & = (1 + CR_C\frac{d}{dt})(1 + \frac{L}{R_L}\frac{d}{dt})R_CI. \end{array}$

The preceding is a complete model, but it is not an explicit relation the between V and I. Here it is:

These are the <u>exact</u> relations between V and I !

First principles models invariably contain <u>auxiliary variables</u>, in addition to the variables the model aims at.

 \rightsquigarrow Manifest and latent variables.

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.

 \rightsquigarrow Manifest and latent variables.

Manifest = the variables the model aims at,

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.

 \rightsquigarrow Manifest and latent variables.

Manifest = the variables the model aims at, Latent = auxiliary variables.

We want to capture this in mathematical definitions.

Latent variable systems

A dynamical system with latent variables =

$$\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\mathrm{full}})$$

 $\mathbb{T} \subseteq \mathbb{R}$, the *time-axis* \mathbb{W} , the *signal space* \mathbb{L} , the *latent variable space*

 $\mathfrak{B}_{\mathrm{full}} \subseteq (\mathbb{W} \times \mathbb{L})^{\mathbb{T}} : \underline{$ the full behavior

Latent variable systems

A dynamical system with latent variables =

$$\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\mathrm{full}})$$

 $\mathbb{T} \subseteq \mathbb{R}$, the *time-axis* (= the set of relevant time instances). W, the *signal space* (= the variables that the model aims at). L, the *latent variable space* (= auxiliary modeling variables).

 $\mathfrak{B}_{\mathrm{full}} \subseteq (\mathbb{W} \times \mathbb{L})^{\mathbb{T}} :$ <u>the full behavior</u>

(= the pairs $(w, \ell) : \mathbb{T} \to \mathbb{W} imes \mathbb{L}$

that the model declares possible).

The manifest behavior

Call the elements of \mathbb{W} *'manifest' variables* ,

those of \mathbb{L} *'latent' variables* .

The latent variable system $\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{full})$ induces the *manifest system* $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with *manifest behavior*

$$\mathfrak{B} = \{ w : \mathbb{T} \to \mathbb{W} \mid \exists \ \boldsymbol{\ell} : \mathbb{T} \to \mathbb{L} \text{ such that } (w, \boldsymbol{\ell}) \in \mathfrak{B}_{\mathrm{full}} \}$$

The manifest behavior

Call the elements of \mathbb{W} *'manifest' variables*,

those of \mathbb{L} *'latent' variables* .

The latent variable system $\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{full})$ induces the *manifest system* $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with *manifest behavior*

$$\mathfrak{B} = \{ w : \mathbb{T} \to \mathbb{W} \mid \exists \ \boldsymbol{\ell} : \mathbb{T} \to \mathbb{L} \text{ such that } (w, \boldsymbol{\ell}) \in \mathfrak{B}_{\mathrm{full}} \}$$

In convenient equations for \mathfrak{B} , the latent variables are *'eliminated'*.

<u>1. The RLC - circuit</u> before elimination.

<u>1. The RLC - circuit</u>

2. Models obtained by tearing and zooming

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

$$\begin{split} &\frac{d}{dt} \boldsymbol{x}(t) = f(\boldsymbol{x}(t), \boldsymbol{u}(t)); \quad \boldsymbol{y}(t) = h(\boldsymbol{x}(t), \boldsymbol{u}(t)), \\ &\mathbb{T} = \mathbb{R}, \mathbb{W} = \mathbb{U} \times \mathbb{Y}, \mathbb{L} = \mathbb{X}, \\ &\mathfrak{B}_{\mathrm{full}} = \mathsf{all} \; (\boldsymbol{u}, \boldsymbol{y}, \boldsymbol{x}) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X} \\ & \text{that satisfy these equations,} \\ &\mathfrak{B} = \mathsf{all} \; (\mathsf{input} / \mathsf{output}) \text{-pairs.} \end{split}$$

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

Latent variables = the transition nodes; the language generated = the manifest behavior

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

5. Automata

6. Grammars

Recapitulation

Central notions:

) The behavior \rightarrow a model.

Recapitulation

Central notions:

- **9** The behavior \rightarrow a model.
- Distinction between manifest and latent variables manifest behavior specifies what the model aims at.

Recapitulation

Central notions:

- **9** The behavior \rightarrow a model.
- Distinction between manifest and latent variables manifest behavior specifies what the model aims at.
- **First principles models** \rightarrow latent variables.

Recapitulation

Central notions:

- **9** The behavior \rightarrow a model.
- Distinction between manifest and latent variables manifest behavior specifies what the model aims at.
- **First principles models** \rightarrow latent variables.
- (Full) behavioral equations
 - \rightsquigarrow a specification of the (full) behavior.

