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General Introduction
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System identification

Observed data � System model
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System identification

Observed data � System model

Case on interest:

Data = a finite vector time-series record

��� �� ��� � � �	 � �
 
 
 � � � �� � � �� �  � �

Model:
a dynamical system that ‘explains’ this time-series
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System identification

Difficulties:

‘blackbox’ data

unmeasured inputs ‘latency’

any element of the model class will fit the data
only approximately ‘misfit’

measurement ‘errors’

danger of ‘overfitting’
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System identification

Usual approach: Data = input/output record
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� �
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�
� �� � � �
�� � � �

�
�

System model = an ARMAX model

� ��� � � � � � � � � � � � � ��� � � ‘noise’

Quality of algorithm
= asymptotic convergence

�  

(consistency, efficiency, etc.)

In a sense this copes with these difficulties,
but puts stochasticity very central
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Central paradigm

Algorithms should perform well with simulated data

Methodology:
Exact ID

Approximate ID (balancing, etc.)
Stochastic ID

Approximate stochastic ID

Approximation (data produced by high order, nonlinear,
time-varying system) seems much more the
core problem than protection against unmeasured
stochastic inputs or measurement ‘errors’.
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Central paradigm

Algorithms should perform well with simulated data

What does ‘perform well’ mean?

What ‘simulated data’ should one test
the algorithm for?

Methodology:
Exact ID

Approximate ID (balancing, etc.)
Stochastic ID

Approximate stochastic ID

Approximation (data produced by high order, nonlinear,
time-varying system) seems much more the
core problem than protection against unmeasured
stochastic inputs or measurement ‘errors’.
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Deterministic system identification

Data = a vector time series

��� �� ��� � � �	 � �
 
 
 � � � �� � � �� �  � �

System model = a linear time-invariant system

! � � � � � "

Quality of algorithm
= how does the algorithm behave with exact data?
= does it extract a good (optimal) approximation?
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The MPUM
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The MPUM

Ideas for exact modeling:

Assume

#

a phenomenon that we wish to model,
produces outcomes, in the universum

A model for the phenomenon = a subset

is the Most Powerful Unfalsified Model MPUM
in for

1.

2.
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The MPUM

A model for the phenomenon = a subset

$ is more powerful than % & $ %

‘the more a model forbids,
the better it is’

is the Most Powerful Unfalsified Model MPUM
in for

1.

2.
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The MPUM

A model for the phenomenon = a subset

A model class := a family of subsets of

is the Most Powerful Unfalsified Model MPUM
in for

1.

2.
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The MPUM

A model for the phenomenon = a subset

Data = a subset , ‘measured outcomes’.

is unfalsified by & .

is the Most Powerful Unfalsified Model MPUM
in for

1.

2.
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The MPUM

A model for the phenomenon = a subset

'

is the Most Powerful Unfalsified Model MPUM
in for &

1.

' (
2.

( ) '
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Does

*

exist?

'

exists if

(i)

(

(ii) is closed under intersection

In this case,

' ) +
of the unfalsified models

Examples:
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Does

*

exist?

'

exists if

(i)

(

(ii) is closed under intersection

In this case,

' ) +
of the unfalsified models

Examples:

) 01 ) all linear subspaces 1' ) 23 45 6 ( 0 7 6 (
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Does

*

exist?

'

exists if

(i)

(

(ii) is closed under intersection

In this case,

' ) +
of the unfalsified models

Examples:

= a time-series
= the linear time-invariant systems
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The model class
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The model class

Time axis = (discrete-time systems)8 ) ‘backward shift’

� 8  �:9  & ) �9 ;  

< = > ? = @ AB

C > D = @ EB

F > G
HB C

I
J

But, for good reasons, the (equivalent) representation
as a system of linear difference equations

is often to be preferred. With the polynomial matrix

these equations can be written as
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The model class

< = > ? = @ AB

C > D = @ EB

F > G
HB C

I
J

Notation:

K ? A
D E

L

; impulse response matrix

M�N O @ P � Q RS�T M � " � � U� M �� � � V W XZY []\ 


But, for good reasons, the (equivalent) representation
as a system of linear difference equations

is often to be preferred. With the polynomial matrix

these equations can be written as

Exact and Approximate System Identification – p.12/52



The model class

But, for good reasons, the (equivalent) representation
as a system of linear difference equations

!_^ � �� � � ! [ � �� � � � �a` ` ` � !cb � �� � d � � " � �
�

� �
�

�
�

is often to be preferred.

With the polynomial matrix

these equations can be written as
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The model class

But, for good reasons, the (equivalent) representation
as a system of linear difference equations

!_^ � �� � � ! [ � �� � � � �a` ` ` � !cb � �� � d � � " � �
�

� �
�

�
�

is often to be preferred. With the polynomial matrix

! �e � � !f^ � ! [ e � ` ` ` � !hg e g

these equations can be written as

� 8  i ) j
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’.

Notation: , .

Consequence: has intersection property,
MPUM exists!
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’.

Any subset of

� r  s
which is

linear, shift-invariant, and closed
allows such a representation.

Notation: , .

Consequence: has intersection property,
MPUM exists!
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’.

Notation:

r

,
t
.

t

has very nice properties w.r.t. +,

+

, projection,
action of linear difference operators, ...

Consequence: has intersection property,
MPUM exists!
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’.

Notation:

r

,
t
.

Consequence:
r

has intersection property,) MPUM exists!
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The behavior generated by

G
H ? A
D E

I
J

Given

u ? A
D E

v

, define its behavior as

w � x � �
�

� �
�

�
� yz { such that � { � W { �\ � � � � V { � U �
 |

Any ker allows an observable repr.

. Assumed henceforth.

In behavioral theory
observability minimality of the state repr.

