CONTROL as INTERCONNECTION

Madhu N. Belur (University of Groningen) A. Agung Julius (University of Twente) Jan C. Willems (SISTA)

SISTA Seminar

April 17, 2003

Program

- Part 1: Problem formulation
 - Jan Willems (SCD-SISTA, KU Leuven)
- Part 2: Controller implementability
 - Agung Julius (Twente University, NL)
- Part 3: Synthesis of dissipative systems
 - Madhu Belur (University of Groningen, NL)

Dissipativity

Let $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$ be nonsingular. A controllable behavior \mathfrak{B} is called dissipative with respect to Σ if

$$\int_{-\infty}^{+\infty} w^T \Sigma w dt \geqslant 0$$
 for all $w \in \mathfrak{B} \cap \mathfrak{D}$

We say \mathfrak{B} is Σ -dissipative (on \mathbb{R}).

Half line dissipativity

 ${\mathfrak B}$ is called $\Sigma\text{-dissipative on }{\mathbb R}_-$ if

$$\int_{-\infty}^{0} w^T \Sigma w dt \ge 0 \text{ for all } w \in \mathfrak{B} \cap \mathfrak{D}$$

Example: \mathcal{H}_{∞} norm

Consider
$$\Sigma = \begin{bmatrix} I_d & 0 \\ 0 & -I_f \end{bmatrix}$$

and \mathfrak{B} described by a transfer function G
acting on input d and output f .

Example: \mathcal{H}_{∞} norm

Consider
$$\Sigma = \begin{bmatrix} I_d & 0 \\ 0 & -I_f \end{bmatrix}$$

and \mathfrak{B} described by a transfer funct

-

tion Gacting on input a and output f.

Then Σ -dissipativity of \mathfrak{B} on \mathbb{R}_{-} is, by definition,

$$\int_{-\infty}^{0} |d|^2 - |f|^2 dt \geqslant 0$$
 for all $(d,f) \in \mathfrak{B} \cap \mathfrak{D}$

Example: \mathcal{H}_{∞} norm

Consider
$$\Sigma = \begin{bmatrix} I_d & 0 \\ 0 & -I_f \end{bmatrix}$$

and \mathfrak{B} described by a transfer function G

acting on input d and output f.

Then Σ -dissipativity of \mathfrak{B} on \mathbb{R}_{-} is, by definition,

$$\int_{-\infty}^{0} |d|^2 - |f|^2 dt \geqslant 0$$
 for all $(d,f) \in \mathfrak{B} \cap \mathfrak{D}$

 \mathfrak{B} is Σ -dissipative on \mathbb{R}_{-} if and only if $||G||_{\mathcal{H}_{\infty}} \leq 1$.

$$||G||_{\mathcal{H}_\infty}:=\sup_{\omega\in\mathbb{R}}\sigma_{\max}(G(i\omega)).$$

Example: Passive systems

Consider
$$\Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

and \mathfrak{B} has transfer function *G* acting on input *u* and output *y*.

Example: Passive systems

Consider $\Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ and \mathfrak{B} has transfer function *G* acting on input *u* and output *y*. Then Σ -dissipativity of \mathfrak{B} on \mathbb{R}_- means

$$\int_{-\infty}^{0} u^T y \, dt \geqslant 0 ext{ for all } (u,y) \in \mathfrak{B} \cap \mathfrak{D}.$$

Example: Passive systems

Consider
$$\Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

and \mathfrak{B} has transfer function G acting on input u and output y. *y*. Then Σ -dissipativity of \mathfrak{B} on \mathbb{R}_{-} means

$$\int_{-\infty}^{0} u^T y \, dt \geqslant 0 ext{ for all } (u,y) \in \mathfrak{B} \cap \mathfrak{D}.$$

 \mathfrak{B} is Σ -dissipative on \mathbb{R}_{-} if and only if G is stable and positive real, i.e.

 $G(\lambda)+G(ar\lambda)\geqslant 0$ for all λ with positive real part.

Stability and half-line dissipativity

In both the examples (\mathcal{H}_{∞} norm and passive systems), stability and dissipativity is equivalent to dissipativity on \mathbb{R}_{-} .

Stability and half-line dissipativity

In both the examples (\mathcal{H}_{∞} norm and passive systems),

stability and dissipativity is equivalent to dissipativity on \mathbb{R}_- .

 Σ - supply rate - the rate of supply of energy to the system,

Stability and half-line dissipativity

In both the examples (\mathcal{H}_{∞} norm and passive systems),

stability and dissipativity is equivalent to dissipativity on \mathbb{R}_- .

 Σ - supply rate - the rate of supply of energy to the system,

Energy upto any time instant has been absorbed.