Recapitulation

Central notions:

- **9** The behavior \rightarrow a model.
- Distinction between manifest and latent variables manifest behavior specifies what the model aims at.
- **First principles models** \rightarrow latent variables.
- (Full) behavioral equations
 - \rightsquigarrow a specification of the (full) behavior.
- Equivalent equations
 - $:\Leftrightarrow$ the manifest behaviors are equal.

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

1. *linear,* meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

1. *linear,* meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant,*

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

1. *linear,* meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant,* meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t' + t)$

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

1. *linear,* meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant,* meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t' + t)$ 3. *differential,*

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{w}, \mathfrak{B})$$

that are

1. *linear,* meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$ 2. *time-invariant,* meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the t-shift, $\sigma^t f(t') := f(t' + t)$ 3. *differential,* meaning \mathfrak{B} consists of the sol'ns of a system of differential eq'ns.

$$ightarrow \left[R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \dots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,
ight]$$

with $R_0, R_1, \cdots, R_{ ext{n}} \in \mathbb{R}^{ullet imes imes}$.

$$ightarrow egin{aligned} R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \cdots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0, \end{aligned}$$

with $R_0,R_1,\cdots,R_{
m n}\in\mathbb{R}^{ullet imes {w}}.$ With the polynomial matrix $R(\xi)=R_0+R_1\xi+\cdots+R_{
m n}\xi^{
m n},$

we obtain the short notation

$$R(rac{d}{dt})oldsymbol{w}=0.$$

$$\rightsquigarrow \qquad \left[R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \dots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,
ight]$$

with $R_0,R_1,\cdots,R_{
m n}\in\mathbb{R}^{ullet imes {w}}.$ With the polynomial matrix $R(\xi)=R_0+R_1\xi+\cdots+R_{
m n}\xi^{
m n},$

we obtain the short notation

$$R(rac{d}{dt})oldsymbol{w}=0.$$

But, the theory has also been developed for PDE's^{\dagger}.

[†] by Oberst, Zerz, Shankar, Pillai, e.a.

n-D systems

 $\mathbb{T} = \mathbb{R}^n$, n independent variables,

- $\mathbb{W} = \mathbb{R}^{w}$, w dependent variables,
- \mathfrak{B} = the sol'ns of a system of linear constant coeff. of PDE's.

Let $R \in \mathbb{R}^{ullet imes imes}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_n],$ and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$
 (*)

n-D systems

 $\mathbb{T} = \mathbb{R}^n$, n independent variables, $\mathbb{W} = \mathbb{R}^w$, w dependent variables,

 \mathfrak{B} = the sol'ns of a system of linear constant coeff. of PDE's.

Let $R \in \mathbb{R}^{ullet imes imes}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_n],$ and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$
 (*)

Define its behavior by

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{w}) \mid (*) \text{ holds } \}$$

$$= \ker(R(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}))$$

n-D systems

 $\mathbb{T}=\mathbb{R}^n,$ n independent variables, $\mathbb{W}=\mathbb{R}^w,$ w dependent variables,

 \mathfrak{B} = the sol'ns of a system of linear constant coeff. of PDE's.

Let $R \in \mathbb{R}^{ullet imes imes}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_n],$ and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$
 (*)

Define its behavior by

$$\mathfrak{B} = \{ \boldsymbol{w} \in \mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{w}) \mid (*) \text{ holds } \}$$

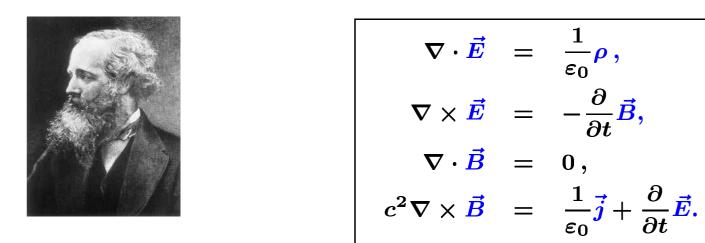
 $= \ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}))$

 $\mathfrak{C}^{\infty}(\mathbb{R}^n,\mathbb{R}^w)$ mainly for convenience, but important for some results.

