CONTROL as INTERCONNECTION

Madhu N. Belur (University of Groningen) A. Agung Julius (University of Twente) Jan C. Willems (SISTA)

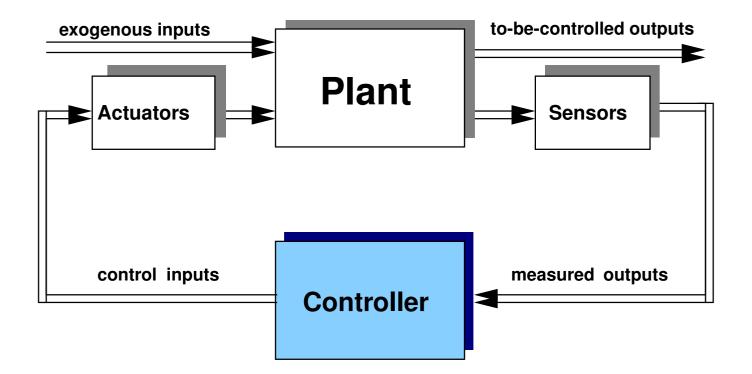
SISTA Seminar

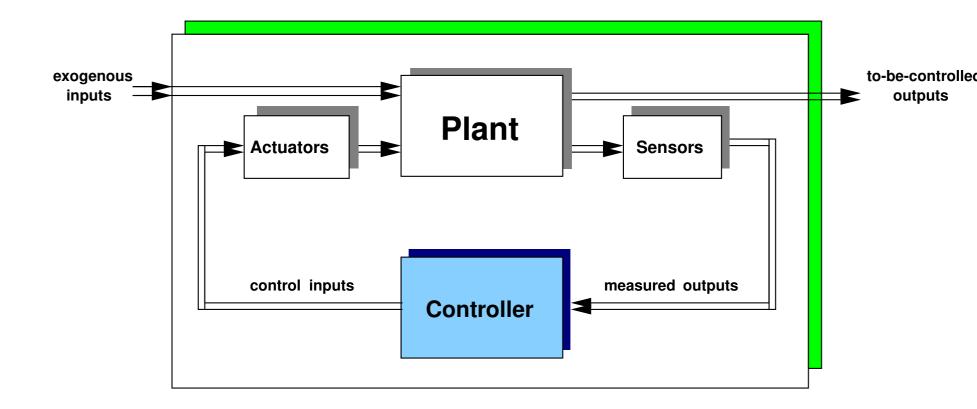
April 17, 2003

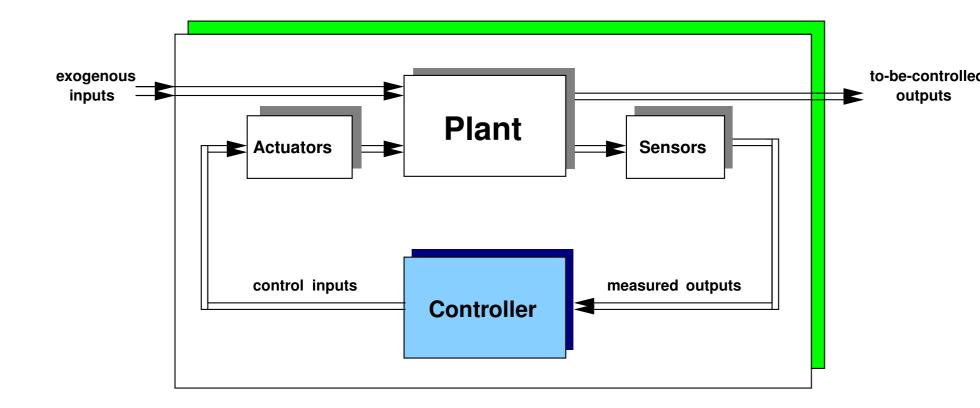
Program

Part 1: Problem formulation

- Jan Willems (SCD-SISTA, KU Leuven)
- Part 2: Controller implementability
 - Agung Julius (Twente University, NL)
- Part 3: Synthesis of dissipative systems
 - Madhu Belur (University of Groningen, NL)