Exact and Approximate System Identification – p.14/52



The behavior generated by

G
H ? A
D E

I
J

Given

u ? A
D E

v

, define its behavior as

w � x � �
�

� �
�

�
� yz { such that � { � W { �\ � � � � V { � U �
 |

Any ) ker

� � 8   
allows an observable repr.K ? A

D E
L

. Assumed henceforth.

In behavioral theory
observability minimality of the state repr.

Exact and Approximate System Identification – p.14/52



Computation of the MPUM
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Computation of the MPUM

Given an observed vector time-series

��� �~} � � �
 
 
 � ��� � " � � � � �� � �
 
 
 � ��� �� � � 
 
 
 � �� �  � �

find a representation of the MPUM in

r

.

‘Exact, deterministic’ system identification.
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#

algorithms (intersection of ‘past’ and ‘future’) that
pass directly from

� F � Y X ���� � � � � F � ^ ��� � F � [ � � � � � � � F � X � �� � �

to

� = � Y X ���� � � � � = � ^ ��� � = � [ � � � � � � � = � X � �� � �

Solve (LS)

This yields a state representation of the MPUM.
Reduce the state dimension, and solve by LS using
reduced

This leads to the problem:

Construct in a balanced basis.

‘Subspace methods’ do this.
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Solve (LS)G
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� C � X� � � � � � C � X� Y [ �
I

J > G
H ? AD E

I
J

G
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J
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Solve (LS)G
H � = � X�� @ [ ��� � � � = � X�� �

� C � X� � � � � � C � X� Y [ �
I

J > G
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Solve (LS)G
H � = � X�� @ [ ��� � � � = � X�� �

� C � X� � � � � � C � X� Y [ �
I

J > G
H ? AD E

I
J

G
H � = � X� � � � � � = � X�� Y [ ��B � X� ��� � � �B � X� Y [ �

I
J

This yields a state representation of the MPUM.
Reduce the state dimension, and solve by LS using
reduced � � { �� [ � 
 
 
 � { ���� � �


This leads to the problem:

Construct
��� �:9 $  1� � � 1 ��� �:9 %  in a balanced basis.

‘Subspace methods’ do this.
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A ‘sequential’ zero input response series

Exact and Approximate System Identification – p.18/52



A ‘sequential’ zero input response series

= � [ � � � � �Y � = �� � � � � �Y � � � � � ���� � �Y � = � X � � �� �Y � = � X @ [ � � � � � � �Y � � � �
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A ‘sequential’ zero input response series

= � [ � � � � �Y � = �� � � � � �Y � � � � � ���� � �Y � = � X � � �� �Y � = � X @ [ � � � � � � �Y � � � �� ^ � ^ � � � � ^ � ^ � � �

C� � [ � C� � [ � � � � C� � [ � C� � � � [ � � � �

...
...

...
...

...
...

...
...

...
...

...
...
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A ‘sequential’ zero input response series

= � [ � � � � �Y � = �� � � � � �Y � � � � � ���� � �Y � = � X � � �� �Y � = � X @ [ � � � � � � �Y � � � �� ^ � ^ � � � � ^ � ^ � � �

C� � [ � C� � [ � � � � C� � [ � C� � � � [ � � � �� ^ � ^ � � � � ^ � ^ � � �

C� �� � C� �� � � � � C� �� � C� � � �� � � � �

...
...

...
...

...
...

...
...
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...
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A ‘sequential’ zero input response series
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C� � [ � C� � [ � � � � C� � [ � C� � � � [ � � � �� ^ � ^ � � � � ^ � ^ � � �

C� �� � C� �� � � � � C� �� � C� � � �� � � � �� ^ � ^ � � � � ^ � ^ � � �

...
...

...
...

...
...� ^ � ^ � � � � ^ � ^ � � �

C� � X � � C� � X � � � � � C� � X � � C� � � � X � � � � �� ^ � ^ � � � � ^ � ^ � � �

C� � X � @ [ � C� � X � @ [ � � � � C� � X � @ [ � C� � � � X � @ [ � � � �� ^ � ^ � � � � ^ � ^ � � �

...
...

...
...

...
...
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A ’sequential’ zero input response series

Organized into the matrix

��� � >
G

� � �¡�¢�¡�¡�¡H
C � � [ � C� � [ � � � � C� � [ � C� � � � [ � � � �C � �� � C� �� � � � � C� �� � C� � � �� � � � �� � � � � � � � � �C � � X � � C� � X � � � � � C� � X � � C� � � � X � � � � �� � � � � � � � � �
I

£ £ £¡£¢£¡£¡£¡J

Note
for some

...

...
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A ’sequential’ zero input response series

Organized into the matrix

��� � >
G

� � �¡�¢�¡�¡�¡H
C � � [ � C� � [ � � � � C� � [ � C� � � � [ � � � �C � �� � C� �� � � � � C� �� � C� � � �� � � � �� � � � � � � � � �C � � X � � C� � X � � � � � C� � X � � C� � � � X � � � � �� � � � � � � � � �
I

£ £ £¡£¢£¡£¡£¡J

Note = � X @ [ � > ? = � X � @ AB � X �¤ for some B �� �

�� >
G

� �¡�¢�¡� � �¥H
DD ?

...D ?� ¦� �

...

I
£ £¡£¢£¡£ £ £¥J

§ = � [ � = �� � � � � = � X � � � � ¨
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How does deterministic subspace identification work ?
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Deterministic subspace identification

There are basically five steps. Use the data�
� ��� �� �
��� �� �

�
� �

�
� �� �	 �
�� �	 �

�
� �
 
 
 �

�
� �� � � �
�� � � �

�
�

to compute (an estimate of)

1. a sequential zero input response series

2. the impulse response matrix

3. an SVD of this Hankel matrix

4. the balanced state trajectory

5. (LS) solve, with a (data ind.) system traj.