Example: Maxwell's Equations

$$egin{aligned}
abla \cdot ec{E} &=& rac{1}{arepsilon_0}
ho \,, \
abla & imes ec{E} &=& -rac{\partial}{\partial t} ec{B} , \
abla & imes ec{B} &=& 0 \,, \ c^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E} . \end{aligned}$$

Example: Maxwell's Equations

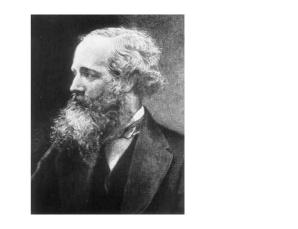


 $\mathbb{T} = \mathbb{R} imes \mathbb{R}^3$ (time and space), $w = (\vec{E}, \vec{B}, \vec{j},
ho)$

(electric field, magnetic field, current density, charge density), $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$,

 $\mathfrak{B} =$ set of solutions to these PDE's.

Example: Maxwell's Equations



$$egin{aligned}
abla \cdot ec{E} &=& rac{1}{arepsilon_0}
ho \,, \
abla & imes ec{E} &=& -rac{\partial}{\partial t} ec{B}, \
abla & imes ec{B} &=& 0 \,, \
abla \cdot ec{B} &=& 0 \,, \
abla \cdot ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E}. \end{aligned}$$

 $\mathbb{T} = \mathbb{R} \times \mathbb{R}^3$ (time and space), $w = (\vec{E}, \vec{B}, \vec{j},
ho)$

(electric field, magnetic field, current density, charge density), $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$,

 $\mathfrak{B} = \mathsf{set}$ of solutions to these PDE's.

<u>Note</u>: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

NOMENCLATURE

- \mathfrak{L}_n^w : the set of such systems with n independent, and w dependent variables
- \mathfrak{L}^{\bullet} : with any finite number of (in)dependent variables

Elements of \mathfrak{L}^{\bullet} : *'linear differential systems'*

 $R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w = 0: ext{ a } ext{ kernel representation} ext{ of the corresponding } \Sigma \in \mathfrak{L}^{ullet} ext{ or } \mathfrak{B} \in \mathfrak{L}^{ullet}$

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$R(rac{d}{dt})w=0$$

and

$$U(rac{d}{dt})R(rac{d}{dt})w=0$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\det(U)$ is a non-zero constant).

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$R(rac{d}{dt})w=0$$

and

$$U(\frac{d}{dt})R(\frac{d}{dt})w=0$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\det(U)$ is a non-zero constant).

 $\Rightarrow R$ defines $\mathfrak{B} = \ker(R(rac{d}{dt}))$, but not vice-versa!

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$R(rac{d}{dt})w=0$$

and

$$U(\frac{d}{dt})R(\frac{d}{dt})w = 0$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\det(U)$ is a non-zero constant).

 $\Rightarrow R$ defines $\mathfrak{B} = \ker(R(\frac{d}{dt}))$, but not vice-versa!

:: \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_n^{w}$??

Define the *annihilators* of $\mathfrak{B} \in \mathfrak{L}_n^{\scriptscriptstyle W}$ by

 $\mathfrak{N}_{\mathfrak{B}} := \{ n \in \mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}] \mid n^{\top}(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}})\mathfrak{B} = 0 \}.$ $\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}[\xi_{1}, \cdots, \xi_{n}]$ sub-module of $\mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}].$ Define the **annihilators** of $\mathfrak{B} \in \mathfrak{L}_n^{\scriptscriptstyle W}$ by

 $\mathfrak{N}_{\mathfrak{B}} := \{ n \in \mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}] \mid n^{\top}(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}})\mathfrak{B} = 0 \}.$ $\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}[\xi_{1}, \cdots, \xi_{n}]$ sub-module of $\mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}].$

Let < R >:= the sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$ generated by the transposes of the rows of R. Obviously $< R > \subseteq \mathfrak{M}_{\mathfrak{B}}$. But, indeed:

$$\mathfrak{N}_{\mathfrak{B}} = < R > !$$

Define the annihilators of $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$ by

 $\mathfrak{N}_{\mathfrak{B}} := \{ n \in \mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}] \mid n^{\top}(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}})\mathfrak{B} = 0 \}.$ $\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}[\xi_{1}, \cdots, \xi_{n}]$ sub-module of $\mathbb{R}^{w}[\xi_{1}, \cdots, \xi_{n}].$

Let < R >:= the sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$ generated by the transposes of the rows of R. Obviously $< R > \subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$\mathfrak{N}_{\mathfrak{B}} = < R > !$$

<u>Note</u>: Depends on \mathfrak{C}^∞ ; false for compact support sol'ns: for any p
eq 0,

 $p(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})w=0$ has only w=0 as compact support sol'n.