Assume (for the sake of exposition)

$$\Sigma = \left[egin{array}{cc} I_d & 0 \ 0 & -I_f \end{array}
ight]$$

K

Problem formulation: Given $\mathfrak{B} \in d^{+f+c}$, find a controller $\mathcal{C} \in \mathfrak{L}^{c}$ such that:

Problem formulation: Given $\mathfrak{B} \in d^{+f+c}$, find a controller $\mathcal{C} \in \mathfrak{L}^{c}$ such that:

the controller restricts only the control variables,

Problem formulation: Given $\mathfrak{B} \in d^{+f+c}$, find a controller $\mathcal{C} \in \mathfrak{L}^{c}$ such that:

- the controller restricts only the control variables,
- \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} ,

Problem formulation: Given $\mathfrak{B} \in d^{+f+c}$, find a controller $\mathcal{C} \in \mathfrak{L}^{c}$ such that:

- the controller restricts only the control variables,
- \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} ,
- d is free in \mathcal{K} .

Let \mathcal{P} be the manifest plant behavior, and \mathcal{N} be the hidden behavior. Then, find \mathcal{K} such that

Let \mathcal{P} be the manifest plant behavior, and \mathcal{N} be the hidden behavior. Then, find \mathcal{K} such that

 $\, {\cal N} \subset {\cal K} \subset {\cal P},$

Let \mathcal{P} be the manifest plant behavior, and \mathcal{N} be the hidden behavior. Then, find \mathcal{K} such that

• \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} ,

Let \mathcal{P} be the manifest plant behavior, and \mathcal{N} be the hidden behavior. Then, find \mathcal{K} such that

- $\, {\cal N} \subset {\cal K} \subset {\cal P},$
- \mathcal{K} is Σ -dissipative on \mathbb{R}_{-} ,
- d is free in \mathcal{K} .

(Like for finite dimensional spaces:) $\mathcal{N} \subset \mathcal{K}$ implies that \mathcal{N} must be Σ -dissipative.

(Like for finite dimensional spaces:) $\mathcal{N} \subset \mathcal{K}$ implies that \mathcal{N} must be Σ -dissipative.

Moreover, $\mathcal{K} \text{ is } \Sigma\text{-dissipative implies that } \mathcal{K}^{\perp} \text{ must be } -\Sigma\text{-dissipative.}$ $\mathcal{K} \subset \mathcal{P} \text{ implies that } \mathcal{P}^{\perp} \subset \mathcal{K}^{\perp} \text{ and hence}$ $\mathcal{P}^{\perp} \text{ is } -\Sigma\text{-dissipative.}$

- (Like for finite dimensional spaces:) $\mathcal{N} \subset \mathcal{K}$ implies that \mathcal{N} must be Σ -dissipative.
- Moreover, $\mathcal{K} \text{ is } \Sigma \text{-dissipative implies that } \mathcal{K}^{\perp} \text{ must be } -\Sigma \text{-dissipative.}$ $\mathcal{K} \subset \mathcal{P} \text{ implies that } \mathcal{P}^{\perp} \subset \mathcal{K}^{\perp} \text{ and hence}$ $\mathcal{P}^{\perp} \text{ is } -\Sigma \text{-dissipative.}$

Hence two necessary conditions:

- \mathcal{N} is Σ dissipative, and
- \mathcal{P}^{\perp} is $-\Sigma$ dissipative.

- (Like for finite dimensional spaces:) $\mathcal{N} \subset \mathcal{K}$ implies that \mathcal{N} must be Σ -dissipative.
- Moreover, $\mathcal{K} \text{ is } \Sigma \text{-dissipative implies that } \mathcal{K}^{\perp} \text{ must be } -\Sigma \text{-dissipative.}$ $\mathcal{K} \subset \mathcal{P} \text{ implies that } \mathcal{P}^{\perp} \subset \mathcal{K}^{\perp} \text{ and hence}$ $\mathcal{P}^{\perp} \text{ is } -\Sigma \text{-dissipative.}$

Hence two necessary conditions:

- \mathcal{N} is Σ dissipative, and
- \mathcal{P}^{\perp} is $-\Sigma$ dissipative.

Sufficient?

There is third necessary condition which couples the dissipativities of \mathcal{N} and of \mathcal{P}^{\perp} .

There is third necessary condition which couples the dissipativities of \mathcal{N} and of \mathcal{P}^{\perp} .

Storage functions!!

