SBRIDS: SBRIDS	
DISSIPATIVE DYNAMICAL SYST	EMS
Jan C. Willems	
ESAT-SCD (SISTA), University of Leuven, Belgium	
SICE Conference on Control Systems, Kobe, Japan	May 28, 2003

THEME

A dissipative system absorbs 'supply' (e.g., energy).

How do we formalize this?

Involves the storage function.

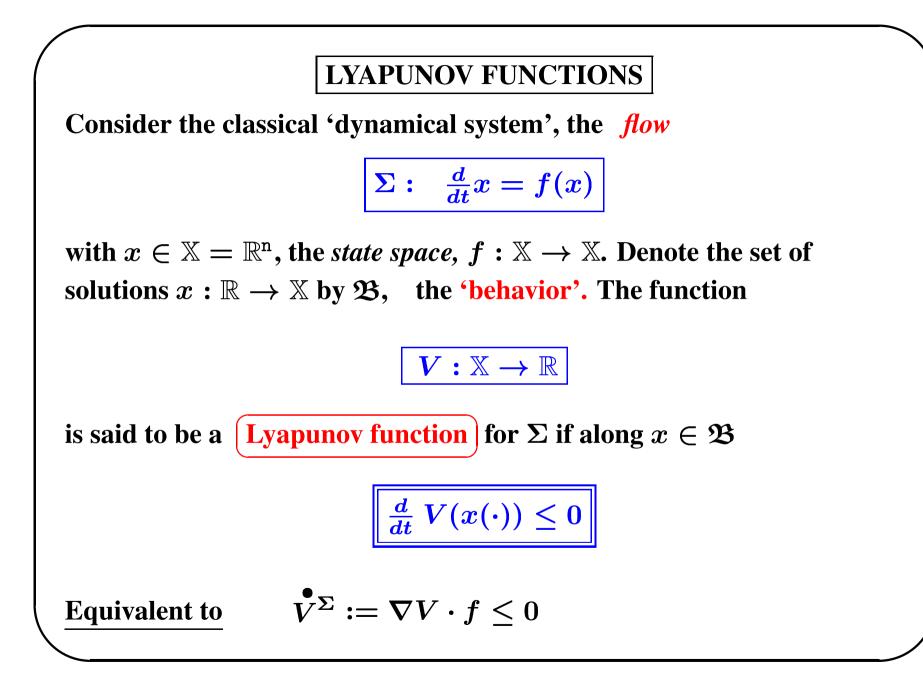
How is it constructed? Is it unique?

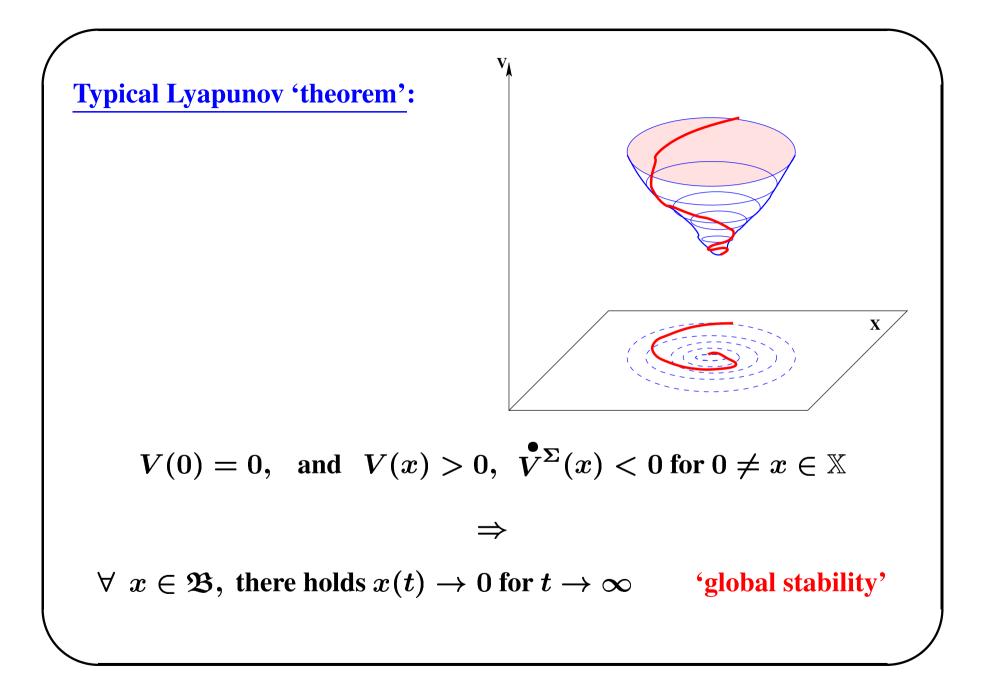
→ KYP, LMI's, ARE's.

Where is this notion applied in systems and control?

OUTLINE

- 1. Lyapunov theory
- 2. !! Dissipative systems !!
- 3. Physical examples
- 4. Construction of the storage function
- 5. LQ theory \sim LMI's, etc.
- 6. Applications in systems and control
- 7. Dissipativity for behavioral systems
- 8. Polynomial matrix factorization
- 9. Recapitulation





<u>Refinements</u>: LaSalle's invariance principle.

<u>Converse</u>: Kurzweil's thm.