This yields a desired balanced state representation.

Exact and Approximate System Identification – p.23/52



Deterministic subspace identification

1. a sequential zero input response series matrix of
the system that produced the data ©

2. the impulse response matrix

3. an SVD of this Hankel matrix

4. the balanced state trajectory

5. (LS) solve, with a (data ind.) system traj.

This yields a desired balanced state representation.
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Deterministic subspace identification

1. a sequential zero input response series ©

2. the impulse response matrix

3. an SVD of this Hankel matrix ) ®

4. the balanced state trajectory� { �� � { �	 � ` ` ` { �� � ` ` ` � � ¯ Y [° ±³² ^

5. (LS) solve, with ´1 µ1 � a (data ind.) system traj.G
H = �� � = �¶ ��� � � = � X @ [ � � � �C � [ � C �� � � � � C � X � � � �

I
J > G
H ? AD E

I
J

G
H = � [ � = �� � � � � = � X � � � �B � [ � B �� ��� � � B � X �� � �

I
J

This yields a desired balanced state representation.
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The question is

How do we compute all these responses,
starting from the data ?
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’.

Consider also its ‘annihilators’

Note: (the transpose of) each row of belongs to .

the module generated by the transposes of the rows of .
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’. Consider also its ‘annihilators’

· ) ¸ ( r �  7 ¸ ® � 8  ) j

¹ ^ � ¹ [ e � ` ` ` � ¹ g e g  º N »

¹ ±^ � �� � � ¹ ±[ � �� � � � � ` ` ` � ¹ ±g � �� � d � � "

for all �  w

and

�  ¼

Note: (the transpose of) each row of belongs to .

the module generated by the transposes of the rows of .
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The behavior of

k lcm no p q
Call

) i & r 7 � 8  i ) j

) ker

� � 8   
the ‘behavior’. Consider also its ‘annihilators’

· ) ¸ ( r �  7 ¸ ® � 8  ) j

Note: (the transpose of) each row of

!

belongs to º .º � the module generated by the transposes of the rows of

!

.
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Properties and invariants of

½
Each notion has a version for each representation,K ? A

D E
L

1 , and · .
We give the most convenient one.

:= the lag in

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

½
Controllability

¾ �  1 ¿ �  1 À �  

:= input, output, state dimension

:= the lag in

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

½

Á �  

:= the lag in

= the degree of in a ‘shortest lag’ repr.� 8  i ) j
= the observability index
= the narrowest window through which ‘legality’

of i (
can be determined.

There holds: Á �  À �  

with = in the single output case.

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

½

Á �  

:= the lag in

7ÃÂ $ÅÄ Æ Ç := the behavior restr. to the interval

È ; 1 É

= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

½

Á �  

:= the lag in

7ÃÂ $ÅÄ Æ Ç := the behavior restr. to the interval

È ; 1 É

= the ‘legal’ prefixes of length

Ê · := the annihilators of degree

Ë�

¹ ±^ � �� � � ¹ ±[ � �� � � � � ` ` ` � ¹ ±Ì � �� �Í � � "

for all �  w

and

�  ¼
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Properties and invariants of

½
It follows that

�  w » � ¹ ±^ ` ` ` ¹ ±g � º � �
�

ÎÏÎÐÎÏ�
� �� �

...

� �� � d � w � �
�

ÑÏÑÐÑÏ� � "

for all ¹  g � º �º � �  ¼

»
�

ÎÏÎÐÎÒ�
� �� �

...

� �� � d � w � �
�

ÑÏÑÐÑÒ�  w yÔÓ [� g � º � @ [ Õ for all

�  ¼

.

Hence, if is uniquely determined by
its ‘short’ sequences and ‘short’ annihilators

and
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Properties and invariants of

½
Hence, if

Á �  1

�  w » � ¹ ±^ ` ` ` ¹ ±Ö Y [ �
�

ÎÏÎÏÎÒ�
� �� �

...

� �� � × } � �
�

ÑÏÑÏÑÒ� � "

for all ¹  Ö Y [º � �  ¼

»
�

ÎÏÎÐÎØ�
� �� �

...

� �� � × } � �
�

ÑÏÑÐÑØ�  w yÙÓ [� Ö Õ for all

�  ¼

.

is

uniquely determined by its ‘short’ sequences and
‘short’ annihilators

and
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Properties and invariants of

½
Hence, if

Á �  1 is uniquely determined by
its ‘short’ sequences and ‘short’ annihilators

7 Â $ÅÄ Æ Ç and
ÆÛÚ $· �
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Properties and invariants of

½
Another consequence. Consider

� G
H�B � � [ �� C � � [ �

I
J � � � � �

G
H�B � � X Y Ö �� C � � X Y Ö �

I
J �

G
H�B � � X Y Ö @ [ �� C � � X Y Ö @ [ �

I
J � � � � �

G
H�B � � X �� C � � X �

I
J �Ü º Ý�Þ �àß � á

� G
H�B � � � [ �� C � � � [ �

I
J � � � � �

G
H�B � � � Ö �� C � � � Ö �

I
J �

G
H�B � � � Ö @ [ �� C � � � Ö @ [ �

I
J � � � � �

G
H�B � � � X �� C � � � X �

I
J �Ü º Ý�Þ �àß � á

Assume suffix’ = prefix”.

Then their linking

belongs to ,

if , hence if .
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Properties and invariants of

½
Another consequence. Assume suffix’ = prefix”.

