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Let us start by looking at the responses
of some simple mechanical systems.
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Simulations

mk m kk’

Take �� ���� � � �� � � � 	� 	 	 ��

at

�� 	

: displacement left mass = 1,
velocities, displacements of other mass = 0.

Compute the displacements of both masses.
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Simulations
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Simulations

Compute actual energy, and average energy, in the two oscillators.
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Note that the averages are asymptotically equal - ‘equipartition’!
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Simulations

Compute the total energy in the system.
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Compute the total energy in the system.
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Simulations

k m kk’m

w1 w2

Now compute the evolution of the following quadratic expression:

� �� � �� ��� ��� � � �� � �  � ��� � �� � � � � � �� � � �� ��� � � � � �� ��� � � � �� �� � �� �� � �

There are other conserved quantities than the total energy!

Is this always the case?
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Simulations

k m kk’m
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Now compute the evolution of the following quadratic expression:
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Simulations

k’k m m k’ km’

Take �� ���� � � � � 	� � � �� � � � 	� 	 	 � 


at

�� 	

: displacement left mass = 1,
velocities, displacements of other masses = 0.

Compute actual energy, and average energy, in the two oscillators.
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The averages are again asymptotically equal - ‘equipartition’!
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CONJECTURE

The average energy in

symmetrically coupled identical oscillators

is the same for each oscillator.

We call this the
Deterministic ’Equipartition of Energy’ principle,

following a very nice idea of Bernstein and Bhat (CDC 2002)

usual statistical average time-average.
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CONJECTURE

The average energy in

symmetrically coupled identical oscillators

is the same for each oscillator.

We call this the
Deterministic ’Equipartition of Energy’ principle,

following a very nice idea of Bernstein and Bhat (CDC 2002)

usual statistical average � time-average.
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Setting the stage

A linear differential system (or ‘behavior’ ) is ‘oscillatory’ if all
trajectories in are quasi-periodic.

Formal definition:

The behavior defines a linear ‘oscillatory system’

is the set of solutions of a system of linear constant
coefficient differential equation,

every solution is bounded (on ).
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Setting the stage

Formal definition:

The behavior defines a linear ‘oscillatory system’ �

is the set of solutions of a system of linear constant
coefficient differential equation,

every solution is bounded (on ).
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Setting the stage

Formal definition:

The behavior defines a linear ‘oscillatory system’ �

is the set of solutions of a system of linear constant
coefficient differential equation,

�  !! � "$# � 	�

�&% ' ( )* +, -

every solution is bounded (on ).
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Setting the stage

Formal definition:

The behavior defines a linear ‘oscillatory system’ �

is the set of solutions of a system of linear constant
coefficient differential equation,

�  !! � "$# � 	�

�&% ' ( )* +, -
every solution # � ' '*

is bounded (on

 /. 0� 0 "1 1 ).
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Setting the stage

Examples of oscillatory behaviors:

any vector of displacements and velocities in a spring-mass
mechanical system.

any vector of voltages and currents in any capacitor or
inductor in a LC (and LCTG) electrical circuit.

the behavior of any output of

223 4 � 5 4� 6 � 7 4 with

5

oscillatory (some positive definite quadratic form 4 8 4 is
invariant).
Cfr. (linearized) Lagrangian or Hamiltonian mechanics.
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Setting the stage

For simplicity of exposition (and WLOG!), today, mostly 9� �
.

Proposition:

�  !! � "$# � 	 	 :� �&% ' +, -

defines an oscillatory system

if and only if

all the roots of

�

are distinct and on the imaginary axis.

For simplicity of exposition, today:�

has no roots in origin

�

is an even polynomial.

Hence we consider, with slight abuse of notation,

with , roots real, negative, and distinct.
Set , (whence ).
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Setting the stage

Hence we consider, with slight abuse of notation,

�  ! ;! � ; "$# � 	

with

	 :� �&% ' +, -

, roots real, negative, and distinct.
Set < �� =?>@ A> >  � "

, (whence

= BDC  " � E <).
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Setting the stage

Hence we consider, with slight abuse of notation,

�  ! ;! � ; "$# � 	

with

	 :� �&% ' +, -

, roots real, negative, and distinct.
Set < �� =?>@ A> >  � "

, (whence

= BDC  " � E <).
So, we effectively assume that each element of looks like

#  � " � FHGJI KMLN N N L O 5G P BDQ  $R G �S TG "�

with the . R ;G ’s the roots of

�
, and the

5G ’s,

TG ’s arbitrary.
‘quasi-periodic’ functions
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QDF’s

The real two-variable polynomial

U V� W " � FHG L G � UG L G � V G WG �
induces the map# % X Y  '� ' " � FZG L G �  !G! �G # " UG L G �  !G �

! �G � # " % X Y  '� ' "�

called a a ‘quadratic differential form’ (QDF), denoted as [ .
=================

Let be oscillatory. Each mod- eq. class contains
exactly one with the highest in the above sum .