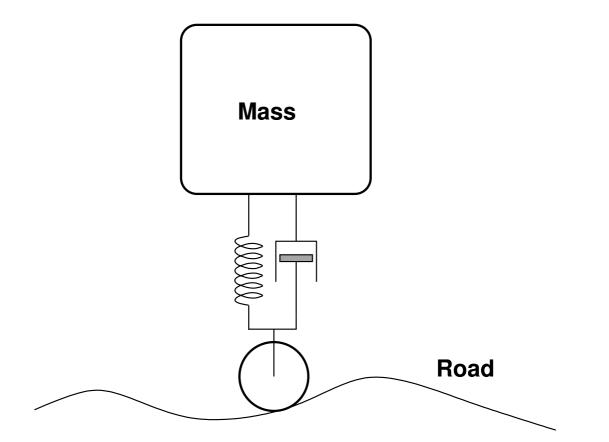




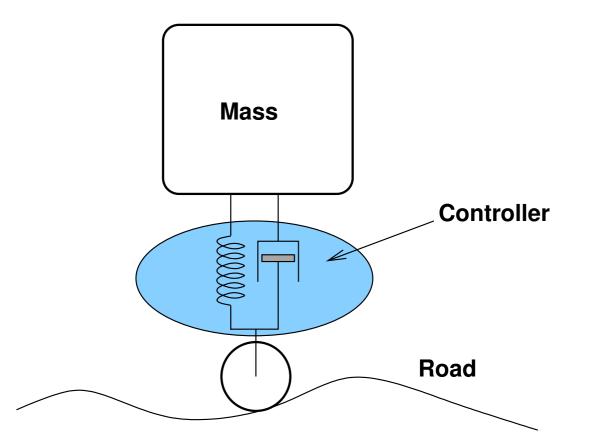


Plant, Controller, Cont'd system: i/o \cong signal processors

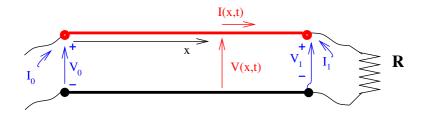
Automobile damper:

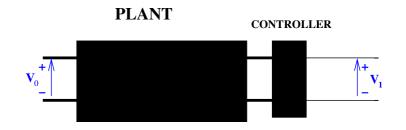


Automobile damper:

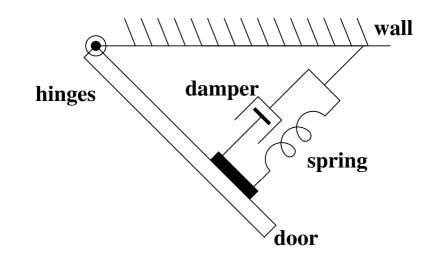


Terminated transmission line:

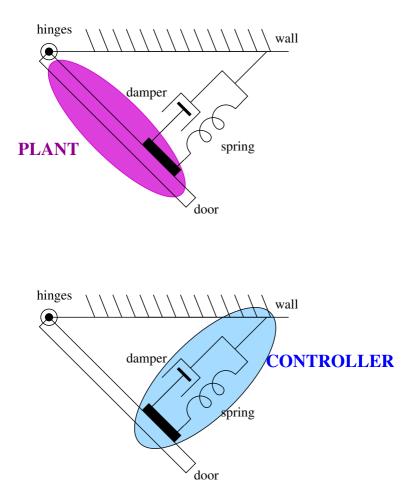




Door closing mechanism:



Door closing mechanism:



Door:

$$M' rac{d^2}{dt^2} heta = F_c + F_e$$

<u>Door</u>:

$$M' rac{d^2}{dt^2} heta = F_c + F_e$$

Door-closing mechanism, mass/spring/damper:

$$M^{\prime\prime}rac{d^2}{dt^2} heta+Drac{d}{dt} heta+K heta=-F_c$$

<u>Door</u>:

$$M' rac{d^2}{dt^2} heta = F_c + F_e$$

Door-closing mechanism, mass/spring/damper:

$$M'' rac{d^2}{dt^2} heta + D rac{d}{dt} heta + K heta = -F_c$$

Interconnected:

$$(M'+M'')rac{d^2}{dt^2} heta+Drac{d}{dt} heta+K heta=F_e$$

PDD control law?

