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THEME

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

� KYP, LMI’s, ARE’s.

Where is this notion applied in systems and control?



OUTLINE

1. Lyapunov theory

2. !! Dissipative systems !!

3. Physical examples

4. Construction of the storage function

5. LQ theory � LMI’s, etc.

6. Applications in systems and control

7. Dissipativity for behavioral systems

8. Polynomial matrix factorization

9. Recapitulation



LYAPUNOV THEORY



LYAPUNOV FUNCTIONS

Consider the classical ‘dynamical system’, the flow

��� ��� �� � 	 � 


with � � �� 
�

, the state space,

�� � � �

. Denote the set of
solutions �� 
 � �

by

�

, the ‘behavior’. The function

�� � � 

is said to be a

�
�

�
�Lyapunov function for

�
if along � � �

��� � 	 � 	�� 
 
� �

Equivalent to

� � � � � � � � �� �



Typical Lyapunov ‘theorem’:
V

X

� 	 � 
 � ��� and

� 	 � 
 � ��� � � � 	 � 
 ! �

for

� "� � � �

#

$ � � � � there holds � 	% 
 � �

for % � & ‘global stability’



Refinements: LaSalle’s invariance principle.

Converse: Kurzweil’s thm.

LQ theory

for

'
'% �� ( � � � 	 � 
 � � )+* � � � � � 	 � 
 � � )+, �

� ( )* - * (� ,

(Matrix) ‘Lyapunov equation’

A linear system is (asymptotically) stable iff it has a quadratic positive
definite Lyapunov function. /

sol’n

* � * )� ��� , � , )! �

.

Basis for most stability results in control, physics, adaptation,
even numerical analysis, system identification.



Lyapunov functions play a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.
Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).



DISSIPATIVE SYSTEMS



A much more appropriate starting point for the study of dynamics
are ‘open’ systems. �
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INPUT/STATE/OUTPUT SYSTEMS

Consider the ‘dynamical system’

�� ��� �� � 	 � � 9 
 � :� ; 	 � � 9 
=<

9 � >� 
? � : � @� 
A � � � �� 
�

: the input, output, state.
Behavior

� � all sol’ns

	 9� :� � 
 � 
 � > B @ B �<

Let C� > B @ � 


be a function, called the supply rate.



C 	 9� : 


models something like the power delivered to the system when
the input value is 9 and output value is :.

supply

input

output

SYSTEM



DISSIPATIVITY

�

is said to be

�
�

�
�dissipative w.r.t. the supply rate C if

/

�� � � 
�

called the

�
�

�
�storage function, such that

��� � 	 � 	�� 
 
� C 	 9 	� 
 � : 	� 
 


along input/output/state trajectories (

$ 	 9 	�� 
 � : 	�� 
 � � 	�� 
 
 � � 


.

This inequality is called the dissipation inequality.

Equivalent to

� � � 	 � � 9 
 � � � � 	 � 
 � � 	 � � 9 
� C 	 9� ; 	 � � 9 
 


for all

	 9� � 
 � > B �

.

If equality holds: ‘conservative’ system.



Dissipativity� . Increase in storage

�

Supply.

SUPPLY

DISSIPATION

STORAGE

PSfrag replacements



Special case: ‘closed system’: � C� �

then

dissipativity D �

is a Lyapunov function.

Dissipativity is a natural generalization of Lyapunov theory to open
systems.

Stability for closed systems E Dissipativity for open systems.



PHYSICAL EXAMPLES



Electrical circuit:

(potential, current)

Dissipative w.r.t.

� FHGJI K � G L G (electrical power).



System Supply Storage

Electrical
circuit

� ) L
�� voltageL � current

energy in
capacitors and
inductors

etc. etc. etc.



Mechanical device:

(position, force, angle, torque)

Dissipative w.r.t. � FHGJI K 	 	 ��� M G 
 )ON G - 	 ��� P G 
 )RQ G 


(mechanical power)



System Supply Storage

Electrical
circuit

� ) L
�� voltageL � current

energy in
capacitors and
inductors

Mechanical
system

N )TS - 	 ��� P 
 )Q

N � force, S � velocityP

: angle,

Q � torque

potential +
kinetic energy

etc. etc. etc.



