CONTROL as INTERCONNECTION

Madhu N. Belur (University of Groningen) A. Agung Julius (University of Twente) Jan C. Willems (SISTA)

SISTA Seminar

April 17, 2003

Control problems and interconnection

Problem: Find the controller \mathcal{C} such that

Control problems and interconnection

Problem: Find the controller \mathcal{C} such that

The full behavior \mathfrak{B}

- The behavior \mathfrak{B} is given by all the solutions of $R\left(\frac{d}{dt}\right)w + M\left(\frac{d}{dt}\right)c = 0.$
- **9** Both w and c appear explicitly in \mathfrak{B}

If we eliminate the variables c, from \mathfrak{B} we get \mathcal{P} .

If we eliminate the variables c, from \mathfrak{B} we get \mathcal{P} .

 $\mathcal{P} := \{ w \, | \, \exists c \text{ such that } (w, c) \in \mathfrak{B} \}.$

If we eliminate the variables c, from \mathfrak{B} we get \mathcal{P} .

- $\mathcal{P} := \{ w \, | \, \exists c \text{ such that } (w, c) \in \mathfrak{B} \}.$
- If the controller allows \mathfrak{B} to be as free as possible, \mathcal{P} can be seen as a 'limit of performance'.

If we eliminate the variables c, from \mathfrak{B} we get \mathcal{P} .

•
$$\mathcal{P} := \{ w \mid \exists c \text{ such that } (w, c) \in \mathfrak{B} \}.$$

- If the controller allows \mathfrak{B} to be as free as possible, \mathcal{P} can be seen as a 'limit of performance'.
- $\ \ \, \hbox{ Hence, necessarily } \mathcal{K} \subset \mathcal{P} \\$

Define the behavior \mathcal{N} as $\mathcal{N} := \{w \mid \text{ such that } (w, 0) \in 𝔅\}.$

- Define the behavior \mathcal{N} as $\mathcal{N} := \{w \mid \text{ such that } (w, 0) \in \mathfrak{B}\}.$
- \mathcal{N} is the result of applying the most restrictive controller to \mathfrak{B} .

- Define the behavior \mathcal{N} as $\mathcal{N} := \{w \mid \text{ such that } (w, 0) \in \mathfrak{B}\}.$
- \mathcal{N} is the result of applying the most restrictive controller to \mathfrak{B} .
- \mathcal{N} can be seen as a 'limit of accuracy' of the plant.

- Define the behavior \mathcal{N} as $\mathcal{N} := \{w \mid \text{ such that } (w, 0) \in \mathfrak{B}\}.$
- \mathcal{N} is the result of applying the most restrictive controller to \mathfrak{B} .
- \mathcal{N} can be seen as a 'limit of accuracy' of the plant.

• Hence, necessarily $\mathcal{N} \subset \mathcal{K}$.

Implementability of \mathcal{K}

Theorem: \mathcal{K} is implementable, i.e. there exists a controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

$$\mathcal{N}\subset\mathcal{K}\subset\mathcal{P}$$

Implementability of ${\cal K}$

Theorem: \mathcal{K} is implementable, i.e. there exists a controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

$$\mathcal{N}\subset\mathcal{K}\subset\mathcal{P}$$

Proof: (\Rightarrow) Related to the 'limit of performance' and 'limit of accuracy' of the plant.

Implementability of \mathcal{K}

Theorem: \mathcal{K} is implementable, i.e. there exists a controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

$$\mathcal{N}\subset\mathcal{K}\subset\mathcal{P}$$

Proof: (\Rightarrow) Related to the 'limit of performance' and 'limit of accuracy' of the plant.

 (\Leftarrow) This proof is constructive and not complicated, but will not be presented.

Control problem for general behaviors

 $\mathfrak{B}, \mathcal{C}$ and \mathcal{K} need not be linear systems. Think of them as a collection of trajectories.

Control problem for general behaviors

- $\mathfrak{B}, \mathcal{C}$ and \mathcal{K} need not be linear systems. Think of them as a collection of trajectories.
- Propose a canonical controller structure.

Control problem for general behaviors

- $\mathfrak{B}, \mathcal{C}$ and \mathcal{K} need not be linear systems. Think of them as a collection of trajectories.
- Propose a canonical controller structure.

•
$$\mathcal{C}_{can} := \{ c \, | \, \forall w, (w, c) \in \mathfrak{B} \Rightarrow w \in \mathcal{K} \}.$$

About the canonical controller

• C_{can} has a copy of \mathfrak{B} in it. It is related to the idea of 'internal model principle'.

About the canonical controller

- C_{can} has a copy of \mathfrak{B} in it. It is related to the idea of 'internal model principle'.
- C_{can} solves the control problem if and only if it is solvable at all.

About the canonical controller

- C_{can} has a copy of \mathfrak{B} in it. It is related to the idea of 'internal model principle'.
- C_{can} solves the control problem if and only if it is solvable at all.
- For linear systems case, computation of \mathcal{C}_{can} can be done.

