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Control problems and interconnection

Problem: Find the controller C such that
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The full behavior B

 

c�w�
B�

The behavior B is given by all the solutions of
R

(

d

dt

)

w + M
(

d

dt

)

c = 0.

Both w and c appear explicitly in B
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The behavior P

If we eliminate the variables c, from B we get P.

 

w�
P�

P := {w | ∃c such that (w, c) ∈ B}.

If the controller allows B to be as free as possible, P
can be seen as a ’limit of performance’.

Hence, necessarily K ⊂ P
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The behavior N
 

c=0�w�
B�

w�
N�

Define the behavior N as N := {w | such that
(w, 0) ∈ B}.

N is the result of applying the most restrictive controller
to B.

N can be seen as a ’limit of accuracy’ of the plant.

Hence, necessarily N ⊂ K.
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Implementability of K

Theorem: K is implementable, i.e. there exists a controller
C such that B ‖c C = K if and only if

N ⊂ K ⊂ P

Proof: (V) Related to the ’limit of performance’ and ’limit of
accuracy’ of the plant.
(W) This proof is constructive and not complicated, but will
not be presented.
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Control problem for general behaviors

B C
cw

K
w

B, C and K need not be linear systems. Think of them
as a collection of trajectories.

Propose a canonical controller structure.

 

c� w�

B� K�

Ccan := {c | ∀w, (w, c) ∈ B ⇒ w ∈ K}.
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About the canonical controller 

c� w�

B� K�

Ccan has a copy of B in it. It is related to the idea of
’internal model principle’.

Ccan solves the control problem if and only if it is solvable
at all.

For linear systems case, computation of Ccan can be
done.
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A second look on the control problem (1)

Feedback control is a special case.
 

c�w�
B� C�

B�

C�

Take an autonomous system
(

d2

dt2
− 1

)

w = 0,

w − c = 0.

Accuracy is unlimited, all sub-behaviors are
implementable.
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A second look on the control problem (2)

Install stabilizing controller
(

d

dt
+ 1

)

c = 0.

B ‖c C :
(

d

dt
+ 1

)

w = 0, i.e. the plant is stabilized.

The controller ’tells’ the autonomous plant not to allow
unstable trajectories.

Need to find a concept of compatibility.

Is the canonical controller compatible?
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Compatibility of behavior interconnections (1)

Consider a general behavior B, and a general (totally
ordered) time axis T.

Let w1, w2 ∈ B. We say that w1 is directable to w2 at time
t, or w1DB(t)w2 if there exists a w3 ∈ B such that

w3(τ) =

{

w1(τ), τ < t,

w2(τ), τ ≥ t.

z2

z1z3

w

Z

7
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Compatibility of behavior interconnections (2)

The interconnection B1 ‖ B2 is compatible at time t, if
for any wi ∈ Bi, i = 1, 2, there exist a w ∈ B1 ‖ B2, and
t ∈ T such that w1DB1

(t)w and w2DB2
(t)w.

Control of autonomous behaviors is clearly not
compatible.

If the general behaviors B1 and B2 admit minimal state
maps, then uniform compatibility is equivalent to the
fact that the minimal states of B1 ‖ B2 is the Cartesian
product of those of B1 and B2.

For linear systems, uniform compatibility ⇔ linear
feedback with proper transfer functions.
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Weak compatibility

Let w1, w2 ∈ B We say that w1 is weakly directable to
w2 at time t (Notation : w1D

∗

B
(t)w2) if there exists a

trajectory w3 ∈ B and a t′ ≤ t such that

w3(τ) =

{

w1(τ), τ < t′,

w2(τ) τ ≥ t.

z2

z1

z3

w*

Z

7w

The interconnection B1 ‖ B2 is weakly compatible at
time t, if for any wi ∈ Bi, i = 1, 2, there exist a
w ∈ B1 ‖ B2, and t ∈ T such that w1D

∗

B1
(t)w and

w2D
∗

B2
(t)w.
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Weakly compatible implementability

Obviously, requiring that the controller is (weakly)
compatible is adding new conditions on the
implementability.

Theorem: K is weakly compatible implementable, i.e. there
is a weakly comp. controller C such that B ‖c C = K if and
only if

N ⊂ K ⊂ P

K + Pctr = P

Pctr is uniquely defined and computable.

Consequence: N = {0} and P controllable ⇒ all K ⊂ P
is weakly comp. implementable.
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Pole placement theorem

Consider the system in the state space form:

ẋ = Ax + Bu,

y = Cx.

Take w := {x} and c := {y, u}.

N = {0} and P controllable ⇔ observability and
controllability (Kalman test).

Theorem: Given any monic polynomial r(ξ), it is possible to
find a weakly comp. controller C such that r(ξ) is the
closed-loop characteristic polynomials if and only if N = {0}
and P is controllable.
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Overview

We discuss the solutions to the control problem for
linear systems case and general case.

Solutions in the set theoretic sense is not sufficient,
indicating the need to incorporate compatibility into the
solution.

(Strong) compatibility is formulated, and it is equivalent
to linear proper feedback.

Weakly compatible implementability is characterized.

Strongly compatible implementability is still an open
problem.
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