Thermodynamic system:

(work)

(heatflow, temperature)

Conservative w.r.t.
� FHGI K U G - � F VGJI K W G �

Dissipative w.r.t. X � FHGI K
U G

Q Y <



System Supply Storage

Electrical
circuit

� ) L
�� voltageL � current

energy in
capacitors and
inductors

Mechanical
system

N )ZS - 	 ��� P 
 )Q

N � force, S � velocityP

: angle,

Q � torque

potential +
kinetic energy

Thermodynamic
system

U - W

U� heat,
W� work

internal
energy

Thermodynamic
system

X U [Q
U� heat,
Q � temp.

entropy

etc. etc. etc.



THE CONSTRUCTION OF STORAGE FUNCTIONS



Central question:

Given (a representation of )

�

, the dynamics, and given C,
the supply rate, is the system dissipative w.r.t. C, i.e., does there exist

a storage function

�

such that the dissipation inequality holds?

supply

input

output

SYSTEM

Assume known dynamics,
Given the system history, how much ‘energy’ is stored?



Assume henceforth that a number of (reasonable) conditions hold:

� 	 ��� � 
 � ��� ; 	 ��� � 
 � �� C 	 �� � 
 � �

;
Maps and functions (including

�

) smooth;
State space

�

of

�

‘connected’:
every state reachable from every other state;

Observability.

‘Thm’: Let

�

and C be given.

Then

�

is dissipative w.r.t. C iff

C 	 9 	�� 
 � : 	�� 
 
 '% \ �

for all periodic

	 9 	� 
 � : 	� 
 � � 	� 
 
 � �

.



The AVAILABLE STORAGE and the REQUIRED SUPPLY

Two universal storage functions:

1. The available storage

�^]_ ] `a ] b adc 	 �fe 
 � �

ghi jJk jml npo q jl npo r jl n ns to r je n I ru o r jJv n I e w X
x v

e C 	 9 	� 
 � : 	� 
 
 '% y

2. The required supply

�{zc| } ` zc ~ 	 �fe 
 � �

��� � jJk jl n o q jl npo r jl n n s to r j�� v n I e o r je n I ru w e
� v

C 	 9 	�� 
 � : 	�� 
 
 '% y



supply

input

output

SYSTEM

!! Maximize the supply extracted, starting in fixed initial state� available storage.



supply

input

output

SYSTEM

!! Minimize the supply needed to set up a fixed initial state� required supply.



Storage f’ns form convex set, every storage function satisfies

�^]_ ] ` a ] b adc � �� �{zc| } ` zc ~<



LINEAR SYSTEMS with QUADRATIC SUPPLY RATES



Assume

�

linear, time-invariant, finite-dimensional:

��� � � ( � - � 9� :� � � �

and C quadratic: e.g.,

C� 	 9� : 
�� � � � 9 � � � X � � : � � �<
E.g., for circuits 9� � x �� � :� �� �� , etc.

Assume

	 (� � 


controllable,
	 (� � 

observable.� 	 C 
 � � � - � 	 L C X ( 
 � K �

, the transfer function of

�

.



Theorem: The following are equivalent:

1.

�

is dissipative w.r.t. C (i.e., there exists a storage function

�

),

2.

$ 	 9 	� 
 � : 	� 
 � � 	� 
 
 � �� � � ,� � 9 	� 
 � �p�5� \ � � : 	�� 
 � �p�5� ,

3.

� � � 	��� 
 � �� �

for all� � 


,

4.

/

a quadratic storage f’n,
� 	 � 
 � � )O� � � � � � )

,



5. there exists a solution

� � � )

to the
Linear Matrix Inequality (LMI)�

�
( )� - � ( - � ) � � �

� )R� X L
�

� � ���
6. there exists a solution

� � � )

to the
Algebraic Riccati Inequality (ARIneq)

( )� - � ( - � � � ) � - � ) �� ���

7. there exists a solution

� � � )
to the Algebraic Riccati Equation

(ARE) ( )� - � ( - � � � ) � - � ) �� �<



Solution set (of LMI, ARineq) is convex, compact, and attains
its infimum and its supremum:� � � � � � x

These extreme sol’ns

� � and

� x

corresponding to the available
storage and the required supply, themselves satisfy the ARE.

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming,

�v

control, etc.



Important refinement: Existence of a

� \ �

(i.e., bounded from below)

�
e

� v
C 	 9 	�� 
 � : 	�� 
 
 '% \ �<

In LQ case .

� � e� v � � 9 	� 
 � � � '% \ � e� v � � : 	�� 
 � � � '% �

� g hi �J  s ¡ ¢£ c j  n¤ e ¥ � � � 	 C 
 � � � � � � � � ��¦ § � �
,

Note def. of

�v -norm !