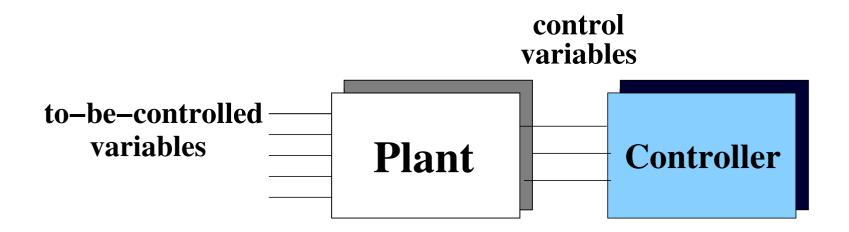
- PDD control law?
- Order controlled system
 < order plant + order controller.

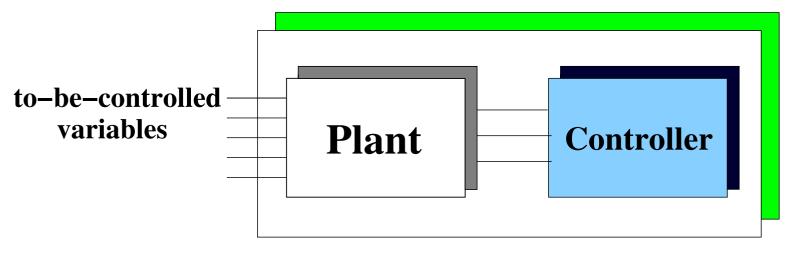
- PDD control law?
- Order controlled system
 < order plant + order controller.</p>
- State preparation required!

- PDD control law?
- Order controlled system < order plant + order controller.</p>
- State preparation required!
- Good, simple control design problem.

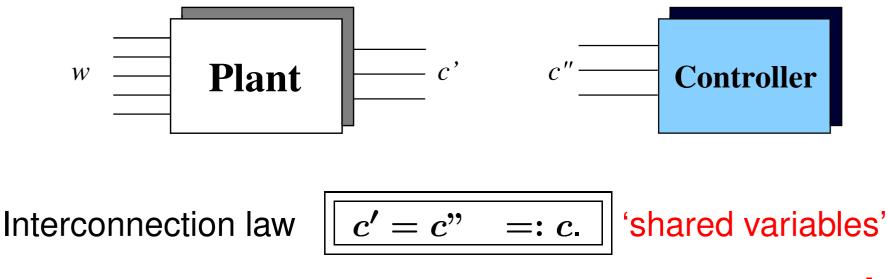
- PDD control law?
- Order controlled system < order plant + order controller.</p>
- State preparation required!
- Good, simple control design problem.

A broader framework is needed!



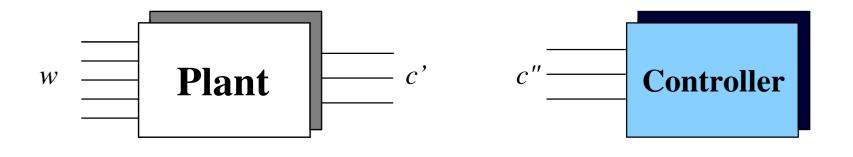


Controlled system



Restricts behavior of the w's via the c's

(=: **control**)



Interconnection law

$$c' = c$$
" =: c.

