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® | Part 1: Problem formulation

s Jan Willems (SCD-SISTA, KU Leuven)
o Part 2: Controller implementability
s Agung Julius (Twente University, NL)
# Part 3: Synthesis of dissipative systems
s Madhu Belur (University of Groningen, NL)
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The intelligent control paradigm
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LPIant, Controller, Cont'd system: i/0 =2 signal processors J
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Examples where this paradigm does not fit:
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Examples where this paradigm does not fit:

Automobile damper:

Mass
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Examples where this paradigm does not fit:

Automobile damper:

Mass

Controller
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Examples where this paradigm does not fit:

Terminated transmission line:
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Examples where this paradigm does not fit:

Door closing mechanism:
AN wall

hinges damper

spring

door
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Examples where this paradigm does not fit:

Door closing mechanism:
o AL e
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lllustrated by means of eg'ns:
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lllustrated by means of eg'ns:

Door:

M’'—60 = F.+ F,
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lllustrated by means of eg'ns:

Door:
d2
M,EOZFC_I_Fe

Door-closing mechanism, mass/spring/damper:

2

M”d—H—I—Di0+K0— F
dt2 dt e
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lllustrated by means of eg'ns:

Door:
d2
M —0 = F. F,
dt? t

Door-closing mechanism, mass/spring/damper:

2

M /d 0+Dd0—|—K0—
dt2 dt Ee

Interconnected:

au //d_2 d _
(M’ + M")_ -6+ D—.6+ K6 =F.
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Remarks:

o PDD control law?
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Remarks:

o PDD control law?

# QOrder controlled system
< order plant + order controller.
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Remarks:

o PDD control law?

# QOrder controlled system
< order plant + order controller.

o State preparation required!
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Remarks:

o PDD control law?

# QOrder controlled system
< order plant + order controller.

o State preparation required!

o Good, simple control design problem.
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Remarks:

o PDD control law?

# QOrder controlled system
< order plant + order controller.

o State preparation required!

o Good, simple control design problem.

L A broader framework is needed! J
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Control as Interconnection
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Control as Interconnection
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Control as Interconnection

Plant

=

c’ c Controller

Interconnection law

Restricts behavior of t

¢/ =c¢’ =:c. ||'shared variables’
ne w’s via the ¢’s (=: control)
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Control as Interconnection

Plant

=

c’ c” Controller

Interconnection law

Restricts behavior of t

¢/ =c¢’ =:c. ||'shared variables’
ne w’s via the ¢’s (=: control)

CONTROL < SUBSYSTEM DESIGN

|
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Dynamical system = (T, W, 28)
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Dynamical system = (T, W, 28)

T C R = ‘time-set’ today = R
W = ‘signal space’ today = R"¥
B = the ‘behavior’ B C W

o |

CONTROL as INTERCONNECTION —p.8/12



-

Dynamical system = (T, W, 28)

B = the behavior = a family of trajectories,
maps: time-set — signal space

today: sol'ns of linear constant coefficient diff. eq'ns.
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Dynamical system = (T, W, 28)

B = the behavior = a family of trajectories,
maps: time-set — signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

d d"
R0w+R1dtw I ---—I—Rn@w — O,

with Ry, Ry, - - - real matrices.
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Dynamical system = (T, W, 28)

B = the behavior = a family of trajectories,
maps: time-set — signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

d d"
R0w+R1dtw I ---—I—Rn@w — O,

with Rg, Ry, - - - real matrices. Shorthand notation

d
R(—)w = 0.
(—)w

LR a real polynomial matrix J
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Dynamical system = (T, W, 28)

B = the behavior = a family of trajectories,
maps: time-set — signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

d d"
R0w+R1dtw I ---—I—Rn@w — O,

with Ry, Ry, - - - real matrices.

d
%:{w:R—HR‘WR(a)w:O}
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Examples of systems R(%)w =0

1.

d d
P(a)y = Q(a)u
-’U,- : : q
w = s R=1[q — p]; SISO system withtff'ng = —.
Yy p
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Examples of systems R(%)w =0

2.

