The BEHAVIORAL APPROACH to SYSTEMS and CONTROL

Jan C. Willems
K.U. Leuven, Belgium

Problematique

Develop a suitable mathematical framework for discussing dynamical systems

aimed at modeling, analysis, and synthesis.
\leadsto control, signal processing, system identification, . . .
$~$ engineering systems, economics, physics, . . .

Motivational Examples

Electrical circuit

!! Model the relation between the voltage V and the current I

Motivational Examples

Electrical circuit

!! Model the relation between the voltage V and the current I

Electromechanical system

!! between the positions, forces, torque, angle, voltages, currents

Electromechanical system

!! between the positions, forces, torque, angle, voltages, currents

Distillation column

Features: Systems are typically

> dynamical
> open, they interact with their environment interconnected, with many subsystems
> modular, consisting of standard components

We are looking for a mathematical framework that is adapted to these features, and hence to computer assisted modeling.

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory (Foster, Brune, Cederbaum, . . •)
\sim impedances, admittances, scattering matrices, etc.

1930's: control embraces transfer functions
(Nyquist, Bode, …)
\leadsto plots and diagrams, classical control.

1930's: control embraces transfer functions
(Nyquist, Bode, …)
\leadsto plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

$~$ input/state/output systems, and the ubiquitous

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

or its nonlinear counterpart

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB ${ }^{\text {© }}$).

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB ${ }^{\text {© }}$).

All these theories: input/output; cause \Rightarrow effect.

Beyond input/output

What's wrong with input/output thinking?

Let's look at examples: Our electrical circuit.

Is V the input? Or I ? Or both, or are they both outputs?

Beyond input/output

What's wrong with input/output thinking?

Let's look at examples: Our electrical circuit.

Is V the input? Or I ? Or both, or are they both outputs?

An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.

What are the inputs?

An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.
What are the inputs?
at the wind terminal: the force, at the tires: forces, or, more likely, positions? at the steering wheel: the torque or the angle? at the gas-, or brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired) interconnection variables!

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

Reasonable input choices: the pressures, output choices: the flows.

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

Reasonable input choices: the pressures,
output choices: the flows.
Assume that we model the interconnection of the two tanks.

Input/output is awkward in modeling interconnections.
Consider a two-tank example.

Reasonable input choices: the pressures,
output choices: the flows.
Assume that we model the interconnection of the two tanks.

$$
\begin{array}{cc}
\hline \text { Interconnection: } p_{1}^{\prime}=p_{2}^{\prime \prime}, & f_{1}^{\prime}+f_{2}^{\prime \prime}=0 \\
\text { input=input; output=output! } & \Rightarrow \\
\text { SIMULINK }
\end{array}
$$

Interconnections contradicting SIMULINK ${ }^{\circledR}$ are in fact
the rule, not the exception,
in mechanics, fluidics, heat transfer, etc.

Mathematical difficulties

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?

Mathematical difficulties

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?
How to incorporate 'initial conditions'?

Mathematical difficulties

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?
How to incorporate 'initial conditions'?
Is it a parameterized map ${ }^{\dagger} \quad(u(\cdot), \alpha) \mapsto y(\cdot)$? All sorts of new difficulties...
\dagger Cfr. the book of Kalman, Falb, and Arbib

Mathematical difficulties

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?
How to incorporate 'initial conditions'?
Is it a parameterized map ${ }^{\dagger} \quad(u(\cdot), \alpha) \mapsto y(\cdot)$?
All sorts of new difficulties...

Construct the state!

Mathematical difficulties

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?
How to incorporate 'initial conditions'?
Is it a parameterized map ${ }^{\dagger} \quad(u(\cdot), \alpha) \mapsto y(\cdot)$?
All sorts of new difficulties...

Construct the state!

But from what?
From the system model!
What system?

Conclusions

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but what 'drives' what, not.

Conclusions

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but what 'drives' what, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.