'shared variables'

Restricts behavior of the w's via the c's

(=: **control**)

$\textbf{CONTROL} \Leftrightarrow \textbf{SUBSYSTEM DESIGN}$

- $\mathbb{T} \subseteq \mathbb{R} = \text{`time-set'} \qquad \text{today} = \mathbb{R}$
- W ='signal space'
- \mathfrak{B} = the <u>'behavior'</u>

today = $\mathbb{R}^{\mathbb{W}}$ $\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}$

 \mathfrak{B} = the <u>behavior</u> = a family of trajectories, maps: time-set \rightarrow signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

 \mathfrak{B} = the <u>behavior</u> = a family of trajectories, maps: time-set \rightarrow signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

$$R_0w+R_1rac{d}{dt}w+\cdots+R_{
m n}rac{d^{
m n}}{dt^{
m n}}w=0,$$

with R_0, R_1, \cdots real matrices.

 \mathfrak{B} = the <u>behavior</u> = a family of trajectories, maps: time-set \rightarrow signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

$$R_0w+R_1rac{d}{dt}w+\cdots+R_{
m n}rac{d^{
m n}}{dt^{
m n}}w=0,$$

with R_0, R_1, \cdots real matrices. Shorthand notation

$$R(rac{d}{dt})w=0.$$

R a real polynomial matrix

 \mathfrak{B} = the <u>behavior</u> = a family of trajectories, maps: time-set \rightarrow signal space

today: sol'ns of linear constant coefficient diff. eq'ns.

$$R_0w+R_1rac{d}{dt}w+\cdots+R_{
m n}rac{d^{
m n}}{dt^{
m n}}w=0,$$

with R_0, R_1, \cdots real matrices.

$$\mathfrak{B} = \{w: \mathbb{R} o \mathbb{R}^{{\scriptscriptstyle \mathrm{W}}} \mid R(rac{d}{dt})w = 0\}$$

1.

$$p(rac{d}{dt})y=q(rac{d}{dt})u$$

$$w = egin{bmatrix} u \ y \end{bmatrix}, R = [q \quad -p];$$
 SISO system with tf f'n $g = rac{q}{p}.$

2.

$$rac{d}{dt}x=Ax+Bu ~~y=Cx+Cu$$

$$w = egin{bmatrix} x \ u \ y \end{bmatrix}, R(\xi) = egin{bmatrix} A - \xi I & B & 0 \ C & D & -I \end{bmatrix}$$

 $Erac{d}{dt}x = Ax + Bu$

etc. etc.

3.

<u>Notation</u>: Σ or $\mathfrak{B} \in \mathfrak{L}^{W}$

'Linear differential systems'

Examples of systems $R(\frac{d}{dt})w = 0$

```
<u>Notation</u>: \Sigma or \mathfrak{B} \in \mathfrak{L}^{W}
```

'Linear differential systems'

L[•] has very nice properties, both mathematically and computationally!

Similar theory for difference eq'ns.

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

'Project out' $w_2 \quad \rightsquigarrow$ 'Eliminate' $w_2 \quad \rightsquigarrow$

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

'Project out' $w_2 \quad \rightsquigarrow$ 'Eliminate' $w_2 \quad \rightsquigarrow$

 $\mathfrak{B}_1 = \{w_1 \mid \text{ there exists } w_2 \text{ such that } (w_1, w_2) \in \mathfrak{B}\}$

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

'Project out' $w_2 \quad \rightsquigarrow \quad$ 'Eliminate' $w_2 \quad \rightsquigarrow$

 $\mathfrak{B}_1 = \{w_1 \mid ext{ there exists } w_2 ext{ such that } (w_1,w_2) \in \mathfrak{B}\}$

?? $\mathfrak{B}_1 \in \mathfrak{L}^{\mathbb{W}_1}$??, described by some $R(\frac{d}{dt})w_1 = 0$?

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

'Project out' $w_2 \quad \rightsquigarrow$ 'Eliminate' $w_2 \quad \rightsquigarrow$

 $\mathfrak{B}_1 = \{w_1 \mid \text{ there exists } w_2 \text{ such that } (w_1, w_2) \in \mathfrak{B}\}$

?? $\mathfrak{B}_1 \in \mathfrak{L}^{\mathbb{W}_1}$??, described by some $R(\frac{d}{dt})w_1 = 0$?

Theorem: YES!