S &

d
—x = Ax+ Bu y=Cx + Cu

dt

, R(§) =

|
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Examples of systems R(%)w =0

3-

etc. etc.

o |

CONTROL as INTERCONNECTION —p.9/12



o N

Examples of systems R(%)w =0

Notation: X or 28 € £V

‘Linear differential systems’
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Examples of systems R(%)w =0

Notation: X or 28 € £V

‘Linear differential systems’

£°® has very nice properties,
both mathematically and computationally!

Similar theory for difference eqg'ns.

o |
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Elimination thm

Assume B € £" 1% described by

Ri(Lyws + Ra(Zyws = 0
a1 a2
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Elimination thm

Assume B € £" 1% described by

Ri(Lyws + Ra(Zyws = 0
a1 a2

‘Project out’ we ~» ‘Eliminate’ wy -~

B, = {w;y | there exists wo such that (wq, ws) € B}
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Elimination thm

Assume B € £" 1% described by

Ry(5)wi + Ra( < )ws = 0
1 dt w1 2 dt w2 =
‘Project out’ we ~» ‘Eliminate’ wy -~
B, = {w;y | there exists wo such that (wq, ws) € B}

?? 9B, € £ ??7, described by some R(%)wq = 07
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Elimination thm

Assume B € £" 1% described by

Ry(5)wi + Ra( < )ws = 0
1 dt w1 2 dt w2 =
‘Project out’ we ~» ‘Eliminate’ wy -~
B, = {w;y | there exists wo such that (wq, ws) € B}

?? 9B, € £ ??7, described by some R(%)wq = 07
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Elimination thm

Assume B € £" 1% described by

Ry(5)wi + Ra( < )ws = 0
1 dt w1 2 dt w2 =
‘Project out’ we ~» ‘Eliminate’ wy -~
B, = {w;y | there exists wo such that (wq, ws) € B}

?? 9B, € £ ??7, described by some R(%)wq = 07

Theorem: YES!

L%w = Ax + Bu,y = Cx + Du — P(%)y = Q(%)u J
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control
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Plant IE Controller |
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variables
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Control as Interconnection
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Elimination thm ~» [B € £77¢,C € £° = K € £7

‘IC is iImplementable’; C ‘implements’ IC
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Control as Interconnection
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1. Given the plant B € £"1¢, which controlled systems
IC € £7 are implementable?
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Control as Interconnection
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S

K

1. Given the plant B € £"1¢, which controlled systems
IC € £7 are implementable?
Agung will tell you all about this and more.
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Control as Interconnection

| .

1. Given the plant B € £"1¢, which controlled systems
IC € £7 are implementable?

2. Given the plant 8 € £v1¢, does there exists an
implementable IC € £¥ that is dissipative? i.e. can the
controlled system be made dissipative? What does

‘dissipativity’ mean?

L |
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Control as Interconnection

T

K

1. Given the plant B € £"1¢, which controlled systems
IC € £7 are implementable?

2. Given the plant 8 € £71¢, does there exists an
implementable IC € £¥ that is dissipative? i.e. can the
controlled system be made dissipative? What does
‘dissipativity’ mean?

Madhu will tell you about this. J

CONTROL as INTERCONNECTION —p.11/12



-

|

Control as Interconnection

1. Given the plant B € £"1¢, which controlled systems
IC € £7 are implementable?

2. Given the plant B € £71¢, does there exists an
implementable IC € £¥ that is dissipative? i.e. can the
controlled system be made dissipative? What does
‘dissipativity’ mean?

3. Given B8 € £v1¢, 3 ? implementable IC € £¥ that is J
dissipative, implementable by a dissipative C € £¢7
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o N

One more def’'n:  Controllability of X = (T, W, 28)
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One more def’'n:  Controllability of X = (T, W, 28)

W ﬁ/‘“

7~ —~

*
......
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One more def’'n:  Controllability of X = (T, W, 28)

W ﬁ/‘“
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Controllability
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One more def’'n:  Controllability of X = (T, W, 28)

W ﬁ/‘“

7~ —~

*
------

0 time

time

For R(%)w = 0 there are linear algebra conditions
L for controllability that act on Ry, R1, Ro, .. .. J
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