� G
H�B � � [ �� C � � [ �

I
J � � � � �

G
H�B � � X Y Ö �� C � � X Y Ö �

I
J �

G
H�B � � X Y Ö @ [ �� C � � X Y Ö @ [ �

I
J � � � � �

G
H�B � � X �� C � � X �

I
J �

� G
H�B � � � [ �� C � � � [ �

I
J � � � � �

G
H�B � � � Ö �� C � � � Ö �

I
J �

G
H�B � � � Ö @ [ �� C � � � Ö @ [ �

I
J � � � � �

G
H�B � � � X �� C � � � X �

I
J �

Then their linking

belongs to ,

if , hence if .
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Properties and invariants of

½
Another consequence. Assume suffix’ = prefix”.

Then their linking

� G
H�B � � [ �� C � � [ �

I
J �� � � �

G
H�B � � XY Ö �� C � � XY Ö �

I
J �

G
H�B � � X Y Ö @ [ �� C � � XY Ö @ [ �

I
J �� � � �

G
H�B � � X �� C � � X �

I
J �

G
H�B � � � Ö @ [ �� C � � � Ö @ [ �

I
J �� � � �

G
H�B � � � X �� C � � � X �

I
J �

belongs to

7 Â $ÅÄ %â Ú Æ Ç ,
if

Á �  

, hence if À �  

.
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Fundamental lemma
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Key question

Assume that the vector time-seriesK�ãåä æ $ çãåè æ $ ç
L

1
K ãåä æ % çãåè æ % ç
L

1� � � 1
K ã ä æé çãè æé ç
L

has been produced by .

... ...
...

Under what conditions on

and

do they span and hence, if ,
determine the generating behavior ?
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Key question

Assume that the vector time-seriesK�ãåä æ $ çãåè æ $ ç
L

1
K ãåä æ % çãåè æ % ç
L

1� � � 1
K ã ä æé çãè æé ç
L

has been produced by .

Then, of course, the vectors

ê
ãåä æ $ çãåè æ $ ç

...ãåä æ Æ çãåè æ Æ ç
ë 1 ê

ãåä æ % çãåè æ % ç
...ãåä æ Æ ª $ çãè æ Æ ª $ ç

ë 1� � � 1 ê
ã ä æ é Ú Æ ª $ çãè æ é Ú Æ ª $ ç

...ã ä æé çãè æé ç
ë

belong to
7 Â $Ä Æ Ç�

... ...
...

Under what conditions on

and

do they span and hence, if ,
determine the generating behavior ?
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Key question

ê
ãåä æ $ çãåè æ $ ç

...ãåä æ Æ çãåè æ Æ ç
ë 1 êê

ãåä æ % çãåè æ % ç

...ãåä æ Æ ª $ çãè æ Æ ª $ ç
ëë 1� � � 1 ê

ã ä æ é Ú Æ ª $ çãè æ é Ú Æ ª $ ç

...ã ä æé çãè æé ç
ë

Under what conditions onK ãåä æ $ çãåè æ $ ç
L

1
K ãåä æ % çãåè æ % ç
L

1� � � 1
K ã ä æ é çãè æ é ç
L

and

do they span

7 Â $ÅÄ Æ Ç and hence, if

Á �  

,
determine the generating behavior ?

Exact and Approximate System Identification – p.30/52



Persistency of excitation

The vector time-series

��� �� � � ��� �	 � �
 
 
 ��� � � �
is said to be persistently exciting of order if the

Hankel matrixG
�¢�¡� � � �¡�¢�¡�¥H

�B � [ � �B �� � �B �¶ � � � � �B �ì Y b @ [ ��B �� � �B �¶ � �B �í � � � � �B �ì Y b @� �

�B �¶ � �B �í � �B �î � � � � �B �ì Y b @ ¶ �

...
...

...
. . .

...�B � b � �B � b @ [ � �B � b @� � � � � �B � ì �
I

£¢£¡£ £ £ £¡£¢£¡£¥J

is of full row rank. Pers. of exc. no linear relations.
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Fundamental lemma

Assume that the observed vector time-seriesG
H�B � [ �� C � [ �

I
J �

G
H�B �� �
� C �� �

I
J � � � � �

G
H�B �ì �
� C �ì �

I
J

has been generated by a controllable finite dimensional linear

time-invariant system ï behavior .

Then the vectors

...
...

...

span if is persistently exc. of order
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Fundamental lemma

Assume that the observed vector time-seriesG
H�B � [ �� C � [ �

I
J �

G
H�B �� �
� C �� �

I
J � � � � �

G
H�B �ì �
� C �ì �

I
J

has been generated by a controllable finite dimensional linear

time-invariant system ï behavior . Then the vectorsð
ñò

�B � [ �� C � [ �

...�B � Ö �� C � Ö �
ó

ôõ ö
ð

ñò
�B �� �� C �� �

...�B � Ö @ [ �� C � Ö @ [ �
ó

ôõ ö÷ ÷ ÷ ö
ð

ñò
�B �ì Y Ö @ [ �� C �ì Y Ö @ [ �

...�B � ì �� C �ì �
ó

ôõ

span

ø Ó [� Ö Õ if
ùZú lüû n ö÷ ÷ ÷ ö ùZú lý n

is persistently exc. of order

???
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Fundamental lemma

Assume that the observed vector time-seriesG
H�B � [ �� C � [ �

I
J �

G
H�B �� �
� C �� �

I
J � � � � �

G
H�B �ì �
� C �ì �

I
J

has been generated by a controllable finite dimensional linear

time-invariant system ï behavior . Then the vectorsð
ñò

�B � [ �� C � [ �

...�B � Ö �� C � Ö �
ó

ôõ ö
ð

ñò
�B �� �� C �� �

...�B � Ö @ [ �� C � Ö @ [ �
ó

ôõ ö÷ ÷ ÷ ö
ð

ñò
�B �ì Y Ö @ [ �� C �ì Y Ö @ [ �

...�B � ì �� C �ì �
ó

ôõ

span

ø Ó [� Ö Õ if
ùZú lüû n ö÷ ÷ ÷ ö ùZú lý n

is persistently exc. of orderþÿ � l n
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Fundamental lemma