Feedback control is a special case.

Feedback control is a special case.

Take an autonomous system

$$\left(\frac{d^2}{dt^2} - 1\right)w = 0,$$
$$w - c = 0.$$

Feedback control is a special case.

Take an autonomous system

$$\left(\frac{d^2}{dt^2} - 1\right)w = 0,$$
$$w - c = 0.$$

Accuracy is unlimited, all sub-behaviors are implementable.

Install stabilizing controller $\left(\frac{d}{dt}+1\right)c=0$.

• Install stabilizing controller $\left(\frac{d}{dt}+1\right)c=0$.

• $\mathfrak{B} \parallel_c \mathcal{C} : \left(\frac{d}{dt} + 1\right) w = 0$, i.e. the plant is stabilized.

- Install stabilizing controller $\left(\frac{d}{dt}+1\right)c=0$.
- $\mathfrak{B} \parallel_c \mathcal{C} : \left(\frac{d}{dt} + 1\right) w = 0$, i.e. the plant is stabilized.
- The controller 'tells' the autonomous plant not to allow unstable trajectories.

- Install stabilizing controller $\left(\frac{d}{dt}+1\right)c=0$.
- $\mathfrak{B} \parallel_c \mathcal{C} : \left(\frac{d}{dt} + 1\right) w = 0$, i.e. the plant is stabilized.
- The controller 'tells' the autonomous plant not to allow unstable trajectories.
- Need to find a concept of compatibility.

- Install stabilizing controller $\left(\frac{d}{dt}+1\right)c=0$.
- $\mathfrak{B} \parallel_c \mathcal{C} : \left(\frac{d}{dt} + 1\right) w = 0$, i.e. the plant is stabilized.
- The controller 'tells' the autonomous plant not to allow unstable trajectories.
- Need to find a concept of compatibility.
- Is the canonical controller compatible?

• Consider a general behavior \mathfrak{B} , and a general (totally ordered) time axis \mathbb{T} .

- Consider a general behavior \mathfrak{B} , and a general (totally ordered) time axis \mathbb{T} .
- Let $w_1, w_2 \in \mathfrak{B}$. We say that w_1 is directable to w_2 at time t, or $w_1 D_{\mathfrak{B}}(t) w_2$ if there exists a $w_3 \in \mathfrak{B}$ such that $w_3(\tau) = \begin{cases} w_1(\tau), & \tau < t, \\ w_2(\tau), & \tau \ge t. \end{cases}$

• The interconnection $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is compatible at time t, if for any $w_i \in \mathfrak{B}_i$, i = 1, 2, there exist a $w \in \mathfrak{B}_1 \parallel \mathfrak{B}_2$, and $t \in \mathcal{T}$ such that $w_1 D_{\mathfrak{B}_1}(t) w$ and $w_2 D_{\mathfrak{B}_2}(t) w$.

- The interconnection $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is compatible at time t, if for any $w_i \in \mathfrak{B}_i$, i = 1, 2, there exist a $w \in \mathfrak{B}_1 \parallel \mathfrak{B}_2$, and $t \in \mathcal{T}$ such that $w_1 D_{\mathfrak{B}_1}(t) w$ and $w_2 D_{\mathfrak{B}_2}(t) w$.
- Control of autonomous behaviors is clearly not compatible.

- The interconnection $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is compatible at time t, if for any $w_i \in \mathfrak{B}_i$, i = 1, 2, there exist a $w \in \mathfrak{B}_1 \parallel \mathfrak{B}_2$, and $t \in \mathcal{T}$ such that $w_1 D_{\mathfrak{B}_1}(t) w$ and $w_2 D_{\mathfrak{B}_2}(t) w$.
- Control of autonomous behaviors is clearly not compatible.
- If the general behaviors \mathfrak{B}_1 and \mathfrak{B}_2 admit minimal state maps, then uniform compatibility is equivalent to the fact that the minimal states of $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is the Cartesian product of those of \mathfrak{B}_1 and \mathfrak{B}_2 .

- The interconnection $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is compatible at time t, if for any $w_i \in \mathfrak{B}_i$, i = 1, 2, there exist a $w \in \mathfrak{B}_1 \parallel \mathfrak{B}_2$, and $t \in \mathcal{T}$ such that $w_1 D_{\mathfrak{B}_1}(t) w$ and $w_2 D_{\mathfrak{B}_2}(t) w$.
- Control of autonomous behaviors is clearly not compatible.
- If the general behaviors \mathfrak{B}_1 and \mathfrak{B}_2 admit minimal state maps, then uniform compatibility is equivalent to the fact that the minimal states of $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is the Cartesian product of those of \mathfrak{B}_1 and \mathfrak{B}_2 .
- For linear systems, uniform compatibility ⇔ linear feedback with proper transfer functions.

