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Let us start by looking at the responses
of some simple mechanical systems.
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Simulations

Take m =13, k=17, k' = 0,001.
at ¢ = 0O: displacement left mass =1,
velocities, displacements of other mass = 0.

Compute the displacements of both masses.
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Simulations

Compute actual energy, and average enerqgy, in the two oscillators.
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Simulations

Compute actual energy, and average enerqgy, in the two oscillators.
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Note that the averages are asymptotically equal - ‘equipartition’!
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Simulations

Compute the total energy in the system.
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Simulations

Compute the total energy in the system.

Total energy

Total energy

0 0.5 1 1.5 2 2.5 3
Time x 10

CONSERVED and ZERO-MEAN QUANTITIES in OSCILLATORY SYSTEMS - p.7/25



Simulations

Now compute the evolution of the following quadratic expression:

dwi dws
dt dt

dwso
dt

dw1
dt

(2k + k') (wi + w3) + 2(k — kK )wiwz + 2m((—-)* + (=) + )
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Simulations

Now compute the evolution of the following quadratic expression:

dwi dws
dt dt

dwso
dt

dw1

(2 + k') (w] + wF) + 2(k — K wiwz + 2m((50)? + (52)? +
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Simulations

Now compute the evolution of the following quadratic expression:

d’w2 dwi dw2

)2+ (——= )+dt 7 )

(2k + k') (w? 4+ w32) + 2(k — k) wiws + 2,m((d'wl

There are other conserved quantities than the total energy!

Is this always the case?
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Simulations
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Take m =13, m’' =10, k=7, kK’ = 0,001.
at ¢ = 0: displacement left mass =1,
velocities, displacements of other masses = 0.
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Simulations

Compute actual energy, and average energy, in the two oscillators.
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Simulations

Compute actual energy, and average energy, in the two oscillators.
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The averages are again asymptotically equal - ‘equipartition’!
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CONJECTURE

The average energy in
symmetrically coupled identical oscillators
Is the same for each oscillator.
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CONJECTURE

The average energy in
symmetrically coupled identical oscillators
Is the same for each oscillator.

We call this the
Deterministic "Equipartition of Energy’ principle,
following a very nice idea of Bernstein and Bhat (CDC 2002)

usual statistical average + time-average.
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Setting the stage

A linear differential system (or ‘behavior’) is ‘oscillatory’ if all
trajectories in B3 are quasi-periodic.
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Setting the stage

Formal definition:

The behavior *35 defines a linear | ‘oscillatory system’ 1=
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Setting the stage

Formal definition:

The behavior *35 defines a linear | ‘oscillatory system’ 1=

® ‘B is the set of solutions of a system of linear constant
coefficient differential equation,

d
R(—)w =20
(2w =0,

R € R**¥[¢]
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Setting the stage

Formal definition:

The behavior *35 defines a linear | ‘oscillatory system’ 1=

® ‘B is the set of solutions of a system of linear constant
coefficient differential equation,

d
R(—)w =0

R e ROXW[S]

® every solution w : R — R" is bounded (on (—oo, co)!!).
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Setting the stage
Examples of oscillatory behaviors:

® any vector of displacements and velocities in a spring-mass
mechanical system.

® any vector of voltages and currents in any capacitor or
inductor in a LC (and LCTG) electrical circuit.

® the behavior of any output of %a} = Ax,y = Cx with A

oscillatory (some positive definite quadratic form a:TQa: IS
invariant).
Cfr. (linearized) Lagrangian or Hamiltonian mechanics.
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Setting the stage

For simplicity of exposition (and WLOG!), today, mostly w = 1.

Proposition:

d
R(—)w =0 0 # R € R[]
dt
defines an oscillatory system
if and only if
all the roots of R are distinct and on the imaginary axis.

For simplicity of exposition, today:
R has noroots in origin — R is an even polynomial.
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Setting the stage

Hence we consider, with slight abuse of notation,

d2

with 0 # R € R[£], roots real, negative, and distinct.
Setn := degree(R), (whence dim(23) = 2n).
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Setting the stage

Hence we consider, with slight abuse of notation,

d2

with 0 # R € R[£], roots real, negative, and distinct.
Setn := degree(R), (whence dim(23) = 2n).

So, we effectively assume that each element of ¢35 looks like
w(t) = Xk=1,... nAx sin(wxt + ¢Px),

with the —w?’s the roots of R, and the Ay’s, ¢y’s arbitrary.
‘guasi-periodic’ functions
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QDF’s

The real two-variable polynomial

®(¢, 1) = S P CEn®

induces the map

dx dx’
w € Q:OO (R, R) —> Ek,kl(

B
i) T (g

w) € €7(R,R),

called a a ‘quadratic differential form’ (QDF), denoted as Q.