Quadratic differential form

Let $w \in \mathfrak{B}$. A quadratic differential form Q_{Ψ} in w is a quadratic function of w and a finite number of its derivatives:

$$Q_\Psi(w):=egin{bmatrix}w\ rac{d}{dt}w\ dots\ do$$

Recall that \mathfrak{B} is called Σ -dissipative if

$$\int_{-\infty}^{+\infty} w^T \Sigma w \, dt \geqslant 0 ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

Recall that \mathfrak{B} is called Σ -dissipative if

$$\int_{-\infty}^{+\infty} w^T \Sigma w \, dt \geqslant 0 ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

Theorem: 33 is dissipative if and only if

Recall that ${\mathfrak B}$ is called $\Sigma\text{-dissipative}$ if

$$\int_{-\infty}^{+\infty} w^T \Sigma w \, dt \geqslant 0$$
 for all $w \in \mathfrak{B} \cap \mathfrak{D}.$

Theorem: \mathfrak{B} is dissipative if and only if there exists a quadratic differential form Q_{Ψ} such that $\frac{d}{dt}Q_{\Psi}(w) \leq w^T \Sigma w$ for all $w \in \mathfrak{B}$.

Recall that \mathfrak{B} is called Σ -dissipative if

$$\int_{-\infty}^{+\infty} w^T \Sigma w \, dt \geqslant 0$$
 for all $w \in \mathfrak{B} \cap \mathfrak{D}.$

Theorem: \mathfrak{B} is dissipative if and only if there exists a quadratic differential form Q_{Ψ} such that $\frac{d}{dt}Q_{\Psi}(w) \leq w^T \Sigma w$ for all $w \in \mathfrak{B}$.

The global property of dissipativiness holds if and only if a particular local property holds.

Storage function

 Q_{Ψ} is called a storage function for \mathfrak{B} with respect to Σ . $\frac{d}{dt}Q_{\Psi}(w) \leq w^T \Sigma w$ for all $w \in \mathfrak{B}$.

Storage function

 Q_{Ψ} is called a storage function for \mathfrak{B} with respect to Σ . $\frac{d}{dt}Q_{\Psi}(w) \leq w^T \Sigma w$ for all $w \in \mathfrak{B}$.

The rate of increase of stored energy does not exceed the rate of supply of energy.

Storage function

 Q_{Ψ} is called a storage function for \mathfrak{B} with respect to Σ . $\frac{d}{dt}Q_{\Psi}(w) \leq w^T \Sigma w$ for all $w \in \mathfrak{B}$.

The rate of increase of stored energy does not exceed the rate of supply of energy.

Moreover, \mathfrak{B} is dissipative on $\mathbb{R}_- \Leftrightarrow$ there exists a storage function Q_{Ψ} such that

 $Q_\Psi(w) \geqslant 0$ for all $w \in \mathfrak{B}.$

 ${\mathcal N}$ is Σ -dissipative, there exists a storage function $Q_{\Psi_{\mathcal N}}$,

 \mathcal{N} is Σ -dissipative, there exists a storage function $Q_{\Psi_{\mathcal{N}}}$, \mathcal{P}^{\perp} is Σ -dissipative, there exists a storage function $Q_{\Psi_{\mathcal{P}}}$,

 \mathcal{N} is Σ -dissipative, there exists a storage function $Q_{\Psi_{\mathcal{N}}}$, \mathcal{P}^{\perp} is Σ -dissipative, there exists a storage function $Q_{\Psi_{\mathcal{P}}}$, Construct the quadratic differential form:

$$Q_{ ext{cpl}}(w_1,w_2):=Q_{\Psi_\mathcal{N}}(w_1)-Q_{\Psi_{\mathcal{P}^\perp}}(w_2)+L_{\Psi}(w_1,w_2)$$

 L_{Ψ} is a cross-term which comes from orthogonality of ${\cal N}$ and ${\cal P}^{\perp}.$

Given Σ , \mathcal{N} and \mathcal{P} , a controlled behavior \mathcal{K} exists if and only if:

Given Σ , \mathcal{N} and \mathcal{P} , a controlled behavior \mathcal{K} exists if and only if:

1. \mathcal{N} is Σ -dissipative,

Given Σ , \mathcal{N} and \mathcal{P} , a controlled behavior \mathcal{K} exists if and only if:

- 1. \mathcal{N} is Σ -dissipative,
- 2. \mathcal{P}^{\perp} is $(-\Sigma)$ -dissipative,

Given Σ, \mathcal{N} and \mathcal{P} , a controlled behavior \mathcal{K} exists if and only if:

- 1. \mathcal{N} is Σ -dissipative,
- 2. \mathcal{P}^{\perp} is $(-\Sigma)$ -dissipative,
- 3. the coupling QDF Q_{cpl} on $\mathcal{N} imes \mathcal{P}^{\perp}$

 $Q_{
m cpl}(w_1,w_2) = Q_{\Psi_{\mathcal N}}(w_1) - Q_{\Psi_{\mathcal P^\perp}}(w_2) + L_{\Psi_{(\mathcal N,\mathcal P^\perp)}}(w_1,w_2)$

is non-negative for all $w_1 \in \mathcal{N}$ and $w_2 \in \mathcal{P}^{\perp}$.