� /

sol’n

� � � ) \ �

to LMI, ARineq, ARE.

� KYP-lemma.



APPLICATIONS



� Synthesis of RLC-circuits

� Robust stability
(‘the interconnection of dissipative systems is stable’)

� Stabilization (by ‘passivation’)

� Robust stabilization (by making the loop dissipative),�v -control

� Norm estimation (e.g., bounding the balanced reduction error)

� Covariance generation

� � � �



Dissipative systems (and LMI’s which emerged from this) play a
remarkably central role in the field.



BEHAVIORAL SYSTEMS



The input/output, nor input/state/output approach are not logical
starting points for studying

� (open) physical systems

� interconnected systems

� dissipative systems

� � � �

� ‘behavioral systems’





(potential, current)

(position, force, angle, torque)

(work)

(heatflow, temperature)



BEHAVIORAL SYSTEMS

A dynamical system =

� � 	¨ � ©� � 


¨ ª 


, the time-axis (= the relevant time instances),

©

, the signal space (= where the variables take on their values),

� ª © «

: the behavior (= the admissible trajectories).



� � 	¨ � ©� � 


For a trajectory ¬� ¨ � ©� we thus have:

¬ � �

: the model allows the trajectory ¬ �

¬ [ � �

: the model forbids the trajectory ¬<

N

3

2

1

Today:

­¯® °²±³® °´ ±µ ® sol’s of system of linear constant coefficient ODE’s.



DIFFERENTIAL SYSTEMS

Consider ¶e ¬ - ¶ K
'

'% ¬ - � � � - ¶ �
' �

'% � ¬� ���
with

¶e � ¶ K � � � � � ¶ � � 
 � ·¸ <

Combined with the polynomial matrix

¶ 	¹ 
 � ¶e - ¶ K ¹ - � � � - ¶ � ¹ � �

we obtain the short notation

¶ 	 '
'% 
 ¬ � �<



¶ 	 '
'% 
 ¬ � �<

defines the system with¨ � 
� time,©� 
¸ � º dependent variables,� � sol’ns of a linear const. coeff. system of diff. eq’ns.

A ‘differential system’; Notation:

»¸ � » �

For example,

¼ 	 '
'% 
 :� U 	 '
'% 
 9� ¬� 	 9� : 


'
'% �� ( � - � 9� :� � � - � 9� ¬� 	 9� � � : 


or

	 9� : 




CONTROLLABILITY



Controllability .

system trajectories must be ‘patch-able’, ‘concatenable’.

w

1

w

w

w

w

2

1

0

2

T0

time

W

time

W W



Is the system defined by

¶e ¬ - ¶ K
'

'% ¬ - � � � - ¶ �
' �

'% � ¬� ���
with ¬ � 	 ¬ K � ¬ � � � � � � ¬¸ 


and

¶e � ¶ K � � � � � ¶ � � 
 � ·¸ �

i.e.,

¶ 	 '
'% 
 ¬ � ��

controllable?

We are looking for conditions on the polynomial matrix

¶

and algorithms in the coefficient matrices

¶e � ¶ K � � � � � ¶ � .



Thm: The following are equivalent:

1.

¶ 	 ��� 
 ¬� �

defines a controllable system

2. ½ ¾� ¿ 	 ¶ 	À 
 


is independent of

À

for

À � Á
.

Example: Â K 	 '
'% 
 ¬ K � Â � 	 '
'% 
 ¬ � 	 ¬ K � ¬ � scalar)

is controllable if and only if Â K and Â � have no common factor.



Representations of

» �

:

¶ 	 ��� 
 ¬ � �

called a ‘kernel’ representation of

� � ¿�Ã ½ 	 ¶ 	 ��� 
 

Another representation: ¬ � Ä 	 ��� 
 Y
called an ‘image’ representation of

� � ��Å 	 Ä 	 ��� 
 
=<

Elimination theorem # every image is also a kernel.

¿¿ Which kernels are also images ??



Theorem: The following are equivalent for

� � » � �
1.

�

is controllable

2.

�

admits an image representation

3. � � �



QDF’s

The quadratic map acting on ¬� 
 � 
¸

and its derivatives, defined
by

¬� � Æo G 	 ' Æ
' � Æ ¬ 
 )ÈÇ Æo G 	 ' G
' � G ¬ 


is called quadratic differential form (QDF).Ç Æo G � 
¸ ·¸ÈÉ WLOG:

Ç Æo G� Ç )Go Æ .