Conclusion

(i)
$$\mathfrak{L}_n^{\mathtt{w}} \xleftarrow{1:1}$$
 sub-modules of $\mathbb{R}^{\mathtt{w}}[\xi_1, \cdots, \xi_n]$

Conclusion

(i)
$$\mathfrak{L}_n^{\mathtt{W}} \stackrel{1:1}{\longleftrightarrow}$$
 sub-modules of $\mathbb{R}^{\mathtt{W}}[\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_n]$

(ii)
$$R_1(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0$$
 and $R_2(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0$

define the same system iff

$$< R_1 > = < R_2 > .$$

i.e., iff $\exists \ F_1,F_2\in \mathbb{R}^{ullet imesullet}[\xi_1,\cdots,\xi_n]$ such that $R_1=F_2R_2,\ \ R_2=F_1R_1.$

Conclusion

(i)
$$\mathfrak{L}_n^{\mathtt{W}} \stackrel{1:1}{\longleftrightarrow}$$
 sub-modules of $\mathbb{R}^{\mathtt{W}}[\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_n]$

(ii)
$$R_1(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0$$
 and $R_2(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0$

define the same system iff

$$< R_1 > = < R_2 > .$$

i.e., iff $\exists \ F_1, F_2 \in \mathbb{R}^{ullet imes ullet}[\xi_1, \cdots, \xi_n]$ such that

$$R_1 = F_2 R_2, \ R_2 = F_1 R_1.$$

(iii) For n = 1, \exists a 'minimal' R of full row rank, and $R \mapsto UR$, U unimodular, generates all minimal kernel representations.

Elimination

First principle models \rightarrow latent variables. In the case of systems described by linear constant coefficient PDE's: \rightarrow

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})oldsymbol{w}=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})oldsymbol{\ell}$$

with $R, M \in \mathbb{R}^{ullet imes ullet}[m{\xi}].$

Elimination

First principle models \rightarrow latent variables. In the case of systems described by linear constant coefficient PDE's: \rightarrow

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}}) oldsymbol{w} = M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}}) oldsymbol{\ell}$$

with $R, M \in \mathbb{R}^{ullet imes ullet}[m{\xi}].$

This <u>is</u> the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$rac{d}{dt} oldsymbol{x} = A oldsymbol{x} + B oldsymbol{u}, \hspace{0.2cm} oldsymbol{y} = C oldsymbol{x} + D oldsymbol{u}.$$

But is it(s manifest behavior) really a differential system ??

Consider
$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})oldsymbol{\ell}.$$

But is it(s manifest behavior) really a differential system ??

Consider
$$R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})\ell$$
.
Full behavior:

$$\mathfrak{B}_{\mathrm{full}} = \{(\boldsymbol{w}, \boldsymbol{\ell}) \in \mathfrak{C}^{\infty}(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}) \mid \cdots \}.$$

belongs to $\mathfrak{L}_n^{w+\ell}$, by definition.

Its manifest behavior equals

$$\mathfrak{B} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R}^n,\mathbb{R}^{w}) \mid \exists \ oldsymbol{\ell} \ ext{such that} \ \cdots \}.$$

Does \mathfrak{B} belong to $\mathfrak{L}_n^{\mathtt{W}}$?

Does \mathfrak{B} belong to $\mathfrak{L}_n^{\tt w}$?

Theorem: It does!

<u>Proof</u>: The 'fundamental principle'.

Does \mathfrak{B} belong to $\mathfrak{L}_n^{\tt w}$?

Theorem: It does!

Proof: The 'fundamental principle'.

The fundamental principle states that

$$F(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{x}=oldsymbol{y}$$

 $F\in \mathbb{R}^{n_1 imes n_2}[\xi_1,\cdots,\xi_n], y\in \mathfrak{C}^\infty(\mathbb{R}^n,\mathbb{R}^{n_1})$ is solvable for $x\in\mathfrak{C}^\infty(\mathbb{R}^n,R^{n_2})$ iff

$$n\in \mathbb{R}^{ extsf{n_1}}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_{ extsf{n}}]\wedge n^ opoldsymbol{F}=0 \hspace{3mm} \Rightarrow \hspace{3mm} n^ op(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ extsf{n}}})y=0.$$

Example: Consider

$$\frac{d}{dt}\boldsymbol{x} = A\boldsymbol{x} + B\boldsymbol{u}, \ \boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u}; \ \boldsymbol{w} = (\boldsymbol{u}, \boldsymbol{y}).$$

ii Eliminate *x* !!

Example: Consider

$$\frac{d}{dt}\boldsymbol{x} = A\boldsymbol{x} + B\boldsymbol{u}, \ \boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u}; \ \boldsymbol{w} = (\boldsymbol{u}, \boldsymbol{y}).$$

ii Eliminate *x* !!