Weak compatibility

• Let $w_1, w_2 \in \mathfrak{B}$ We say that w_1 is weakly directable to w_2 at time t (Notation : $w_1D_{\mathfrak{B}}^*(t)w_2$) if there exists a trajectory $w_3 \in \mathfrak{B}$ and a $t' \leq t$ such that

$$w_3(\tau) = \begin{cases} w_1(\tau), & \tau < t', \\ w_2(\tau) & \tau \ge t. \end{cases}$$

Weak compatibility

• Let $w_1, w_2 \in \mathfrak{B}$ We say that w_1 is weakly directable to w_2 at time t (Notation : $w_1D_{\mathfrak{B}}^*(t)w_2$) if there exists a trajectory $w_3 \in \mathfrak{B}$ and a $t' \leq t$ such that

$$w_3(\tau) = \begin{cases} w_1(\tau), & \tau < t', \\ w_2(\tau) & \tau \ge t. \end{cases}$$

• The interconnection $\mathfrak{B}_1 \parallel \mathfrak{B}_2$ is weakly compatible at time t, if for any $w_i \in \mathfrak{B}_i$, i = 1, 2, there exist a $w \in \mathfrak{B}_1 \parallel \mathfrak{B}_2$, and $t \in \mathcal{T}$ such that $w_1 D^*_{\mathfrak{B}_1}(t) w$ and $w_2 D^*_{\mathfrak{B}_2}(t) w$.

Obviously, requiring that the controller is (weakly) compatible is adding new conditions on the implementability.

Obviously, requiring that the controller is (weakly) compatible is adding new conditions on the implementability.

Theorem: \mathcal{K} is weakly compatible implementable, i.e. there is a weakly comp. controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

 $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$ $\mathcal{K} + \mathcal{P}^{\mathsf{ctr}} = \mathcal{P}$

Obviously, requiring that the controller is (weakly) compatible is adding new conditions on the implementability.

Theorem: \mathcal{K} is weakly compatible implementable, i.e. there is a weakly comp. controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

 $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$ $\mathcal{K} + \mathcal{P}^{\mathsf{ctr}} = \mathcal{P}$

• \mathcal{P}^{ctr} is uniquely defined and computable.

Obviously, requiring that the controller is (weakly) compatible is adding new conditions on the implementability.

Theorem: \mathcal{K} is weakly compatible implementable, i.e. there is a weakly comp. controller \mathcal{C} such that $\mathfrak{B} \parallel_c \mathcal{C} = \mathcal{K}$ if and only if

 $\mathcal{N} \subset \mathcal{K} \subset \mathcal{P}$ $\mathcal{K} + \mathcal{P}^{\mathsf{ctr}} = \mathcal{P}$

- \mathcal{P}^{ctr} is uniquely defined and computable.
- Consequence: $\mathcal{N} = \{0\}$ and \mathcal{P} controllable \Rightarrow all $\mathcal{K} \subset \mathcal{P}$ is weakly comp. implementable.

Consider the system in the state space form:

$$\dot{x} = Ax + Bu,$$
$$y = Cx.$$

Consider the system in the state space form:

 $\dot{x} = Ax + Bu,$ y = Cx.

• Take
$$w := \{x\}$$
 and $c := \{y, u\}$.

Consider the system in the state space form:

 $\dot{x} = Ax + Bu,$ y = Cx.

• Take
$$w := \{x\}$$
 and $c := \{y, u\}$.

• $\mathcal{N} = \{0\}$ and \mathcal{P} controllable \Leftrightarrow observability and controllability (Kalman test).

Consider the system in the state space form:

 $\dot{x} = Ax + Bu,$ y = Cx.

• Take
$$w := \{x\}$$
 and $c := \{y, u\}$.

• $\mathcal{N} = \{0\}$ and \mathcal{P} controllable \Leftrightarrow observability and controllability (Kalman test).

Theorem: Given any monic polynomial $r(\xi)$, it is possible to find a weakly comp. controller C such that $r(\xi)$ is the closed-loop characteristic polynomials if and only if $\mathcal{N} = \{0\}$ and \mathcal{P} is controllable.

We discuss the solutions to the control problem for linear systems case and general case.

- We discuss the solutions to the control problem for linear systems case and general case.
- Solutions in the set theoretic sense is not sufficient, indicating the need to incorporate compatibility into the solution.

- We discuss the solutions to the control problem for linear systems case and general case.
- Solutions in the set theoretic sense is not sufficient, indicating the need to incorporate compatibility into the solution.
- (Strong) compatibility is formulated, and it is equivalent to linear proper feedback.

- We discuss the solutions to the control problem for linear systems case and general case.
- Solutions in the set theoretic sense is not sufficient, indicating the need to incorporate compatibility into the solution.
- (Strong) compatibility is formulated, and it is equivalent to linear proper feedback.
- Weakly compatible implementability is characterized.

- We discuss the solutions to the control problem for linear systems case and general case.
- Solutions in the set theoretic sense is not sufficient, indicating the need to incorporate compatibility into the solution.
- (Strong) compatibility is formulated, and it is equivalent to linear proper feedback.
- Weakly compatible implementability is characterized.
- Strongly compatible implementability is still an open problem.