Conclusions

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) *
- External variables are basic, but what 'drives' what, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.

Conclusions

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) $*$
- External variables are basic, but what 'drives' what, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.
- Interconnection, variable sharing, rather that input selection, is the basic mechanism by which a system interacts with its environment.

Conclusions

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) $*$
- External variables are basic, but what 'drives' what, not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.
- Interconnection, variable sharing, rather that input selection, is the basic mechanism by which a system interacts with its environment.
\Rightarrow We need a better framework for discussing ‘open’ systems!
$~$ Behavioral systems.

The basic concepts

Behavioral systems

A dynamical system $=\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$, the time-axis
\mathbb{W}, the signal space
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior

The basic concepts

Behavioral systems

$\underline{\text { A dynamical system }}=\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space (= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior (= the admissible trajectories).

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have: $w \in \mathfrak{B}$: the model allows the trajectory \boldsymbol{w}, $w \notin \mathfrak{B}$: the model forbids the trajectory w.

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}$: the model allows the trajectory w,
$w \notin \mathfrak{B}$: the model forbids the trajectory w.
Usually, $\mathbb{T}=\mathbb{R}$, or $[0, \infty)$ (in continuous-time systems), or \mathbb{Z}, or \mathbb{N} (in discrete-time systems).

Usually, $\mathbb{W} \subseteq \mathbb{R}^{W}$ (in lumped systems), a function space (in distributed systems), or a finite set (in DES).

Emphasis later today: $\quad \mathbb{T}=\mathbb{R}, \quad \mathbb{W}=\mathbb{R}^{W}$,
$\mathfrak{B}=$ sol'ns of system of linear constant coefficient ODE's.

Examples

1. Planetary orbits

Examples

1. Planetary orbits

$\mathbb{T}=\mathbb{R}$ (time),
$\mathbb{W}=\mathbb{R}^{3}$ (position),
$\mathfrak{B}=$ planetary orbits \cong Kepler's laws:
ellipses, $=$ areas in $=$ time,$\frac{(\text { period })^{2}}{(\text { axis })^{3}}=$ constant.

Examples

1. Planetary orbits

2. Input / output systems

Examples

1. Planetary orbits

2. Input / output systems

$$
\begin{aligned}
f_{1}\left(y(t), \frac{d}{d t} y(t)\right. & \left.\frac{d^{2}}{d t^{2}} y(t), \ldots, t\right) \\
& =f_{2}\left(u(t), \frac{d}{d t} u(t), \frac{d^{2}}{d t^{2}} u(t), \ldots, t\right)
\end{aligned}
$$

Examples

1. Planetary orbits

2. Input / output systems
3. Flows

Examples

1. Planetary orbits

2. Input / output systems
3. Flows

$$
\frac{d}{d t} x(t)=f(x(t))
$$

$\mathfrak{B}=$ all state trajectories.
... of very marginal value as a paradigm for dynamics ...

Modeling closed systems by tearing and zooming
$~$ open systems.

Examples

1. Planetary orbits

2. Input / output systems
3. Flows
4. Observed flows

Examples

1. Planetary orbits

2. Input / output systems
3. Flows
4. Observed flows

$$
\frac{d}{d t} x(t)=f(x(t)) ; \quad y(t)=h(x(t))
$$

$\mathfrak{B}=$ all possible output trajectories.

Examples

1. Planetary orbits

2. Input / output systems
3. Flows
4. Observed flows
5. Convolutional codes

Examples

1. Planetary orbits

2. Input / output systems
3. Flows
4. Observed flows

5. Convolutional codes

6. Formal languages

Latent variable systems

Consider once again our electrical RLC - circuit:

!! Model the relation between V and I !!

How does this modeling proceed?

The circuit graph

Introduce the following additional variables:
the voltage across and the current in each branch:
$V_{R_{C}}, I_{R_{C}}, V_{C}, I_{C}, V_{R_{L}}, I_{R_{L}}, V_{L}, I_{L}$.