Respect the uncontrollable!

$$\rightsquigarrow$$
 the elimination algorithms

Calculations via transfer f'ns may give erroneous results.

First principles modeling (\cong CE's, KVL, & KCL)

 \rightarrow 15 behavioral equations.

Include both the port and the branch voltages and currents.

First principles modeling (\cong CE's, KVL, & KCL)

\rightarrow 15 behavioral equations.

Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant coefficient differential equations?

First principles modeling (\cong CE's, KVL, & KCL)

 \rightarrow 15 behavioral equations.

Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

 The CE's, KVL, & KCL are all linear constant coefficient differential equations.
 The elimination theorem[†].

[†] capacitor $ightarrow rac{1}{Cs}$, inductor ightarrow Ls, series, parallel, may give erroneous results

First principles modeling (\cong CE's, KVL, & KCL)

 \rightsquigarrow 15 behavioral equations.

Include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

 The CE's, KVL, & KCL are all linear constant coefficient differential equations.
 The elimination theorem[†].

Why is there *exactly one* equation? Passivity!

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations ?

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations ?

Eliminate \vec{B}, ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{E} \,+\,
abla \cdot ec{j} \,=\, 0,
onumber \ arepsilon_0 rac{\partial^2}{\partial t^2} ec{E} \,+\, arepsilon_0 c^2
abla imes
abla imes ec{E} \,+\, rac{\partial}{\partial t} ec{j} \,=\, 0.$$

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations ?

Eliminate \vec{B} , ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{E} \,+\,
abla \cdot ec{j} \,=\, 0,
onumber \ arepsilon_0 rac{\partial^2}{\partial t^2} ec{E} \,+\, arepsilon_0 c^2
abla imes
abla imes ec{
e} \,+\, ec{ec{E}} \,+\, rac{\partial}{\partial t} ec{j} \,=\, 0.$$

Elimination theorem \Rightarrow

this exercise would be exact & successful.

Number of eq'ns (for n = 1: constant coeff. lin. ODE's) \leq number of variables. Elimination \Rightarrow fewer, higher order equations.

- Number of eq'ns (for n = 1: constant coeff. lin. ODE's) \leq number of variables.
 Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination $(R, M) \mapsto R'$

- Number of eq'ns (for n = 1: constant coeff. lin. ODE's) \leq number of variables. Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination $(R, M) \mapsto R'$
- Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?

It follows from all this that \mathfrak{L}^{\bullet} has very nice properties. It is closed under:

- $\ \ \, \text{Intersection:} \ \ (\mathfrak{B}_1,\mathfrak{B}_2\in\mathfrak{L}^{\scriptscriptstyle W}_n)\Rightarrow(\mathfrak{B}_1\cap\mathfrak{B}_2\in\mathfrak{L}^{\scriptscriptstyle W}_n).$
- Addition: $(\mathfrak{B}_1,\mathfrak{B}_2\in\mathfrak{L}_n^{\mathtt{W}})\Rightarrow(\mathfrak{B}_1+\mathfrak{B}_2\in\mathfrak{L}_n^{\mathtt{W}}).$
- $\ \ \, \textbf{Projection:} \ \ \, (\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{1}+\mathtt{w}_{2}})\Rightarrow(\Pi_{w_{1}}\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{1}}).$
- Action of a linear differential operator: $(\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}}, P \in \mathbb{R}^{w_{2} \times w_{1}}[\xi_{1}, \cdots, \xi_{n}])$ $\Rightarrow (P(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}})\mathfrak{B} \in \mathfrak{L}_{n}^{w_{2}}).$
- Inverse image of a linear differential operator: $(\mathfrak{B} \in \mathfrak{L}_{n}^{w_{2}}, P \in \mathbb{R}^{w_{2} \times w_{1}}[\xi_{1}, \cdots, \xi_{n}])$ $\Rightarrow (P(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}))^{-1}\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}}).$

Controllability

Controllability :⇔

system trajectories must be 'patch-able', 'concatenable'.

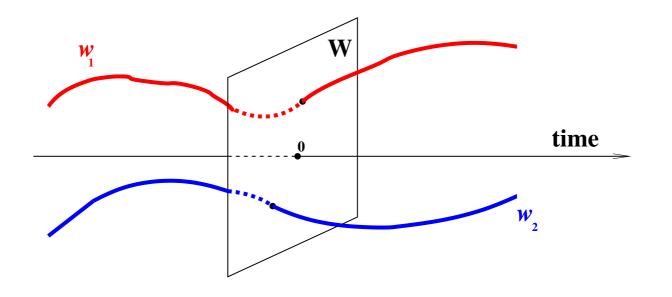
Case n = 1:

Controllability

Controllability :⇔ system trajectories must be 'patch-able', 'concatenable'.