Hence, under the assumptions of
1. controllability and 2. persistency of excitation,

the span (& hence left annihilators) of the data vectors

êêêê
ãåä æ $ çãåè æ $ çãåä æ % çãåè æ % ç

...ãåä æ Æ çãåè æ Æ ç
ëëëë 1
êêêê

ãåä æ % çãåè æ % çãåä æ� çãåè æ � ç
...ãåä æ Æ ª $ çãè æ Æ ª $ ç

ëëëë 1� � � 1
êêêê

ã ä æ é Ú Æ ª $ çãè æ é Ú Æ ª $ çã ä æ é Ú Æ ª % çãè æ é Ú Æ ª % ç

...ã ä æé çãè æé ç
ëëëë

determines , provided 3.

Á �  
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Conclusion

Under reasonable conditions
(contr., suff. large, persistency of excitation),

the data matrix

�
� )

êêêêê
�B � [ � �B �� � � � � �B �ì Y Ö @ [ �

...
...

...
...�B � Ö � �B � Ö @ [ � � � � �B � ì �

� C � [ � � C �� � � � � � C �ì Y Ö @ [ �

...
...

...
...� C � Ö � � C � Ö @ [ � � � � � C � ì �

ëëëëë

has the ‘correct’ span and the ‘correct’ left kernel.

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

Under reasonable conditions the data matrix has the
‘correct’ span and the ‘correct’ left kernel.

any response, in particular, seq. zero input resp.,
impulse resp., etc., can be obtained by solving

G
�¡�¡�¢�¡� � � �¡�¢�¡� � �¥H

B � [ �
...B � Ö �

C � [ �

...C � Ö �
I

£¡£¡£¢£¡£ £ £ £¡£¢£¡£ £ £¥J
> G
H ���� �

I
J �

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

and linking and solving, with À � �� Á � 	
or À � 	

,

êêêêêêêêêêêêê
B � [ �

...B � Ö Y 
�� � �

B � Ö Y 
� � @ [ �

...B � Ö �
C � [ �

...C � Ö Y 
�� � �

C � Ö Y 
�� � @ [ �
...C � Ö �

ëëëëëëëëëëëëë

êêêêêêêêêêêêê
B � Ö Y 
�� � @ [ �

...B � Ö �
B � Ö @ [ �

...B �� Ö Y 
�� � �

C � Ö Y 
� � @ [ �

...C � Ö �
C � Ö @ [ �

...C �� Ö Y 
�� � �
ëëëëëëëëëëëëë

�
�

� �

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

and proceeding recursively

êêêêêêêêêêêêê
� � Ö �� � �

...� � Ö �� 
�� � �

� � Ö �� 
�� � � � �

...� � Ö �� Ö �

� � Ö �� 
� � �

...� � Ö �

� � Ö �� 
� � � � �
...� � Ö �� Ö �

ëëëëëëëëëëëëë

êêêêêêêêêêêêê
� � Ö �� 
� � � � �

...� � Ö � Ö � �

� � Ö �� Ö � � �

...� � Ö � Ö �� 
�� � �

� � Ö �� 
� � � � �

...� � Ö � Ö � �

� � Ö �� Ö � � �

...� � Ö � Ö �� 
�� � �
ëëëëëëëëëëëëë

�
�

� �

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

This way, an arbitrary long sequence

�
�

� � �� �
� �� �

�
� 

�
� � �! �

� �! �
�

�  " " " 
�

� � �# �
� �# �

�
� ��$ w yÔÓ �� X Õ

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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An idea of the proof
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An idea of the proof

Assume �
� % � � � �
% � � � �

�
�  

�
� % � � ! �
% � � ! �

�
�  " " " 

�
� % � �& �
% � �& �

�
� $ wÓ �� ì Õ "

with
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An idea of the proof

Assume �
� % � � � �
% � � � �

�
�  

�
� % � � ! �
% � � ! �

�
�  " " " 

�
� % � �& �
% � �& �

�
� $ ')( �+* , - "

SISO case . '

determined by

/ 
 � �# 0�1 � 0 / 
32 � � �# 0�1 4 � � 065 5 5 0 /87 � 9# �

: ; 
 � 9# 0�1 � 0 ; 
 2 � � 9# 0�1 4 � � 05 5 5 0 ;7 � 9# �

/ 9=< � � : ; 9 < � �

/ 9> � : /7 0 / � > 05 5 5 0 / 
> 
 with / 
 ? : @ 

; 9> � : ;7 0 ; � > 05 5 5 0 ; 
> 
 "

Exact and Approximate System Identification – p.36/52



An idea of the proof

Assume �
� % � 9A �
% � 9A �

�
�  

�
� % � 9 ! �
% � 9 ! �

�
�  " " " 

�
� % � 9& �
% � 9& �

�
� $ ')( �+* , - "

/ 9=< � � : ; 9 < � �

/ 9> � : /7 0 / � > 05 5 5 0 / 
> 
 with / 
 ? : @ 

; 9> � : ;7 0 ; � > 05 5 5 0 ; 
> 
 "

BDC E FG HI J K
L 2 M NO P
Q NO P

R
S *

K
L 2 O M NO P
O Q NO P

R
S *T T T *

K
L 2 O U M NO P
O U Q NO P

R
S *T T T V
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An idea of the proof

Data matrix:

WWWWWWWW
X � N � P X � NY P Z Z Z X � N , 2 [� � PX � NY P X � N\ P Z Z Z X � N , 2 [� Y P

...
...