System equations

Constitutive equations (CE):

$$
V_{R_{C}}=R_{C} I_{R_{C}}, V_{R_{L}}=R_{L} I_{R_{L}}, C \frac{d}{d t} V_{C}=I_{C}, L \frac{d}{d t} I_{L}=V_{L}
$$

Kirchhoff's voltage laws (KVL):
$V=V_{R_{C}}+V_{C}, V=V_{L}+V_{R_{L}}, V_{R_{C}}+V_{C}=V_{L}+V_{R_{L}}$

Kirchhoff's current laws (KCL):

$$
I=I_{R_{C}}+I_{L}, \quad I_{R_{C}}=I_{C}, \quad I_{L}=I_{R_{L}}, \quad I_{C}+I_{R_{L}}=I
$$

The preceding is a complete model, but it is not an explicit relation the between V and I. Here it is:

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+(1+\right. & \left.\left.\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I .
\end{aligned}
$$

The preceding is a complete model, but it is not an explicit relation the between V and I. Here it is:

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+(1+\right. & \left.\left.\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I .
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

These are the exact relations between V and I !

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
$~ \quad$ Manifest and latent variables.

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
$~ \quad$ Manifest and latent variables.

Manifest = the variables the model aims at,

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
$~ \quad$ Manifest and latent variables.

Manifest = the variables the model aims at, Latent = auxiliary variables.

We want to capture this in mathematical definitions.

Latent variable systems

A dynamical system with latent variables =

$$
\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)
$$

$\mathbb{T} \subseteq \mathbb{R}$, the time-axis
\mathbb{W}, the signal space
\mathbb{L}, the latent variable space

$$
\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}: \text { the full behavior }
$$

Latent variable systems

A dynamical system with latent variables $=$

$$
\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)
$$

$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the set of relevant time instances). \mathbb{W}, the signal space (= the variables that the model aims at). \mathbb{L}, the latent variable space (= auxiliary modeling variables).

$$
\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}: \text { the full behavior }
$$

(= the pairs $(w, \ell): \mathbb{T} \rightarrow \mathbb{W} \times \mathbb{L}$
that the model declares possible).

The manifest behavior

Call the elements of \mathbb{W} 'manifest' variables ,

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

The manifest behavior

Call the elements of \mathbb{W} 'manifest' variables ,

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

In convenient equations for \mathfrak{B}, the latent variables are 'eliminated'.

Examples

\author{

1. The RLC - circuit before elimination.
}

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming
3. Input / state / output systems

$$
\frac{d}{d t} x(t)=f(x(t), u(t)) ; \quad y(t)=h(x(t), u(t))
$$

$\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{U} \times \mathbb{Y}, \mathbb{L}=\mathbb{X}$, $\mathfrak{B}_{\text {full }}=$ all $(u, y, x): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$ that satisfy these equations, $\mathfrak{B}=$ all (input / output)-pairs.

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams
5. Automata

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams
5. Automata

Latent variables = the transition nodes;
the language generated = the manifest behavior

Examples

1. The RLC - circuit

2. Models obtained by tearing and zooming

3. Input / state / output systems

4. Trellis diagrams
5. Automata
6. Grammars

Recapitulation

Central notions:

- The behavior \sim a model.

Recapitulation

Central notions:

- The behavior $~$ a model.
- Distinction between manifest and latent variables
\leadsto manifest behavior specifies what the model aims at.

Recapitulation

Central notions:

- The behavior \sim a model.
- Distinction between manifest and latent variables
\leadsto manifest behavior specifies what the model aims at.
- First principles models \sim latent variables.

Recapitulation

Central notions:

- The behavior \sim a model.
- Distinction between manifest and latent variables
\leadsto manifest behavior specifies what the model aims at.
- First principles models \sim latent variables.
- (Full) behavioral equations
\sim a specification of the (full) behavior.