Case n = 1:

Consider two arbitrary elements $w_1, w_2 \in \mathfrak{B}$



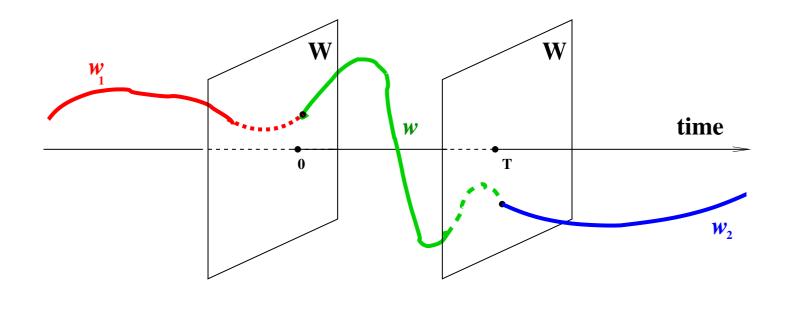
Controllability

Controllability :⇔

system trajectories must be 'patch-able', 'concatenable'.

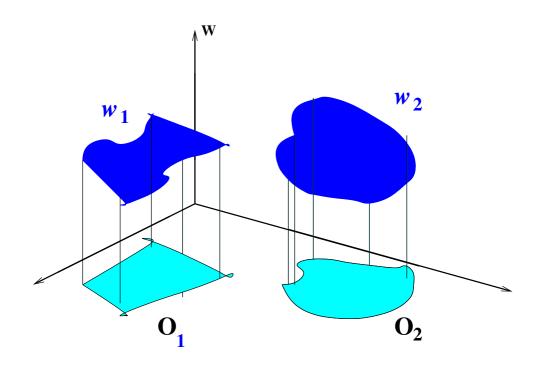
Case n = 1:

Controllability := concatenability

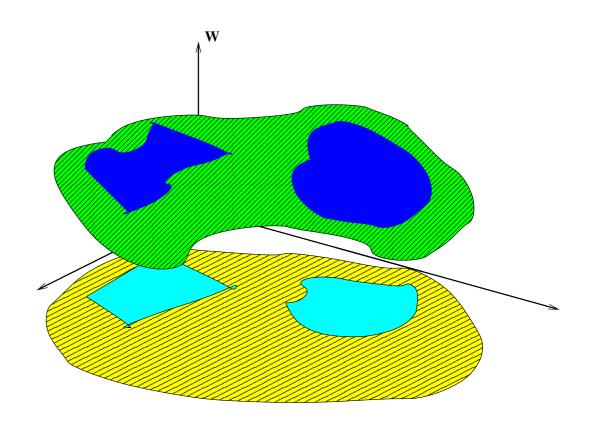


General n:

Consider arbitrary patches of two solutions:



Controllability := patchability



Is the system defined by

$$ig| R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \cdots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,$$

with $w=(w_1,w_2,\cdots,w_{w})$ and $R_0,R_1,\cdots,R_n\in\mathbb{R}^{\bullet imes w},$ i.e., $R(rac{d}{dt})w=0,$ controllable? Is the system defined by

$$R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \cdots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,$$

with
$$w=(w_1,w_2,\cdots,w_{ iny W})$$
 and $R_0,R_1,\cdots,R_{ iny n}\in \mathbb{R}^{ullet imes imes},$ i.e., $R(rac{d}{dt})w=0,$ controllable?

We are looking for conditions on the polynomial matrix R, and algorithms in the coefficient matrices R_0, R_1, \cdots, R_n .

Thm: $R(rac{d}{dt})w = 0$ defines a controllable system if and only if

 $\operatorname{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Thm:
$$R(\frac{d}{dt})w = 0$$
 defines a controllable system if and only if

 $\operatorname{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Example:
$$r_1(\frac{d}{dt})w_1 = r_2(\frac{d}{dt})w_2$$
 $(w_1, w_2$ scalar) controllable iff r_1 and r_2 have no common factor.

Thm:
$$R(\frac{d}{dt})w = 0$$
 defines a controllable system if and only if

 $\mathrm{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}.$

Example:
$$r_1(rac{d}{dt})w_1 = r_2(rac{d}{dt})w_2$$
 $(w_1,w_2$ scalar)controllable iff r_1 and r_2 have no common factor.