...
...X � N [ P X � N [� � P Z Z Z X � N , P

X � N � P X � N Y P Z Z Z X � N , 2 [� � PX � NY P X � N \ P Z Z Z X � N , 2 [� Y P

...
...

...
...X � N [ P X � N [� � P Z Z Z X � N , P

]]]]]]]]

For , the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For � ^ _

, the left kernel contains

` 2 Ma 2 Mb Z Z Z 2 Mdc Q a Q b Z Z Z Q c eT

For , the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For ^ _

, the left kernel contains the rows of

K
fgfhfhfgfhfhL

2 Ma Z Z Z 2 Mc 7 Z Z Z 77 2 Ma Z Z Z 2 Mc Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 2 Ma Z Z Z 2 Mic

Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjhjgjhjhS

k

row

�
k

row

Y
k

row

[2 


Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For ^ _

, the left kernel contains the rows of

K
fgfhfhfgfhfhL

2 Ma Z Z Z 2 Mc 7 Z Z Z 77 2 Ma Z Z Z 2 Mc Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 2 Ma Z Z Z 2 Mic

Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjhjgjhjhS

k

row

�
k

row

Y
k

row

[2 


Assume that the kernel contains another vector, not in
their span

`ml a Z Z Z Z Z Z Z Z ln o b p a Z Z Z Z Z Z Z Z pn o b e
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An idea of the proof

Extend the data matrix to a larger window:

WWWWWWWW
X � N � P X � NY P Z Z Z X � N , 2 [ q� � PX � NY P X � N\ P Z Z Z X � N , 2 [ q� Y P

...
...

...
...X � N [ q P X � N [ q� � P Z Z Z X � N , P

X � N � P X � N Y P Z Z Z X � N , 2 [ q� � PX � NY P X � N \ P Z Z Z X � N , 2 [ q� Y P

...
...

...
...X � N [ q P X � N [ q� � P Z Z Z X � N , P

]]]]]]]]

Then the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

...
...

. . .
...

...
...

...
...

. . .
...

...
...

row

row

row
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An idea of the proof

Then the left kernel contains the rows ofK
fgfhfrfrfrfsL

2 Ma Z Z Z 2 Mic 7 Z Z Z 77 2 Ma Z Z Z 2 Mdc Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 2 Ma Z Z Z 2 Mc

Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjrjrjrjsS

k

row

�
k

row

Y
k

row

[ q 2 


...
...

. . .
...

...
...

...
...

. . .
...

...
...

row

row

row
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An idea of the proof

Then the left kernel contains the rows ofK
fgfhfrfrfrfsL

2 Ma Z Z Z 2 Mic 7 Z Z Z 77 2 Ma Z Z Z 2 Mdc Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 2 Ma Z Z Z 2 Mc

Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjrjrjrjsS

k

row

�
k

row

Y
k

row

[ q 2 


K
frfrfrfhfgfsL

l a Z ln o b 7 Z 77 l a Z ln o b Z 7
...

...
. . .

...
...

...7 Z 7 l a Z ln o b
p a Z pn o b 7 Z 77 p a Z pn o b Z 7

...
...

. . .
...

...
...7 Z 7 p a Z pn o b

R
jrjrjrjhjgjsS

k

row

�
k

row

Y
k

row

[ qt2 [� �
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An idea of the proof

Then the left kernel contains the rows ofK
fgfhfrfrfrfsL

2 Ma Z Z Z 2 Mic 7 Z Z Z 77 2 Ma Z Z Z 2 Mdc Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 2 Ma Z Z Z 2 Mc

Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjrjrjrjsS

k

row

�
k

row

Y
k

row

[ q 2 


K
frfrfrfhfgfsL

l a Z ln o b 7 Z 77 l a Z ln o b Z 7
...

...
. . .

...
...

...7 Z 7 l a Z ln o b
p a Z pn o b 7 Z 77 p a Z pn o b Z 7

...
...

. . .
...

...
...7 Z 7 p a Z pn o b

R
jrjrjrjhjgjsS

k

row

�
k

row

Y
k

row

[ qt2 [� �

If all rows were linearly independent, then at each extension step, the

rank of the data matrix remains constant. But, persistency of excitationu

the rank increases by 1. . conflict, when

v w : v 0�1 .
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. . .
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...7 Z Z Z 7 Q a Z Z Z Q c
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jgjhjrjrjrjsS

k
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�
k

row
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k
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[ q 2 


K
frfrfrfhfgfsL

l a Z ln o b 7 Z 77 l a Z ln o b Z 7
...

...
. . .

...
...

...7 Z 7 l a Z ln o b
p a Z pn o b 7 Z 77 p a Z pn o b Z 7

...
...

. . .
...

...
...7 Z 7 p a Z pn o b

R
jrjrjrjhjgjsS

k

row

�
k

row

Y
k

row

[ qt2 [� �

Therefore one of the rows of the second matrix must be linearly

dependent on the rows preceding it and the rows of the first matrix.

Written in polynomial notation, this yields
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An idea of the proof

� 	 xy � 	z { � 	 | � } � 	 x~ � � 	 z � 	 |

with, without loss of generality, and

}

co-prime.

This means that must be a factor of both and .

If degree

this contradicts the fact that is controllable.
Whence, , but then
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An idea of the proof

� 	 xy � 	z { � 	 | � } � 	 x~ � � 	 z � 	 |

with, without loss of generality, and

}

co-prime.
This means that must be a factor of both and �.
If degree

� 	 ���
this contradicts the fact that is controllable.