Recapitulation

Central notions:

- The behavior \sim a model.
- Distinction between manifest and latent variables
\leadsto manifest behavior specifies what the model aims at.
- First principles models \sim latent variables.
- (Full) behavioral equations
\sim a specification of the (full) behavior.
- Equivalent equations
$: \Leftrightarrow$ the manifest behaviors are equal.

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear,

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{W}, \mathfrak{B}\right)
$$

that are

1. linear, meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{W}, \mathfrak{B}\right)
$$

that are

1. linear, meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant,

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant, meaning
$\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{\boldsymbol{t}} \boldsymbol{w} \in \mathfrak{B}\right)\right)$, where σ^{t} denotes the t-shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant, meaning
$\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)$, where σ^{t} denotes the t-shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$
3. differential,

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are
1.
linear, \quad meaning
$\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant, meaning
$\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)$, where σ^{t} denotes the t-shift, $\sigma^{t} f\left(t^{\prime}\right):=f\left(t^{\prime}+t\right)$
3. differential, meaning
\mathfrak{B} consists of the sol'ns of a system of differential eq'ns.

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $\boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \text { w }}$.

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $\boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \text { w }}$. With the polynomial matrix

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain the short notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $\boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \text { w }}$. With the polynomial matrix

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain the short notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

But, the theory has also been developed for PDE's ${ }^{\dagger}$.
\dagger by Oberst, Zerz, Shankar, Pillai, e.a.

n-D systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the sol'ns of a system of linear constant coeff. of PDE's.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0 \quad(*)
$$

n-D systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{W}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the sol'ns of a system of linear constant coeff. of PDE's.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0 \quad(*)
$$

Define its behavior by

$$
\begin{aligned}
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{W}}\right) \mid(*) \text { holds }\right\} \\
=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
\end{aligned}
$$

n-D systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{W}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the sol'ns of a system of linear constant coeff. of PDE's.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$, and consider

$$
\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0 \quad(*)
$$

Define its behavior by

$$
\begin{aligned}
& \mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{W}}\right) \mid(*) \text { holds }\right\} \\
&=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
\end{aligned}
$$

$\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$ mainly for convenience, but important for some results.

Example: Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

Example: Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space),
$w=(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density), $\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$,
$\mathfrak{B}=$ set of solutions to these PDE's.

Example: Maxwell's Equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0, \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space),
$w=(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density), $\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$,
$\mathfrak{B}=$ set of solutions to these PDE's.
Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

NOMENCLATURE

\mathfrak{L}_{n}^{W} : the set of such systems with n independent, and w dependent variables
\mathfrak{L}^{\bullet} : with any - finite - number of (in)dependent variables
Elements of \mathfrak{L}^{\bullet} : ‘linear differential systems'
$\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0:$ a kernel representation of the corresponding $\quad \Sigma \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

Algebraization of $\mathfrak{L} \mathfrak{L}^{\bullet}$

Note that

$$
R\left(\frac{d}{d t}\right) w=0
$$

and

$$
U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$
R\left(\frac{d}{d t}\right) w=0
$$

and

$$
U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).
$\Rightarrow \boldsymbol{R}$ defines $\quad \mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!

Algebraization of $\mathfrak{L `}$

Note that

$$
R\left(\frac{d}{d t}\right) w=0
$$

and

$$
U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).
$\Rightarrow \boldsymbol{R}$ defines $\quad \mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!

$$
\text { ¿¿ } \exists \text { 'intrinsic' characterization of } \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} ? ?
$$

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ by
$\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right] \left\lvert\, \boldsymbol{n}^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B}=0\right.\right\}$. $\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.
Let $<\boldsymbol{R}\rangle$:= the sub-module of $\mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ generated by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.
Let $<\boldsymbol{R}\rangle$: = the sub-module of $\mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$ generated by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

Note: Depends on \mathfrak{C}^{∞}; false for compact support sol'ns: for any $\boldsymbol{p} \neq \mathbf{0}$, $p\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=\mathbf{0}$ has only $\boldsymbol{w}=0$ as compact support sol'n.