Given Σ , \mathcal{N} and \mathcal{P} , a controlled behavior \mathcal{K} exists if and only if:

- 1. \mathcal{N} is Σ -dissipative,
- 2. \mathcal{P}^{\perp} is $(-\Sigma)$ -dissipative,
- 3. the coupling QDF Q_{cpl} on $\mathcal{N} imes \mathcal{P}^{\perp}$

 $Q_{
m cpl}(w_1,w_2) = Q_{\Psi_{\mathcal N}}(w_1) - Q_{\Psi_{\mathcal P^\perp}}(w_2) + L_{\Psi_{(\mathcal N,\mathcal P^\perp)}}(w_1,w_2)$

is non-negative for all $w_1 \in \mathcal{N}$ and $w_2 \in \mathcal{P}^{\perp}$.

All conditions are actually LMI's!

Let \mathfrak{B} be described by

$$egin{array}{rcl} rac{d}{dt}x&=&Ax&+~Bu&+~Gd_1\ y&=&Cx&&+~d_2\ z&=&\left[egin{array}{rcl} Hx\ u\end{array}
ight] \end{array}$$

Let \mathfrak{B} be described by

$$egin{array}{rcl} rac{d}{dt}x&=&Ax&+~Bu&+~Gd_1\ y&=&Cx&&+~d_2\ z&=&\left[egin{array}{rcl} Hx\ u\end{array}
ight] & & & & & & \ \end{array}$$

A state-space representation for \mathcal{N} is:

$$egin{array}{rcl} rac{d}{dt}x&=&Ax&+&Gd_1\ d_2&=&-Cx\ z&=&egin{array}{rcl} Hx\ 0 \end{array} \end{array}$$

Under what conditions, does

$$\int_{-\infty}^0 |d_1|^2+|Cx|^2-|Hx|^2 \geqslant 0$$

Under what conditions, does

$$\int_{-\infty}^0 |d_1|^2+|Cx|^2-|Hx|^2\geqslant 0$$

This is equivalent to the existence of a positive definite solution P to the following Riccati equation:

$$A^T P + P A - P G G^T P - C^T C + H^T H = 0$$

Similarly, $-\Sigma$ -dissipativity of \mathcal{P}^{\perp} is equivalent to existence of a negative definite solution Q to the dual Riccati equation.

$$AQ + QA^T - QH^THQ - GG^T + BB^T = 0$$

Similarly, $-\Sigma$ -dissipativity of \mathcal{P}^{\perp} is equivalent to existence of a negative definite solution Q to the dual Riccati equation.

$$AQ + QA^T - QH^THQ - GG^T + BB^T = 0$$

The coupling condition is

 $ho(PQ) \geqslant 1$

for some solutions P and Q of the above Riccati equations, respectively.

Similarly, $-\Sigma$ -dissipativity of \mathcal{P}^{\perp} is equivalent to existence of a negative definite solution Q to the dual Riccati equation.

$$AQ + QA^T - QH^THQ - GG^T + BB^T = 0$$

The coupling condition is

 $ho(PQ) \geqslant 1$

for some solutions P and Q of the above Riccati equations, respectively.

Control as interconnection is physically more general and sometimes better motivated than what we called 'intelligent control'.

- Control as interconnection is physically more general and sometimes better motivated than what we called 'intelligent control'.
- For linear differential systems the achievable controlled behaviors can be very elegantly formulated mathematically.

- Control as interconnection is physically more general and sometimes better motivated than what we called 'intelligent control'.
- For linear differential systems the achievable controlled behaviors can be very elegantly formulated mathematically.
- For general systems also the canonical controller in principle leads to the solution.

- Control as interconnection is physically more general and sometimes better motivated than what we called 'intelligent control'.
- For linear differential systems the achievable controlled behaviors can be very elegantly formulated mathematically.
- For general systems also the canonical controller in principle leads to the solution.
- The dissipative synthesis problem can be solved, also algorithmically, very explicitly.

- Control as interconnection is physically more general and sometimes better motivated than what we called 'intelligent control'.
- For linear differential systems the achievable controlled behaviors can be very elegantly formulated mathematically.
- For general systems also the canonical controller in principle leads to the solution.
- The dissipative synthesis problem can be solved, also algorithmically, very explicitly.

Thank you for your attention