CONSERVED and ZERO-MEAN QUANTITIES in OSCILLATORY SYSTEMS - p.14/25



QDF’s

The real two-variable polynomial

®(¢, 1) = S P CEn®

induces the map

dx dx’
w € Q:OO (R, R) —> Ek,kl(

B
i) T (g

w) € €7(R,R),

called a a ‘quadratic differential form’ (QDF), denoted as Q.

Let 23 be a behavior. Call 1, > € R[(, 1] “B-equivalent’ :<=

wEPB = Q(I)l(w) — Qq’z(w)
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QDF’s

The real two-variable polynomial

®(¢, 1) = S P CEn®

induces the map

dx dx’
w € Q:OO (R, R) —> Ek,kl(

B
i) T (g

w) € €7(R,R),

called a a ‘quadratic differential form’ (QDF), denoted as Q.

Let 2B (dim = 2n) be oscillatory. Each mod-*3 eq. class contains
exactly one Q& with the highest k, k’ in the above sum < 2n.

Hence the QDF’s modulo 8 = the symmetric 2n X 2n matrices,

2n—1
= the quadratic forms in w, %w, Cee %w.
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Conserved and Zero-mean QDF’s

Let *B be an oscillatory system.

Call Q4 | ‘conserved’ |:&

weEB = LQa(w)=0
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Conserved and Zero-mean QDF’s

Let *B be an oscillatory system.

Call Q3 | ‘zero-mean’ | : &>

1 T
wEB = limity o E/ Qs (w)(t) dt = 0
0
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Conserved and Zero-mean QDF’s

Let *B be an oscillatory system.

Call Q3 | ‘zero-mean’ | : &>

1 T
wEB = limity o E/ Qs (w)(t) dt = 0
0

Call Qg | ‘trivially zero-mean’ | :<>

1 T
w € €°(R, R), quasi-periodic = limit T_*wf/ Qa(w)(t)dt =0
0

zero-mean for all oscillatory systems, not just 5.
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Conserved and Zero-mean QDF’s

Note that for any ® € R|[({, 1], and any w € 2B, the limit

1 T
limit 7 oo T/O Qa(w)(t) dt

exists, and is obviously a conserved QDF.
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Conserved and Zero-mean QDF’s

Note that for any ® € R|[({, 1], and any w € 2B, the limit

T
imit o 7 [ Qu(w)(®) dt =i Qa,(1)(0)

exists, and is obviously a conserved QDF.

This yields the decomposition

Q@ — Q(I)average —I_ (Q@ T Q(I)average)

into the sum of a conserved QDF & a zero-mean QDF.
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean (C zero mean
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean (C zero mean

Call the QDF’s in a suitable complement ‘intrinsically zero mean’.
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean (C zero mean

Call the QDF’s in a suitable complement ‘intrinsically zero mean’.

® What are the dimensions of the linear subspaces of conserved,
zero-mean, trivially zero mean, and intrinsically zero-mean
QDF’s modulo %5?
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Conserved and Zero-mean QDF’s

Note further that

trivially zero mean (C zero mean

Call the QDF’s in a suitable complement ‘intrinsically zero mean’.

® What are the dimensions of the linear subspaces of conserved,
zero-mean, trivially zero mean, and intrinsically zero-mean
QDF’s modulo %5?

® Given a representation of *3, oscillatory, and a ® € R[(, 1],
how can we decide whether it is conserved, zero-mean, trivially
zero mean, or intrinsically zero-mean? Parametrizations?
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Main Results

Let 23 be an oscillatory system, dim(3) = 2n.

Recall that the QDF’s modulo *5
= the real symmetric matrices of dimension 2n X 2n.
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Main Results

Let 23 be an oscillatory system, dim(3) = 2n.

Recall that the QDF’s modulo *5
= the real symmetric matrices of dimension 2n X 2n.

Each QDF mod 3 admits a unique decomposition as the sum of
conserved @ trivially zero-mean & intrinsically zero mean QDF.
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Main Results

Let 23 be an oscillatory system, dim(3) = 2n.

Recall that the QDF’s modulo *5
= the real symmetric matrices of dimension 2n X 2n.

Moreover,
dim(conserved) = n
dim(zero-mean) = 2n°
dim (trivially zero-mean) = n(2n — 1)
dim (intrinsically zero mean) = n

dim(QDF’s modulo °8) = n(2n + 1)
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Main Results

Let 23 be an oscillatory system, dim(3) = 2n.

Recall that the QDF’s modulo *5
= the real symmetric matrices of dimension 2n X 2n.

34 an n-dimensional subspace of conserved QDF’s !!?