Conclusion

(i) $\quad \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$

Conclusion

$$
\begin{equation*}
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right] \tag{i}
\end{equation*}
$$

(ii) $\quad R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ and $\boldsymbol{R}_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ define the same system iff

$$
<\boldsymbol{R}_{1}>=<\boldsymbol{R}_{2}>
$$

i.e., iff $\exists F_{1}, F_{2} \in \mathbb{R}^{\bullet} \times \bullet\left[\xi_{1}, \cdots, \xi_{n}\right]$ such that

$$
\boldsymbol{R}_{1}=F_{2} \boldsymbol{R}_{2}, \quad \boldsymbol{R}_{2}=\boldsymbol{F}_{1} \boldsymbol{R}_{1}
$$

Conclusion

$$
\begin{equation*}
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right] \tag{i}
\end{equation*}
$$

(ii) $\quad \boldsymbol{R}_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ and $\boldsymbol{R}_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ define the same system iff

$$
<\boldsymbol{R}_{1}>=<\boldsymbol{R}_{2}>
$$

i.e., iff $\exists F_{1}, F_{2} \in \mathbb{R}^{\bullet} \times \bullet\left[\xi_{1}, \cdots, \xi_{n}\right]$ such that

$$
\boldsymbol{R}_{1}=F_{2} \boldsymbol{R}_{2}, \quad \boldsymbol{R}_{2}=F_{1} \boldsymbol{R}_{1}
$$

(iii) For $\mathrm{n}=1, \exists$ a 'minimal' \boldsymbol{R} of full row rank, and $\boldsymbol{R} \mapsto \boldsymbol{U} \boldsymbol{R}$, \boldsymbol{U} unimodular, generates all minimal kernel representations.

Elimination

First principle models \sim latent variables. In the case of systems described by linear constant coefficient PDE's:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

with $\boldsymbol{R}, M \in \mathbb{R}^{\bullet \times \bullet}[\boldsymbol{\xi}]$.

Elimination

First principle models \sim latent variables. In the case of systems described by linear constant coefficient PDE's:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

with $\boldsymbol{R}, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
This is the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

But is it(s manifest behavior) really a differential system ??

Consider $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$.

But is it(s manifest behavior) really a differential system ??

Consider $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$.
Full behavior:

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}\right) \mid \cdots\right\}
$$

belongs to $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}+\ell}$, by definition.
Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid \exists \ell \text { such that } \cdots\right\}
$$

Does \mathfrak{B} belong to \mathfrak{L}_{n}^{W} ?

Does \mathfrak{B} belong to $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$?

Theorem: It does!

Proof: The 'fundamental principle'.

Does \mathfrak{B} belong to \mathfrak{L}_{n}^{W} ?

Theorem: It does!

Proof: The 'fundamental principle'.

The fundamental principle states that

$$
F\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) x=y
$$

$\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1}} \times \mathrm{n}_{2}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right], \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$ is solvable for $\boldsymbol{x} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \boldsymbol{R}^{\mathrm{n}_{2}}\right)$ iff

$$
n \in \mathbb{R}^{n_{1}}\left[\xi_{1}, \cdots, \xi_{n}\right] \wedge n^{\top} F=0 \Rightarrow n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) y=0
$$

Example: Consider

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u ; w=(u, y)
$$

ii Eliminate x !!

Example: Consider

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u ; w=(u, y)
$$

ii Eliminate x !!

Respect the uncontrollable!
the elimination algorithms

Calculations via transfer f'ns may give erroneous results.

Example: Consider the RLC circuit.

First principles modeling (\cong CE's, KVL, \& KCL)
$\rightarrow 15$ behavioral equations.
Include both the port and the branch voltages and currents.