Whence, � _
, but then

xy � 	z { � 	 | � } � 	 x ~ � � 	z � 	 |
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An idea of the proof

and hence`ml a Z Z Z Z Z Z Z Z ln o b p a Z Z Z Z Z Z Z Z pn o b e

is in the span of the rows of

K
fgfhfgfhfrfsL

2 Ma Z Z Z 2 Mc 7 Z Z Z 77 2 Ma Z Z Z 2 Mc Z Z Z 7
...

...
. . .

...
. . .

...7 Z Z Z 7 2 Ma Z Z Z 2 Mic
Q a Z Z Z Q c 7 Z Z Z 77 Q a Z Z Z Q c Z Z Z 7

...
...

. . .
...

. . .
...7 Z Z Z 7 Q a Z Z Z Q c

R
jgjhjgjhjrjsS

k

row

�
k

row

Y
k

row

[2 


Therefore, the data matrix had the ’correct’ kernel to
begin with. QED
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From time-series to balanced reduction
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1. How can we compute a sequential zero input
response series?

1. Solve for (through ) in

p

p

??

p

p

f

f

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!

Exact and Approximate System Identification – p.42/52



Define the ‘past’ and ‘future’ input and output data matrices by

�
�����������m�

%��

p%��

p%��

f% �

f

�
�����������m�

:
�

���m���������������m�����
X � N � P X � NY P Z Z Z X � N , 2 Y [� � PZ Z Z Z Z ZX � N [ P X � N [� � P Z Z Z X � N , 2 [ PX � N � P X � NY P Z Z Z X � N , 2 Y [� � PZ Z Z Z Z ZX � N [ P X � N [� � P Z Z Z X � N , 2 [ P

X � N [� � P X � N [� Y P Z Z Z X � N , 2 [� � PZ Z Z Z Z ZX � NY [ P X � N Y [� � P Z Z Z X � N , PX � N [� � P X � N [� Y P Z Z Z X � N , 2 [� � PZ Z Z Z Z ZX � NY [ P X � NY [� � P Z Z Z X � N , P
�

���m���������������m�����

Assume 1 9 ' � v &

& pers. of excitation, as needed.

1. Solve for (through ) in

p

p

??

p

p

f

f

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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1. Solve for

� �

(through ) in

K
fhfgfhfhfhL

X��

pX��

p�
??

R
jhjgjhjhjhS E

K
fhfgfhfhfhL

X�
pX��
pX�
fX�
f

R
jhjgjhjhjhS

�

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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1. Solve for

� �

(through ) in

K
fhfgfhfhfhL

X��

pX��

p�
??

R
jhjgjhjhjhS E

K
fhfgfhfhfhL

X�
pX��
pX�
fX�
f

R
jhjgjhjhjhS

�

� �

is obviously a seq. zero input resp. � .

� = the oblique projection of the row span of

�

f ,

along the row span of

�

f, onto the row span of

�
�

%��

p%��

p

�
� !
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2. How can we compute (an estimate of) the Hankel
matrix?

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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2. How can we compute (an estimate of) the Hankel
matrix?

By solving for in:

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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WWWWWWWWWWWWWWW
��� �� �� �� Z Z Z �� �� �� ����� �� �� �� Z Z Z �� �� �� ��Z Z � Z Z��� �� �� �� Z Z Z �� �� �� ���� �� �� �� Z Z Z �� �� �� ��� � Z Z Z � �Z Z Z Z Z Z Z� � Z Z Z � ���� �� �� �� Z Z Z �� �� �� ��Z Z Z Z Z Z Z��� �� �� �� Z Z Z �� �� �� �� �¡ N¢ P  �¡ NY P Z Z Z  �¡ N [ 2 ¢ P   ¡ N [ P �¡ N Y P  �¡ N\ P Z Z Z   ¡ N [ P   ¡ N [£ ¢ P

Z Z Z Z Z Z Z �¡ N [ 2 ¢ P   ¡ N [ P Z Z Z  �¡ N Y [ 2 \ P  �¡ NY [ 2 Y P �¡ N [ P   ¡ N [£ ¢ P Z Z Z  �¡ N Y [ 2 Y P  �¡ NY [ 2 ¢ P
]]]]]]]]]]]]]]]

¤
WWWW

�

p�

p�

f�

f

]]]]

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Or, since the columns of

�
���������m���

¥��

p¥ �

p

¦
� 7

�
���������m���

are spanned by the

columns of

�
�������m�����

¥��

p¥ �

p¥��
f¥��
f

�
�������m�����

, by solving for

§

in

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .

Exact and Approximate System Identification – p.43/52



WWWWWWWWWWWWWWW
��� �� �� �� Z Z Z �� �� �� ����� �� �� �� Z Z Z �� �� �� ��Z Z � Z Z��� �� �� �� Z Z Z �� �� �� ���� �� �� �� Z Z Z �� �� �� ��� � Z Z Z � �Z Z Z Z Z Z Z� � Z Z Z � ���� �� �� �� Z Z Z �� �� �� ��Z Z Z Z Z Z Z�¨� �� �� �� Z Z Z �� �� �� �� d¡ N¢ P  d¡ NY P Z Z Z  d¡ N [ 2 ¢ P   ¡ N [ P �¡ N Y P  �¡ N\ P Z Z Z   ¡ N [ P   ¡ N [£ ¢ P

Z Z Z Z Z Z Z d¡ N [ 2 ¢ P   ¡ N [ P Z Z Z  d¡ N Y [ 2 \ P  d¡ NY [ 2 Y P �¡ N [ P   ¡ N [£ ¢ P Z Z Z  �¡ N Y [ 2 Y P  �¡ NY [ 2 ¢ P
]]]]]]]]]]]]]]]

¤ WWW
�

p�

p

�
]]] §

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .

Exact and Approximate System Identification – p.43/52



Solution § ¤ �©

p

ª �

p

�©

p

«�¬ 
where

¤
WWWWW

¦¯® °® ¦¯® °® 5 5 5 ¦ ® °® ±® °®¦²® °® ¦²® °® 5 5 5 ±® °® ¦ ® °®

5 5 5 5

¦¯® °® ±® °® 5 5 5 ¦ ® °® ¦ ® °®

±® °® ¦³® °® 5 5 5 ¦ ® °® ¦ ® °®
]]]]]

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Solution § ¤ �©

p

ª �

p

�©

p

«�¬ 
the following estimate of the Hankel matrix :

´µ ¤ WW
 d¡ N¢ P   ¡ NY P Z Z Z  d¡ N [ 2 ¢ P  d¡ N [ P �¡ NY P   ¡ N\ P Z Z Z  �¡ N [ P   ¡ N [£ ¢ P

Z Z Z Z Z Z Z  ¡ N [ 2 ¢ P  �¡ N [ P Z Z Z   ¡ NY [ 2 \ P   ¡ NY [ 2 Y P  ¡ N [ P  �¡ N [£ ¢ P Z Z Z   ¡ NY [ 2 Y P   ¡ NY [ 2 ¢ P
]]

´ ¤ � �©

p

ª �

p

� ©

p

«�¬ 

Note: no new eq’ns to be solved, once we have .
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Solution § ¤ �©

p

ª �

p

�©

p

«�¬ 
the following estimate of the Hankel matrix :

´ ¤ � �©
p

ª �
p

� ©

p

«�¬ 

Note: no new eq’ns to be solved, once we have � .
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3. SVD this Hankel matrix

´ ¤ ©

4. Obtain the balanced state trajectory
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3. SVD this Hankel matrix

´ ¤ ©

4. Obtain the balanced state trajectory
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3. SVD this Hankel matrix

´ ¤ ©

4. Obtain the balanced state trajectory

¶¸·º¹ 9 v 0 A � ·º¹ 9 v 0 » � 5 5 5 ·º¹ 9¼ 4 v 0 A � ½ ¾ ¿ 2 ¢ � À � 7

·º¹ 9 v 0 A �ÂÁ ·º¹ 9 v 0 » �ÂÁ 5 5 5 Á ·º¹ 9¼ 4 v 0 A �

are estimates of a
balanced state traj. separating the ‘past’ and ‘future’.
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WWWWWWW
�

p�

p´
�

f�

f

]]]]]]]
¤

WWWWWWWWWWWWWWW
XiÃ N¢ P X Ã NY P Z Z Z X Ã N , 2 Y [£ ¢ P

Z Z Z Z Z ZXiÃ N [ P X Ã N [£ ¢ P Z Z Z XiÃ N , 2 [ PXiÄ N¢ P XiÄ NY P Z Z Z X Ä N , 2 Y [£ ¢ P

Z Z Z Z Z ZXiÄ N [ P X Ä N [£ ¢ P Z Z Z XiÄ N , 2 [ P

 iÅ N [£ ¢ P  iÅ N [£ Y P Z Z Z  Å N , 2 [£ ¢ P

XiÃ N [£ ¢ P X Ã N [£ Y P Z Z Z XiÃ N , 2 [£ ¢ P

Z Z Z Z Z ZXiÃ NY [ P XiÃ NY [£ ¢ P Z Z Z XiÃ N , PXiÄ N [£ ¢ P X Ä N [£ Y P Z Z Z XiÄ N , 2 [£ ¢ P

Z Z Z Z Z ZX Ä NY [ P XiÄ NY [£ ¢ P Z Z Z XiÄ N , P
]]]]]]]]]]]]]]]
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3. SVD this Hankel matrix

´ ¤ ©

4. Obtain the balanced state trajectory

¶¸·º¹ 9 v 0 A � ·º¹ 9 v 0 » � 5 5 5 ·º¹ 9¼ 4 v 0 A � ½ ¾ ¿ 2 ¢ � À � 7

5. Compute the (LS) sol’n of the linear equations

K
L  Å N [£ Y P Z Z Z  Å N , 2 [£ ¢ P

X Ä N [£ ¢ P Z Z Z XiÄ N , 2 [ P
R

S E K
L Æ ÇÈ É

R
S

K
L  Å N [£ ¢ P Z Z Z  Å N , 2 [ PXiÃ N [£ ¢ P Z Z Z X Ã N , 2 [ P

R
S

This solution yields the desired balanced system.
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More on this and other algorithms, soon on my website
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Simulations
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Simulations

In all simulations the system has a transfer function

È N �ËÊ 2 Æ P o b Ç£ É E ÌT ÍÎ ¢ ÏY N Ê 2 ÌT Ð¢ Î \ P N Ê £ ÌT Ð Ð Î Ð PN Ê 2 ÌT Ñ\ ¢ Ñ P N Ê £ ÌT ÑÎ Í Ï P N Ê £ ÌT Ò¢ Ð Ñ PT

The input is a unit variance white noise and the data
available for identification is the corresponding
trajectory Ó ¤ ª�Ô � Õ « , corrupted by white noise with
standard deviation Ö.
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Simulations
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Simulations

Improvement over balancing from

´
directly
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Simulations

reduction to order 2
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Simulations

reduction to order 2
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Summary
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Algorithms that pass from

�Ô � � Õ directly to a state

resp.

�óò and, from there, to (an est. of)

x Æ Ç
È É

|

:
known for some time. Difficulty:

arrive directly at a balanced model.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

The algorithms may be viewed as part of the
research question:
Develop algorithms that pass from a given system
representation directly to a balanced state
representation, or reduction.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

These insights will be used for setting up effective
algorithms for subspace-like identification.
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Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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