4 an n-dimensional subspace of intrinsically zero-mean QDF’s !!?
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Main Results

We have explicit rules for verifying whether a QDF is conserved,
zero-mean, trivially zero mean, or intrinsically zero-mean, and
explicit parametrizations
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Main Results

Qs is conserved < 3 X € R[(, n] such that

€ +m)@2(¢n) = X n)RM) + R(¢EP)X (1, ¢)
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Main Results

Qs is zero-mean < ®(—&,£) has R(£?) as a factor,

Qg is trivially zero-mean < ®(—&,£) = 0.
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Main Results

R(¢*)nF(n?) + ¢F(¢*)R(n?)
¢+

with F' € R[] generates exactly all the conserved QDF’s.

=: C(¢, M)

C >a 0 iff theroots of I interlace those of R: non-empty interior.

Each such C is of the form

C(¢,m) = Co(¢3,m?) + ¢n C1(¢%,n?)

‘Potential’ + ‘Kinetic’.
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Main Results

(¢ +n)R[E, n]

equals exactly the trivially zero-mean QDF’s.
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Main Results

R(¢?)nF (n?) — CF(¢?)R(n?)
¢C—m

with F' € R[£] generates a choice for the
intrinsically zero-mean QDF’s.

— N(Ca n)

Each such N is of the form

N(¢,m) = Co(¢%,m?) — ¢(nCi(¢Pn?)

‘Potential’ - ‘Kinetic’.
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Main Results

R(—¢n)F(—¢n) =: N(¢,n)

with F' € R[£] generates yet another choice for the
intrinsically zero-mean QDF’s.

Polynomials in ¢7;.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’ i.e., all trajectories are bounded on R

CONSERVED and ZERO-MEAN QUANTITIES in OSCILLATORY SYSTEMS - p.20/25



A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’

2. '8 is ‘permutation symmetric’ i.e.,

(w1, ws) € B & (w2, wy) € B
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’
2. '8 is ‘permutation symmetric

3. w2 is ‘observable’ from wy i.e.,
/ 144 / /!
(w1, wy), (w1, wy) € B & wy = wy.

No ‘decoupling’.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’
2. '8 is ‘permutation symmetric

3. w9 is ‘observable’ from wq

Let Q4 be any QDF. Then | Qs (w1) — Q& (w2) || is zero-mean.
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’
2. '8 is ‘permutation symmetric

3. w9 is ‘observable’ from wq

Let Q4 be any QDF. Then | Qs (w1) — Q& (w2) || is zero-mean.

Any ‘sign-symmetric’ QDF has zero mean!
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A General Equipartition Principle

We end with the a general THEOREM (stated for 2 variables only):

Consider a system in £2: 2 real variables w1, W2. Assume

1. B is ‘oscillatory’
2. '8 is ‘permutation symmetric

3. w9 is ‘observable’ from wq

Let Q4 be any QDF. Then | Qs (w1) — Q& (w2) || is zero-mean.

Extends to systems with w > 2 variables.
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Equipartition of Energy

Immediate corollary:

ANY

i . T
(A Symmetric (Chn

Linear
Coupling
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Equipartition of Energy

Immediate corollary:

ANY

Symmetric
Linear
Coupling

''''''''''''

00000000000

L

The average energy in
symmetrically coupled identical oscillators
Is the same for each oscillator.

~» avery general
deterministic 'Equipartition of Energy’ principle.
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Simulations
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)
Take m =13, m' =10, k=7, k' =2, k” = 1.
at ¢ = 0: displacement left mass =1,
velocities, displacements of other masses = 0.

&

XXXX

Note that the symmetry is ‘broken’.
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Simulations

Compute actual energy, and average energy in the two oscillators!
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Simulations

Compute actual energy, and average energy in the two oscillators!

Actual and average energy in oscillator 1 Actual and average energy in oscillator 2
4 T T T T T T T

1.4 T

] 1.2
3
H H 1H

25
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O0 2 4 6 8 10 O0 2 4 6 8 10

Time x10' Time x 10’

No equipartition!

CONSERVED and ZERO-MEAN QUANTITIES in OSCILLATORY SYSTEMS - p.23/25



Concluding Remarks

® ‘Equipartition of energy’ in terms of time-averages is at least
as realistic as the traditional statistical mechanics setting.
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Concluding Remarks

® ‘Equipartition of energy’ in terms of time-averages is at least
as realistic as the traditional statistical mechanics setting.

® Behavioral thinking, combined with the Smith form, allows us
to concentrate on scalar systems. This greatly simplifies the
development.
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Concluding Remarks

® ‘Equipartition of energy’ in terms of time-averages is at least
as realistic as the traditional statistical mechanics setting.

® Behavioral thinking, combined with the Smith form, allows us
to concentrate on scalar systems. This greatly simplifies the
development.

® Note the very effective and transparent use of QDF’s.
It is the proper mathematical tool for this class of problems.
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Reference: An article is in the process of being manufactured.

Copies of the lecture frames will soon be available from/at

Jan.Willems@desat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~jwillems

Thank you for your attention !
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