Assume $\mathfrak{B} \in \mathfrak{L}^{w_1+w_2}$, described by

$$R_1(\frac{d}{dt})w_1 + R_2(\frac{d}{dt})w_2 = 0$$

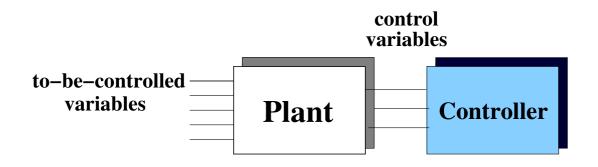
'Project out' $w_2 \quad \rightsquigarrow$ 'Eliminate' $w_2 \quad \rightsquigarrow$

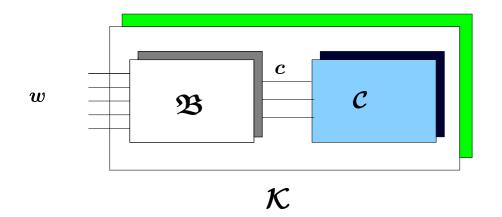
 $\mathfrak{B}_1 = \{w_1 \mid \text{ there exists } w_2 \text{ such that } (w_1, w_2) \in \mathfrak{B}\}$

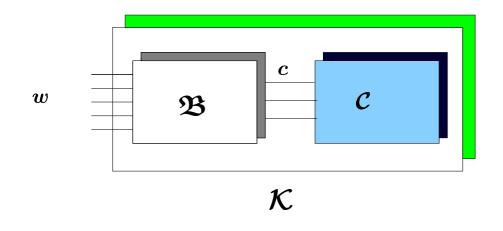
?? $\mathfrak{B}_1 \in \mathfrak{L}^{\mathbb{W}_1}$??, described by some $R(\frac{d}{dt})w_1 = 0$?

Theorem: YES!

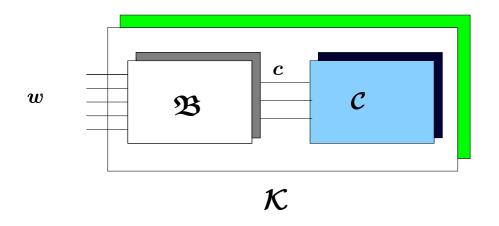
$$rac{d}{dt}x = Ax + Bu, y = Cx + Du \implies P(rac{d}{dt})y = Q(rac{d}{dt})u$$



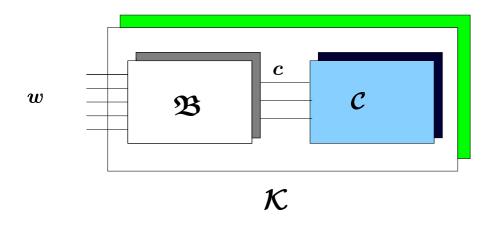




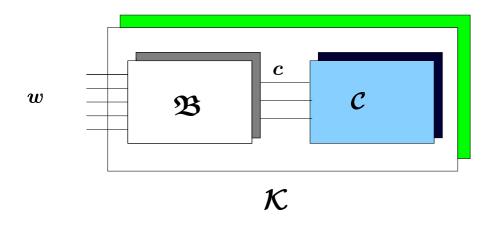
Elimination thm $\rightarrow [\mathfrak{B} \in \mathfrak{L}^{w+c}, \mathcal{C} \in \mathfrak{L}^{c} \Rightarrow \mathcal{K} \in \mathfrak{L}^{w}]$ ' \mathcal{K} is implementable'; \mathcal{C} 'implements' \mathcal{K}



1. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, which controlled systems $\mathcal{K} \in \mathfrak{L}^{w}$ are implementable?

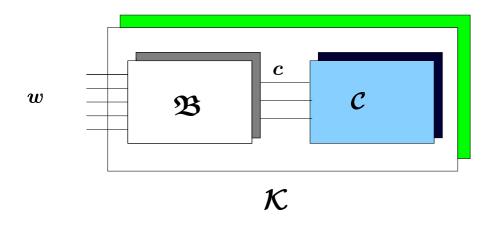


1. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, which controlled systems $\mathcal{K} \in \mathfrak{L}^{w}$ are implementable? Agung will tell you all about this and more.