Example: Consider the RLC circuit.

First principles modeling (\cong CE's, KVL, \& KCL)
$\leadsto 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Example: Consider the RLC circuit.

First principles modeling (\cong CE's, KVL, \& KCL)
$~ 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem ${ }^{\dagger}$.
\dagger capacitor $\rightarrow \frac{1}{C s}$, inductor $\rightarrow L s$, series, parallel, may give erroneous results

Example: Consider the RLC circuit.

First principles modeling (\cong CE's, KVL, \& KCL)
$\rightarrow 15$ behavioral equations.
Include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem ${ }^{\dagger}$.

Why is there exactly one equation? Passivity!

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations?

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations?

Eliminate \vec{B}, ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0
\end{aligned}
$$

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations ?

Eliminate \vec{B}, ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Elimination theorem \Rightarrow this exercise would be exact \& successful.

Remarks:

- Number of eq'ns (for $n=1$: constant coeff. lin. ODE's) \leq number of variables.
Elimination \Rightarrow fewer, higher order equations.

Remarks:

- Number of eq'ns (for $n=1$: constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination
$(R, M) \mapsto R^{\prime}$

Remarks:

- Number of eq'ns (for $n=1$: constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

- Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?

It follows from all this that $\mathfrak{L}^{\boldsymbol{\bullet}}$ has very nice properties. It is closed under:

- Intersection: $\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$.
- Addition: $\quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}_{n}^{\mathrm{w}_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)$.
- Action of a linear differential operator:

$$
\left.\left.\begin{array}{rl}
\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{W_{1}},\right. & P
\end{array}\right) \in \mathbb{R}^{W_{2} \times{ }_{W_{1}}}\left[\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right) .
$$

- Inverse image of a linear differential operator:

$$
\begin{aligned}
&\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{2}}, \boldsymbol{P}\right.\left.\in \mathbb{R}^{\mathrm{W}_{2} \times \mathrm{W}_{1}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right) \\
&\left.\quad \Rightarrow\left(\boldsymbol{P}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{1}}\right) .
\end{aligned}
$$

Controllability

Controllability : \Leftrightarrow system trajectories must be 'patch-able', 'concatenable'.

Case $\mathrm{n}=1:$

Controllability

Controllability : \Leftrightarrow

 system trajectories must be 'patch-able', 'concatenable'.Case $\mathrm{n}=1:$

Consider two arbitrary elements $w_{1}, w_{2} \in \mathfrak{B}$

Controllability

Controllability : \Leftrightarrow

 system trajectories must be 'patch-able', 'concatenable'.Case $\mathrm{n}=1:$

Controllability := concatenability

General n:

Consider arbitrary patches of two solutions:

Controllability := patchability

Is the system defined by

$$
\boldsymbol{R}_{0} w+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $w=\left(w_{1}, w_{2}, \cdots, w_{\text {w }}\right)$ and $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$,
i.e., $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$, controllable?

Is the system defined by

$$
\boldsymbol{R}_{0} w+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $w=\left(w_{1}, w_{2}, \cdots, w_{\text {w }}\right)$ and $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$, i.e., $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=0$, controllable?

We are looking for conditions on the polynomial matrix \boldsymbol{R}, and algorithms in the coefficient matrices $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}}$.

Thm: $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$ defines a controllable system if and only if $\operatorname{rank}(\boldsymbol{R}(\boldsymbol{\lambda}))$ is independent of λ for $\boldsymbol{\lambda} \in \mathbb{C}$.

Thm: $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$ defines a controllable system if and only if $\operatorname{rank}(\boldsymbol{R}(\lambda))$ is independent of λ for $\boldsymbol{\lambda} \in \mathbb{C}$.

Example: $\quad r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2} \quad\left(w_{1}, w_{2}\right.$ scalar $)$ controllable iff $\quad r_{1}$ and r_{2} have no common factor.