Introduce the

Ê

-variable polynomial matrix
Ç

Ç 	Ë � Ì 
 �
Æo G

Ç Æo GË Æ Ì G<

Denote the QDF as

UÎÍ . QDF’s are parametrized by


¸ ·¸ ÏË � Ì Ð <



DISSIPATIVE BEHAVIORAL SYSTEMS



We consider only controllable linear differential systems
and QDF’s for supply rates.
E.g.,

� ) L

for electrical circuits,

N ) ��� M for mechanical systems, ...

Definition:

� � » �

, controllable, is said to be dissipative
with respect to the supply rate

UÑÍ (a QDF) if

�ÓÒ UÎÍ 	 ¬ 
 '% \ �

for all ¬ � �

of compact support.

In any trajectory from rest back to rest, supply is absorbed.



STORAGE FUNCTION

Dissipativity� . �Ò UÑÍ 	 ¬ 
 '% \ �

for ¬ � �

compact supp<
Can this be reinterpreted as: As the system evolves,

some supply is stored, some is dissipated?

!! Invent storage, such that:

��� Storage

�

Supply.
SUPPLY

DISSIPATION

STORAGE

PSfrag replacements



MAIN RESULT

Theorem: Let

� � » �

be controllable, and

U Í be a QDF. Then

Ò
UÎÍ 	 ¬ 
 '% \ �

for all ¬ � �

of compact support

if and only if

there exists a QDF,

UÑÔ , the storage function such that

��� UÔ 	 ¬ 
 	 % 
� UÑÍ 	 ¬ 
 	% 


for all ¬ � �

and % � 
<
Note: The computation of

Õ
is an LMI involving

¶

(or

Ä

) and

Ç

!



OUTLINE of the PROOF

Using controllability and the existence of an image representation,
reduce to case that ¬ is ‘free’.

Now consider, for a given (smooth) ¬� 
 � 
¸
,

infimum

e
� v

UÑÍ 	Ö ¬ 
 '% �

with infimum taken over all

Ö ¬ � �
such that

Ö ¬ 	% 
 � ¬ 	 % 


for % \ �

.� the ‘available storage’.

Prove that this infimum is a QDF,

U Ô 	 ¬ 
 	 � 


, and that it qualifies as a
storage function.



This proof provides (but does not rely on!) a simple proof of the
following (known) factorization result for polynomial matrices.
Consider

* ) 	 ¹ 
 * 	¹ 
 � , 	 ¹ 


,

is a given real polynomial matrix;

*

is the unknown.

For

, � 
 Ï¹ Ð

, a scalar, this eq’n is solvable (for
* � 
 � Ï¹ Ð

) iff

, 	�× 
 \ �

for all × � 
<

For

, � 
 � · � Ï¹ Ð

, it is solvable (with
* � 
 � · � Ï¹ Ð

!) iff

, 	�× 
 � , ) 	× 
 \ �

for all × � 
<



Btw: For multivariable polynomials, and under the obvious symmetry
and positivity requirement,

, 	�× 
 � , ) 	× 
 \ �

for all × � 
� �
this equation can nevertheless in general not be solved over the
polynomial matrices, for

* � 
 � · � Ï¹ Ð

, but it can be solved over the
matrices of rational functions, i.e., for

* � 
 � · � 	¹ 

.

This is Hilbert’s 17-th pbm!



Remarks

� Very important refinement:� e� v UÎÍ 	 ¬ 
 '% \ � . / Õ

such that

UÎÔ 	 ¬ 
 \ �
.

� The storage function is always a state function.
Not so for discrete-time systems (Kaneko).

� Generalized to systems describes by PDE’s. Uses factorizability for
multivariable polynomials. Constructs stored energy and flux (the
‘Poynting vector’) for Maxwell’s eq’ns.

Ø Applies to

Ù{Ú problem in behavioral setting, with the famous
‘coupling condition’ of two storage functions.



RECAP



The notion of a dissipative system:

� Generalization of ‘Lyapunov function’ to open systems

� Central concept in control theory: many applications to feedback
stability, stabilization, robust (

� v -) control, adaptive control,
system identification, passivation control

� Stimulated emergence of LMI’s, semi-definite programming

� Other applications: system norm estimates, passive electrical
circuit synthesis procedures, covariance generation

� Combined with behavioral systems, dissipativity forms a natural
systems concept for the analysis of open physical systems

� Notable special case: second law of thermodynamics

� Forms a tread through modern system theory



More info, copy sheets? Surf to
http://www.esat.kuleuven.ac.be/ Ûjwillems

Thank you !