Hence the QDF’s modulo the symmetric matrices,

the quadratic forms in .
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! �G � # " % X Y  '� ' "�

called a a ‘quadratic differential form’ (QDF), denoted as [ .
=================

Let be a behavior. Call
UK� U; % ' +V� W - ‘ -equivalent’ �

# % [ �  # " � [ �  # "

Let be oscillatory. Each mod- eq. class contains
exactly one with the highest in the above sum .

Hence the QDF’s modulo the symmetric matrices,

the quadratic forms in .
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QDF’s

The real two-variable polynomial

U V� W " � FHG L G � UG L G � V G WG �
induces the map# % X Y  '� ' " � FZG L G �  !G! �G # " UG L G �  !G �

! �G � # " % X Y  '� ' "�

called a a ‘quadratic differential form’ (QDF), denoted as [ .
=================

Let

 = BDC � E < " be oscillatory. Each mod- eq. class contains
exactly one [ with the highest

\� \ �

in the above sum

] E <.
Hence the QDF’s modulo

^� the symmetric

E < _ E < matrices,^� the quadratic forms in # � 223 # � 
 
 
� 2 �a`b �23 �a`b � # .

CONSERVED and ZERO-MEAN QUANTITIES in OSCILLATORY SYSTEMS – p.14/25



Conserved and Zero-mean QDF’s

Let be an oscillatory system.

Call [ ‘conserved’ �
# % 223 [  # " � 	

Call ‘zero-mean’

limit

Call ‘trivially zero-mean’

quasi-periodic limit

zero-mean for all oscillatory systems, not just .
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Conserved and Zero-mean QDF’s

Let be an oscillatory system.

Call [ ‘zero-mean’ �

# %

limit ced Y � f
c

g [  # "  � " ! �� 	

Call ‘trivially zero-mean’

quasi-periodic limit

zero-mean for all oscillatory systems, not just .
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Conserved and Zero-mean QDF’s

Let be an oscillatory system.

Call [ ‘zero-mean’ �

# %

limit ced Y � f
c

g [  # "  � " ! �� 	

Call [ ‘trivially zero-mean’ �

h i j k lmon m pn quasi-periodic

q
limit rs k tu r

v wyx l h p lz p{ z | }

zero-mean for all oscillatory systems, not just .
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Conserved and Zero-mean QDF’s

Note that for any

U% ' +V� W - , and any # % � the limit

limit c d Y �f
c

g [  # "  � " ! �

exists, and is obviously a conserved QDF.
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Conserved and Zero-mean QDF’s

Note that for any

U% ' +V� W - , and any # % � the limit

limit c d Y �f
c

g [  # "  � " ! � � � [�~� �� ~� �  # "  	 "

exists, and is obviously a conserved QDF.

This yields the decomposition

[ � [~� �� ~� � S  [ . [~ � �� ~� � "

into the sum of a conserved QDF

�

a zero-mean QDF.
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean

�

zero mean

Call the QDF’s in a suitable complement ‘intrinsically zero mean’.

What are the dimensions of the linear subspaces of conserved,
zero-mean, trivially zero mean, and intrinsically zero-mean
QDF’s modulo ?

Given a representation of , oscillatory, and a ,
how can we decide whether it is conserved, zero-mean, trivially
zero mean, or intrinsically zero-mean? Parametrizations?
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean

�

zero mean

Call the QDF’s in a suitable complement ‘intrinsically zero mean’.

What are the dimensions of the linear subspaces of conserved,
zero-mean, trivially zero mean, and intrinsically zero-mean
QDF’s modulo ?

Given a representation of , oscillatory, and a

U% ' +V� W - ,
how can we decide whether it is conserved, zero-mean, trivially
zero mean, or intrinsically zero-mean? Parametrizations?
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Main Results

Let be an oscillatory system,

= BDC  " � E <.
Recall that the QDF’s modulo^� the real symmetric matrices of dimension

E < _ E <.

an -dimensional subspace of conserved QDF’s !!?

an -dimensional subspace of intrinsically zero-mean QDF’s !!?
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Main Results

Let be an oscillatory system,

= BDC  " � E <.
Recall that the QDF’s modulo^� the real symmetric matrices of dimension

E < _ E <.
Each QDF mod admits a unique decomposition as the sum of
conserved

�

trivially zero-mean

�
intrinsically zero mean QDF.

an -dimensional subspace of conserved QDF’s !!?

an -dimensional subspace of intrinsically zero-mean QDF’s !!?
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Main Results

Let be an oscillatory system,

= BDC  " � E <.
Recall that the QDF’s modulo^� the real symmetric matrices of dimension

E < _ E <.
Moreover, = BDC  

conserved
" � <= BDC  

zero-mean
" � E < ;= BDC  

trivially zero-mean

" � <  E < . � "

= BDC  

intrinsically zero mean

" � <= BDC  
QDF’s modulo

" � <  E <S � "

an -dimensional subspace of conserved QDF’s !!?

an -dimensional subspace of intrinsically zero-mean QDF’s !!?
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Main Results

Let be an oscillatory system,

= BDC  " � E <.
Recall that the QDF’s modulo^� the real symmetric matrices of dimension

E < _ E <.