Thm: $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$ defines a controllable system if and only if $\operatorname{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Example: $\quad r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2} \quad\left(w_{1}, w_{2}\right.$ scalar $)$ controllable iff $\quad r_{1}$ and r_{2} have no common factor.

Example: The electrical circuit is controllable unless

$$
C R_{C}=\frac{L}{R_{L}} \text { and } R_{C}=R_{L}
$$

Thm: $\boldsymbol{R}\left(\frac{d}{d t}\right) \boldsymbol{w}=\mathbf{0}$ defines a controllable system if and only if $\operatorname{rank}(\boldsymbol{R}(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Example: $\quad r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2} \quad\left(w_{1}, w_{2}\right.$ scalar $)$ controllable iff $\quad r_{1}$ and r_{2} have no common factor.

Example: The electrical circuit is controllable unless

$$
C R_{C}=\frac{L}{\boldsymbol{R}_{L}} \text { and } \boldsymbol{R}_{C}=\boldsymbol{R}_{L}
$$

Non-example: $\boldsymbol{R} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi], \quad \operatorname{det}(\boldsymbol{R}) \neq$ constant.

Image representations

Representations of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$

Image representations

Representations of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior

$$
\mathfrak{B}=\left(R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\ell}\right)
$$

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of

$$
\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of

$$
\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of

$$
\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

¿¿ Which kernels are also images ??

Theorem: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{\mathrm{w}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$,
$a^{\top}\left[\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right] \mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}\right)$,
4. $\mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free,
etc.

Are Maxwell's equations controllable?

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Remarks:

- Algorithm: R + syzygies + Gröbner basis
$\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.

Remarks:

- Algorithm: $\boldsymbol{R}+$ syzygies + Gröbner basis
$\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- \exists partial results for nonlinear systems

Remarks:

- Algorithm: $\boldsymbol{R}+$ syzygies + Gröbner basis
$\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- \exists partial results for nonlinear systems
- Kalman controllability is a straightforward special case

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.

w_{1} : observed; $w_{2}:$ to-be-deduced.

w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,

w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if, on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

When is in

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) w_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?

When is in

$$
\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) w_{1}=\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?

If and only if $\operatorname{rank}\left(\boldsymbol{R}_{2}(\lambda)\right)=\operatorname{coldim}\left(\boldsymbol{R}_{2}\right)$ for all $\boldsymbol{\lambda} \in \mathbb{C}$.

When is in

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?

If and only if $\operatorname{rank}\left(\boldsymbol{R}_{2}(\lambda)\right)=\operatorname{coldim}\left(\boldsymbol{R}_{2}\right)$ for all $\boldsymbol{\lambda} \in \mathbb{C}$.
Equivalently, if and only if there exists 'consequences'
(i.e. elements of $\mathfrak{N}_{\mathfrak{B}}$) of the form $w_{2}=\boldsymbol{F}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w_{1}$.

The RLC circuit is observable (branch variables observable from external port variables) iff $\boldsymbol{C} \boldsymbol{R}_{C} \neq \frac{L}{\boldsymbol{R}_{L}}$.

The RLC circuit is observable (branch variables observable from external port variables) iff $\boldsymbol{C} \boldsymbol{R}_{C} \neq \frac{L}{\boldsymbol{R}_{\boldsymbol{L}}}$.
In Maxwell's equations, \vec{B} is not observable from (\vec{E}, \vec{j}, ρ).

The RLC circuit is observable (branch variables observable from external port variables) iff $\boldsymbol{C} \boldsymbol{R}_{C} \neq \frac{L}{\boldsymbol{R}_{\boldsymbol{L}}}$. In Maxwell's equations, \vec{B} is not observable from (\vec{E}, \vec{j}, ρ).
\exists a complete theory (for constant coefficient ODE's and PDE's), including algorithms, observer design, etc.