Example: The electrical circuit is controllable unless

$$CR_C = rac{L}{R_L}$$
 and $R_C = R_L.$

Thm:
$$R(\frac{d}{dt})w = 0$$
 defines a controllable system if and only if

 $\operatorname{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Example:
$$r_1(rac{d}{dt})w_1 = r_2(rac{d}{dt})w_2$$
 $(w_1,w_2$ scalar)controllable iff r_1 and r_2 have no common factor.

Example: The electrical circuit is controllable unless

$$CR_C = rac{L}{R_L}$$
 and $R_C = R_L.$

Non-example: $R \in \mathbb{R}^{W \times W}[\xi]$, $det(R) \neq constant$.

Image representations

Representations of \mathfrak{L}_n^{W} :

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$

called a *'kernel' representation* of $\mathfrak{B} = \ker(R(rac{d}{dt}))$

Image representations

Representations of \mathfrak{L}_n^{W} :

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$

called a *'kernel' representation* of $\mathfrak{B} = \ker(R(rac{d}{dt}))$

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{\ell}$$

called a 'latent variable' representation of the manifest behavior

$$\mathfrak{B} = (R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n}))^{-1}M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})\mathfrak{C}^\infty(\mathbb{R}^n,\mathbb{R}^\ell).$$

Missing link:
$$w = M(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_n}) oldsymbol{\ell}$$

called an 'image' representation of

$$\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$$

Missing link:
$$w = M(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_n}) \ell$$

called an 'image' representation of

$$\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$$

Elimination theorem \Rightarrow every image is also a kernel.

Missing link:
$$w = M(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_n}) \ell$$

called an 'image' representation of

$$\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$$

Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

<u>Theorem</u>: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_n^{\scriptscriptstyle W}$:

- 1. \mathfrak{B} is controllable,
- 2. $|\mathfrak{B}$ admits an image representation,

etc.

Are Maxwell's equations controllable ?

Are Maxwell's equations controllable ?

The following equations in the *scalar potential* $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the *vector potential* $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$\begin{split} \vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi, \\ \vec{B} &= \nabla \times \vec{A}, \\ \vec{j} &= \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi, \\ \rho &= -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi. \end{split}$$

Proves controllability.

Are Maxwell's equations controllable ?

The following equations in the *scalar potential* $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the *vector potential* $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$\begin{split} \vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi, \\ \vec{B} &= \nabla \times \vec{A}, \\ \vec{j} &= \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi, \\ \rho &= -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi. \end{split}$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ potential!

Algorithm: R + syzygies + Gröbner basis

 \Rightarrow numerical test for on coefficients of R.

- Algorithm: R + syzygies + Gröbner basis \Rightarrow numerical test for on coefficients of R.

- Algorithm: R + syzygies + Gröbner basis \Rightarrow numerical test for on coefficients of R.
- **\square** partial results for nonlinear systems
- Malman controllability is a straightforward special case

Observability

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 imes \mathbb{W}_2, \mathfrak{B}).$

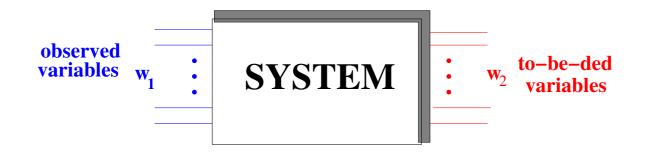
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories (w_1, w_2) .

Observability

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B}).$

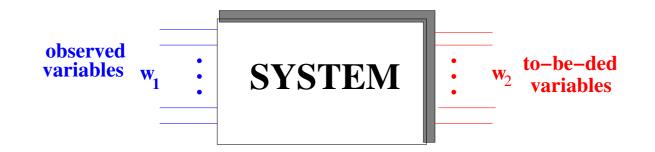
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories (w_1, w_2) .

 w_1 : observed; w_2 : to-be-deduced.



 w_2 is said to be **observable** from w_1

 $\text{if} \left((w_1,w_2') \in \mathfrak{B}, \text{and} \ (w_1,w_2'') \in \mathfrak{B} \right) \Rightarrow (w_2'=w_2''), \\$



 w_2 is said to be **observable** from w_1

 $\text{if} \left((w_1,w_2') \in \mathfrak{B}, \text{and} \ (w_1,w_2'') \in \mathfrak{B} \right) \Rightarrow (w_2'=w_2''), \\$

i.e., if, on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

When is in

$$R_1(\frac{d}{dt})\boldsymbol{w_1} = R_2(\frac{d}{dt})\boldsymbol{w_2}$$

 w_2 observable from w_1 ?