�

an <-dimensional subspace of conserved QDF’s !!?

�

an <-dimensional subspace of intrinsically zero-mean QDF’s !!?
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Main Results

We have explicit rules for verifying whether a QDF is conserved,
zero-mean, trivially zero mean, or intrinsically zero-mean, and
explicit parametrizations

=============================
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Main Results

[ is conserved

� % ' +V� W - such that

 V S W " U V� W " �  V� W " �  W ; " S �  V ; "  W� V "
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Main Results

[ is zero-mean

U /. ,� , "

has

�  , ; "
as a factor,

[ is trivially zero-mean
U /. ,� , " � 	
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Main Results

�  V ; " W �  W ; " S V �  V ; " �  W ; "V S W � � �  V� W "

with

� % ' +, -

generates exactly all the conserved QDF’s.

��� � }

iff the roots of

�

interlace those of

�
: non-empty interior.

Each such

�

is of the form�  V� W " � � g V ;� W ; " S V W � K  V ;� W ; "

‘Potential’ + ‘Kinetic’.
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Main Results

 V S W " ' +V� W -
equals exactly the trivially zero-mean QDF’s.
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Main Results

�  V ; " W �  W ; " . V �  V ; " �  W ; "V . W � �  V� W "

with

� % ' +, -

generates a choice for the
intrinsically zero-mean QDF’s.

Each such is of the form V� W " � � g V ;� W ; " . V W � K  V ;� W ; "

‘Potential’ - ‘Kinetic’.
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Main Results

�  /. V W " �  /. V W " � �  V� W "
with

� % ' +, -

generates yet another choice for the
intrinsically zero-mean QDF’s.

Polynomials in
V W.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’

2. is ‘permutation symmetric‘

3. is ‘observable’ from

Let be any QDF. Then is zero-mean.

Extends to systems with variables.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’ i.e., all trajectories are bounded on

'

2. is ‘permutation symmetric‘

3. is ‘observable’ from

Let be any QDF. Then is zero-mean.

Extends to systems with variables.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’

2. is ‘permutation symmetric‘ i.e., # K� # ; " %  # ;� # K " %

3. is ‘observable’ from

Let be any QDF. Then is zero-mean.

Extends to systems with variables.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’

2. is ‘permutation symmetric‘

3. # ; is ‘observable’ from # K i.e., # K� # � ; "�  # K� # � �; " % # � ; � # � �; 


No ‘decoupling’.

Let be any QDF. Then is zero-mean.

Extends to systems with variables.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’

2. is ‘permutation symmetric‘

3. # ; is ‘observable’ from # K
Let [ be any QDF. Then [  # K " . [  # ; " is zero-mean.

Extends to systems with variables.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in

� ;

: 2 real variables # K� # ; . Assume

1. is ‘oscillatory’

2. is ‘permutation symmetric‘

3. # ; is ‘observable’ from # K
Let [ be any QDF. Then [  # K " . [  # ; " is zero-mean.

Any ‘sign-symmetric’ QDF has zero mean!

Extends to systems
with variables.
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Equipartition of Energy

Immediate corollary:

Linear

ANY
Symmetric

Coupling

m k m k

Linear

ANY
Symmetric

Coupling

kk m m 

The average energy in

symmetrically coupled identical oscillators

is the same for each oscillator.

a very general
deterministic ’Equipartition of Energy’ principle.
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Simulations

m kk m k’ m’ k"

Take �� ���� � � � � 	� � � �� � � � E� �� � ��


at

�� 	

: displacement left mass = 1,
velocities, displacements of other masses = 0.

Note that the symmetry is ‘broken’.
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Simulations

Compute actual energy, and average energy in the two oscillators!

kk m k’ m’ k" m 
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PSfrag replacements

Actual and average energy in oscillator 1

Time
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Actual and average energy in oscillator 1

Time

Actual and average energy in oscillator 2

Time

No equipartition!
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Concluding Remarks

‘Equipartition of energy’ in terms of time-averages is at least
as realistic as the traditional statistical mechanics setting.

Behavioral thinking, combined with the Smith form, allows us
to concentrate on scalar systems. This greatly simplifies the
development.

Note the very effective and transparent use of QDF’s.
It is the proper mathematical tool for this class of problems.
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Reference: An article is in the process of being manufactured.

Copies of the lecture frames will soon be available from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/ ^jwillems

Thank you for your attention !
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