The RLC circuit is observable (branch variables observable from external port variables) iff $\boldsymbol{C} \boldsymbol{R}_{C} \neq \frac{\boldsymbol{L}}{\boldsymbol{R}_{\boldsymbol{L}}}$. In Maxwell's equations, \vec{B} is not observable from (\vec{E}, \vec{j}, ρ).
\exists a complete theory (for constant coefficient ODE's and PDE's), including algorithms, observer design, etc.

Observability is analogous (but not 'dual') to controllability.

Controllability \& Observability

Call a latent variable systems

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

observable if in the full behavior, ℓ is observable from w. I.e., iff $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective.

Controllability \& Observability

Call a latent variable systems

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

observable if in the full behavior, ℓ is observable from w. l.e., iff $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective.

For $n=1$ every controllable system allows an observable image representation.

Controllability \& Observability

Call a latent variable systems

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

observable if in the full behavior, ℓ is observable from w. l.e., iff $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective.

For $n=1$ every controllable system allows an observable image representation.
For $n>1$, exceptionally so. For example, there is no potential representation for Maxwell's equations that is observable!

Controllability \& Observability

Call a latent variable systems

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

observable if in the full behavior, ℓ is observable from w. l.e., iff $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective.

For $n=1$ every controllable system allows an observable image representation.
For $\mathrm{n}>1$, exceptionally so. For example, there is no potential representation for Maxwell's equations that is observable!

Observable image representations of - of course - controllable systems are sometimes called differentially 'flat ${ }^{\dagger} \dagger$. \dagger cfr. Fliess c.s.

Further results

Many additional problems have been studied from the behavioral point of view.

Further results

Many additional problems have been studied from the behavioral point of view.

- System representations: input/output representations, state representations and construction, model reduction, symmetries

Further results

Many additional problems have been studied from the behavioral point of view.

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification \Rightarrow the most powerful unfalsified model (MPUM), approximate system ID

Further results

Many additional problems have been studied from the behavioral point of view.

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification \Rightarrow the most powerful unfalsified model (MPUM), approximate system ID
- Observers, Control

Further results

Many additional problems have been studied from the behavioral point of view.

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification \Rightarrow the most powerful unfalsified model (MPUM), approximate system ID
- Observers, Control
- Quadratic differential forms, dissipative systems, \mathcal{H}_{∞}-control

Conclusions

Conclusions

- A (dynamical) system := a behavior

Conclusions

- A (dynamical) system := a behavior

First principles model \sim latent variables

Conclusions

- A (dynamical) system := a behavior
- First principles model \sim latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.

Conclusions

- A (dynamical) system := a behavior
- First principles model \leadsto latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.
- Differential system \cong submodule

Conclusions

- A (dynamical) system := a behavior
- First principles model \sim latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.
- Differential system \cong submodule
- Elimination theorem

Conclusions

- A (dynamical) system := a behavior
- First principles model \leadsto latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.
- Differential system \cong submodule
- Elimination theorem
- Controllability := concatenability, patchability

Conclusions

- A (dynamical) system := a behavior
- First principles model \leadsto latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.
- Differential system \cong submodule
- Elimination theorem
- Controllability := concatenability, patchability
- Controllability $\Leftrightarrow \exists$ an image representation

Conclusions

- A (dynamical) system := a behavior
- First principles model \leadsto latent variables
- \exists a complete theory for linear constant coefficient ODE's, PDE's.
- Differential system \cong submodule
- Elimination theorem
- Controllability := concatenability, patchability
- Controllability $\Leftrightarrow \exists$ an image representation
- Observability := deducing one variable from another

Is is worth worrying about these 'axiomatics'?

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Examples:

- Probability and the theory of stochastic processes as an axiomatization of uncertainty.
- The development of input/output ideas in system theory and control - often these axiomatics are implicit, but nevertheless much very present.
- QM.

Thank you for your kind attention

Details \& copies of the lecture frames are available from/at
Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~jwillems