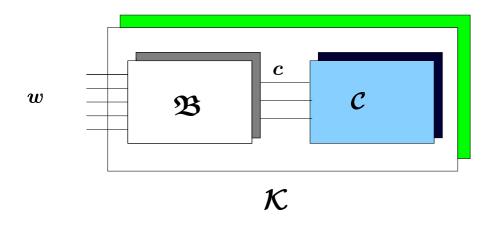
1. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, which controlled systems $\mathcal{K} \in \mathfrak{L}^{w}$ are implementable?

2. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, does there exists an implementable $\mathcal{K} \in \mathfrak{L}^{w}$ that is dissipative? i.e. can the controlled system be made dissipative? What does 'dissipativity' mean?



1. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, which controlled systems $\mathcal{K} \in \mathfrak{L}^{w}$ are implementable?

2. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, does there exists an implementable $\mathcal{K} \in \mathfrak{L}^{w}$ that is dissipative? i.e. can the controlled system be made dissipative? What does 'dissipativity' mean? Madhu will tell you about this.



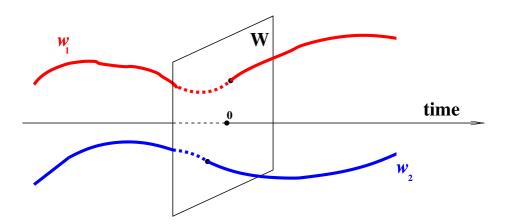
1. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, which controlled systems $\mathcal{K} \in \mathfrak{L}^{w}$ are implementable?

2. Given the plant $\mathfrak{B} \in \mathfrak{L}^{w+c}$, does there exists an implementable $\mathcal{K} \in \mathfrak{L}^{w}$ that is dissipative? i.e. can the controlled system be made dissipative? What does 'dissipativity' mean?

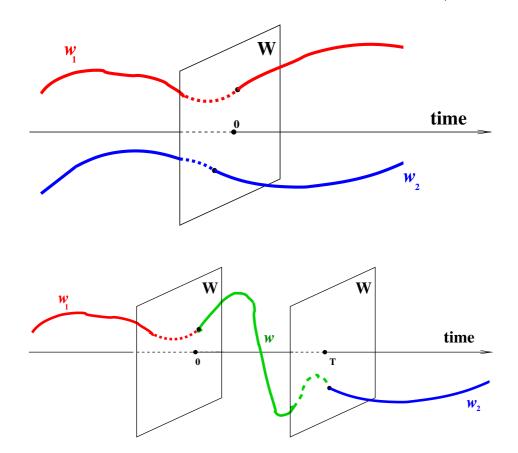
3. Given $\mathfrak{B} \in \mathfrak{L}^{w+c}$, \exists ? implementable $\mathcal{K} \in \mathfrak{L}^{w}$ that is dissipative, implementable by a dissipative $\mathcal{C} \in \mathfrak{L}^{c}$?

One more def'n: Controllability of $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$

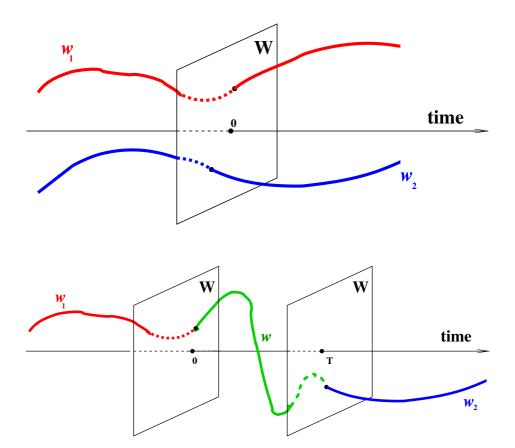
One more def'n: Controllability of $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$



One more def'n: Controllability of $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$



One more def'n: Controllability of $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$



For $R(rac{d}{dt})w = 0$ there are linear algebra conditions for controllability that act on R_0, R_1, R_2, \ldots