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Dissipativity

Let Σ = ΣT ∈ R
w×w be nonsingular.

A controllable behavior B is called dissipative with respect
to Σ if

∫ +∞

−∞
wT Σwdt > 0 for all w ∈ B ∩ D

We say B is Σ-dissipative (on R).
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Half line dissipativity

B is called Σ-dissipative on R− if

∫ 0

−∞
wT Σwdt > 0 for all w ∈ B ∩ D
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Example: H∞ norm

Consider Σ =

[

Id 0

0 −If

]

and B described by a transfer function G

acting on input d and output f .

Then Σ-dissipativity of B on R− is, by definition,

∫ 0

−∞
|d|2 − |f |2dt > 0 for all (d, f) ∈ B ∩ D

B is Σ-dissipative on R− if and only if ||G||H∞
6 1.

||G||H∞
:= sup

ω∈R

σmax(G(iω)).
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Example: Passive systems

Consider Σ =

[

0 I

I 0

]

and B has transfer function G acting on input u and output
y.

Then Σ-dissipativity of B on R− means

∫ 0

−∞
uT y dt > 0 for all (u, y) ∈ B ∩ D.

B is Σ-dissipative on R− if and only if G is stable and
positive real, i.e.

G(λ) + G(λ̄) > 0 for all λ with positive real part.
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Stability and half-line dissipativity

In both the examples (H∞ norm and passive systems),

stability and dissipativity is equivalent to
dissipativity on R−.

Σ - supply rate - the rate of supply of energy to the system,

Energy upto any time instant has been absorbed.
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Dissipativity synthesis problem formulation

Assume (for the sake of exposition)

Σ =

[

Id 0

0 −If

]

B

K

c

Cw = (d, f)
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Dissipativity synthesis problem formulation

Problem formulation: Given B ∈ d+f+c, find a controller
C ∈ L

c such that:

the controller restricts only the control variables,

K is Σ-dissipative on R−,

d is free in K.
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Dissipativity synthesis problem formulation

Let P be the manifest plant behavior, and
N be the hidden behavior.
Then, find K such that

N ⊂ K ⊂ P,

K is Σ-dissipative on R−,

d is free in K.
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Some necessary conditions

(Like for finite dimensional spaces:)
N ⊂ K implies that N must be Σ-dissipative.

Moreover,
K is Σ-dissipative implies that K⊥ must be −Σ-dissipative.
K ⊂ P implies that P⊥ ⊂ K⊥ and hence
P⊥ is −Σ-dissipative.

Hence two necessary conditions:

N is Σ dissipative, and

P⊥ is −Σ dissipative.

Sufficient ?
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Coupling condition

There is third necessary condition which couples the
dissipativities of N and of P⊥.

Storage functions!!
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Quadratic differential form

Let w ∈ B. A quadratic differential form QΨ in w is a
quadratic function of w and a finite number of its derivatives:

QΨ(w) :=











w
d

dt
w

...
( d

dt
)kw

...











T








Ψ00 Ψ01 ··· Ψ0l ···
Ψ10 Ψ11 ··· Ψ1l ···
...

... . . . ...
...

Ψk0 Ψk1 ··· Ψkl ···
...

...



















w
d

dt
w

...
( d

dt
)lw

...










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Dissipativity and storage function

Recall that B is called Σ-dissipative if

∫ +∞

−∞
wT Σw dt > 0 for all w ∈ B ∩ D.

Theorem: B is dissipative if and only if
there exists a quadratic differential form QΨ such that
d
dt

QΨ(w) 6 wT Σw for all w ∈ B.

The global property of dissipativiness holds if and only if

a particular local property holds.
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Storage function

QΨ is called a storage function for B with respect to Σ.
d
dt

QΨ(w) 6 wT Σw for all w ∈ B.

The rate of increase of stored energy does not exceed the
rate of supply of energy.

Moreover, B is dissipative on R− ⇔ there exists a storage
function QΨ such that

QΨ(w) > 0 for all w ∈ B.
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Coupling condition

N is Σ-dissipative, there exists a storage function QΨN
,

P⊥ is Σ-dissipative, there exists a storage function QΨP
,

Construct the quadratic differential form:

Qcpl(w1, w2) := QΨN
(w1) − QΨP⊥

(w2) + LΨ(w1, w2)

LΨ is a cross-term which comes from orthogonality of N

and P⊥.
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Dissipativity synthesis result

Given Σ, N and P, a controlled behavior K exists if and
only if:

1. N is Σ-dissipative,

2. P⊥ is (−Σ)-dissipative,

3. the coupling QDF Qcpl on N × P⊥

Qcpl(w1, w2) = QΨN
(w1) − QΨP⊥

(w2) + LΨ(N ,P⊥)
(w1, w2)

is non-negative for all w1 ∈ N and w2 ∈ P⊥.

All conditions are actually LMI’s!
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State space H∞-control problem

Let B be described by

d
dt

x = Ax + Bu + Gd1

y = Cx + d2

z =

[

Hx

u

]

A state-space representation for N is:

d
dt

x = Ax + Gd1

d2 = −Cx

z =

[

Hx

0

]
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State space H∞-control problem

Under what conditions, does
∫ 0

−∞
|d1|

2 + |Cx|2 − |Hx|2 > 0

This is equivalent to the existence of a positive definite
solution P to the following Riccati equation:

AT P + PA − PGGT P−CT C + HT H = 0
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State space H∞-control problem

Similarly, −Σ-dissipativity of P⊥ is equivalent to existence
of a negative definite solution Q to the dual Riccati
equation.

AQ + QAT − QHT HQ − GGT + BBT = 0

The coupling condition is

ρ(PQ) > 1

for some solutions P and Q of the above Riccati equations,
respectively.
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Conclusions

Control as interconnection is physically more general
and sometimes better motivated than what we called
‘intelligent control’.

For linear differential systems the achievable controlled
behaviors can be very elegantly formulated
mathematically.

For general systems also the canonical controller in
principle leads to the solution.

The dissipative synthesis problem can be solved, also
algorithmically, very explicitly.

Thank you for your attention
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