When is in

$$R_1(\frac{d}{dt})\boldsymbol{w_1} = R_2(\frac{d}{dt})\boldsymbol{w_2}$$

 w_2 observable from w_1 ?

If and only if $\operatorname{rank}(R_2(\lambda)) = \operatorname{coldim}(R_2)$ for all $\lambda \in \mathbb{C}$.

When is in

$$R_1(\frac{d}{dt})\boldsymbol{w_1} = R_2(\frac{d}{dt})\boldsymbol{w_2}$$

 w_2 observable from w_1 ?

If and only if $\operatorname{rank}(R_2(\lambda)) = \operatorname{coldim}(R_2)$ for all $\lambda \in \mathbb{C}$.

Equivalently, if and only if there exists 'consequences' (i.e. elements of $\mathfrak{N}_{\mathfrak{B}}$) of the form $w_2 = F(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w_1$.

In Maxwell's equations, \vec{B} is not observable from (\vec{E},\vec{j},ρ) .

In Maxwell's equations, \vec{B} is not observable from (\vec{E}, \vec{j}, ρ) .

 \exists a complete theory (for constant coefficient ODE's and PDE's), including algorithms, observer design, etc.

In Maxwell's equations, \vec{B} is not observable from (\vec{E}, \vec{j}, ρ) .

 \exists a complete theory (for constant coefficient ODE's and PDE's), including algorithms, observer design, etc.

Observability is analogous (but not 'dual') to controllability.

Call a latent variable systems

$$R(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})w=M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})\ell$$

observable if in the full behavior, ℓ is observable from w. I.e., iff $M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$ is injective.

Call a latent variable systems

$$R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})\ell$$

observable if in the full behavior, ℓ is observable from w. I.e., iff $M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$ is injective.

For n = 1 every controllable system allows an observable image representation.

Call a latent variable systems

$$R(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})w=M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})\ell$$

observable if in the full behavior, ℓ is observable from w. I.e., iff $M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$ is injective.

For n = 1 every controllable system allows an observable image representation.

For n > 1, exceptionally so. For example, there is no potential representation for Maxwell's equations that is observable!

Call a latent variable systems

$$R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})\ell$$

observable if in the full behavior, ℓ is observable from w. I.e., iff $M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$ is injective.

For n = 1 every controllable system allows an observable image representation.

For n > 1, exceptionally so. For example, there is no potential representation for Maxwell's equations that is observable!

Observable image representations of - of course - controllable systems are sometimes called differentially 'flat'[†]. [†] Cfr. Fliess c.s.

Many additional problems have been studied from the behavioral point of view.

System representations: input/output representations, state representations and construction, model reduction, symmetries

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification ⇒ the most powerful unfalsified model (MPUM), approximate system ID

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification ⇒ the most powerful unfalsified model (MPUM), approximate system ID
- Observers, Control

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification ⇒ the most powerful unfalsified model (MPUM), approximate system ID
- Observers, Control
- **9** Quadratic differential forms, dissipative systems, \mathcal{H}_{∞} -control

A (dynamical) system := a behavior

- A (dynamical) system := a behavior
- **\checkmark** First principles model \rightarrow latent variables

- A (dynamical) system := a behavior
- First principles model ~→ latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.

- A (dynamical) system := a behavior
- First principles model ~→ latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.
- **Differential system** \cong **submodule**

- A (dynamical) system := a behavior
- First principles model ~→ latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.
- **Differential system** \cong **submodule**
- Elimination theorem

- A (dynamical) system := a behavior
- First principles model ~> latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.
- **Differential system** \cong **submodule**
- Elimination theorem
- Controllability := concatenability, patchability

- A (dynamical) system := a behavior
- First principles model ~> latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.
- **Differential system** \cong **submodule**
- Elimination theorem
- Controllability := concatenability, patchability
- **Solution** Controllability $\Leftrightarrow \exists$ an image representation

- A (dynamical) system := a behavior
- First principles model ~> latent variables
- a complete theory for linear constant coefficient ODE's, PDE's.
- **Differential system** \cong **submodule**
- Elimination theorem
- Controllability := concatenability, patchability
- **Solution Solution Controllability** $\Leftrightarrow \exists$ an image representation
- Observability := deducing one variable from another

Is is worth worrying about these 'axiomatics'?

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Examples:

- Probability and the theory of stochastic processes as an axiomatization of uncertainty.
- The development of input/output ideas in system theory and control - often these axiomatics are implicit, but nevertheless much very present.
- 🦲 QM.

Thank you for your kind attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~jwillems