LQ theory

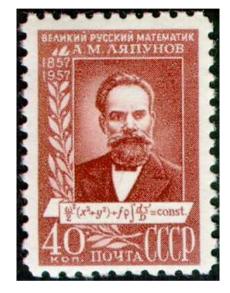
for
$$\frac{d}{dt}x = Ax$$
, $V(x) = x^{\top}Xx \rightsquigarrow V^{\bullet}\Sigma(x) = x^{\top}Yx$
 $\rightsquigarrow \qquad A^{\top}X + XA = Y$ (Matrix) 'Lyapunov equation'

A linear system is (asymptotically) stable iff it has a quadratic positive definite Lyapunov function

$$\Leftrightarrow \ \exists \ \text{ sol'n } X = X^\top > 0, \ Y = Y^\top < 0 \, .$$

Basis for most stability results in control, physics, adaptation, even numerical analysis, system identification.

Lyapunov functions play a remarkably central role in the field.

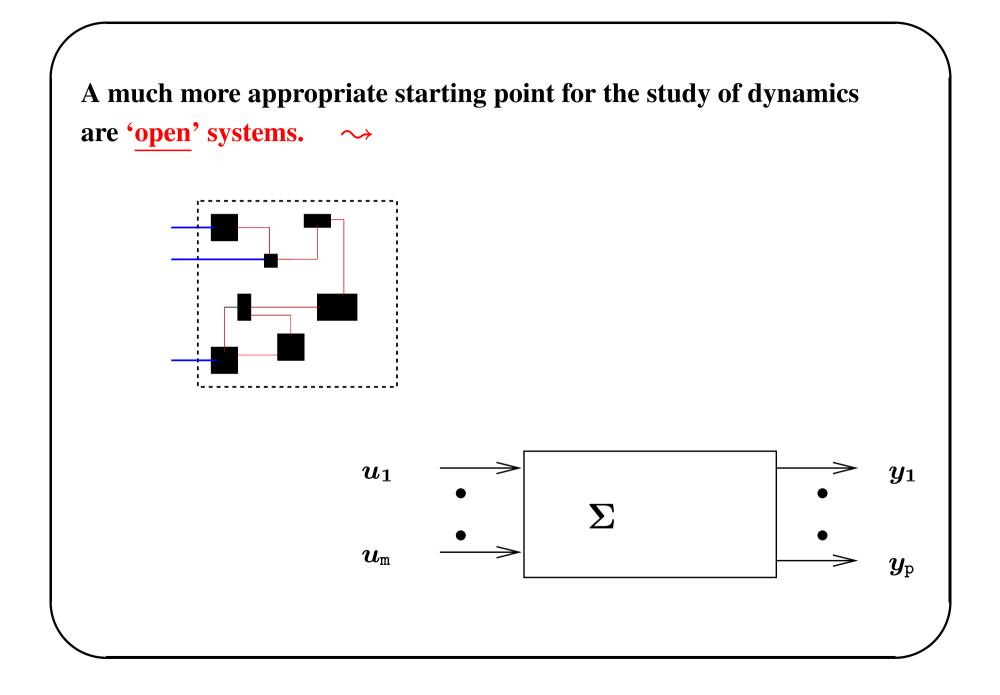


Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.

Introduced Lyapunov's 'second method' in his Ph.D. thesis (1899).

DISSIPATIVE SYSTEMS



INPUT/STATE/OUTPUT SYSTEMS

Consider the 'dynamical system'

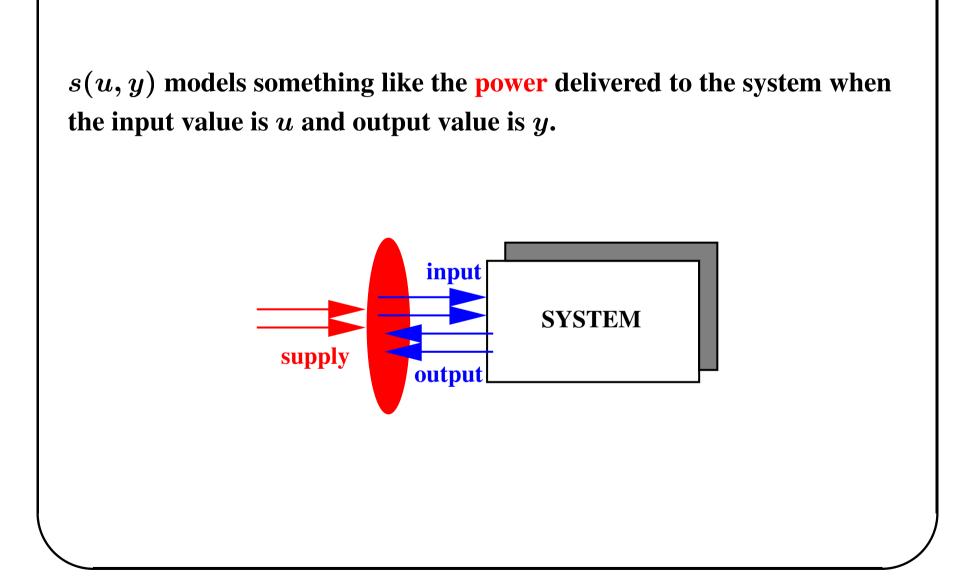
$$\Sigma: \quad rac{d}{dt} \, x = f(x,u), \quad y = h(x,u).$$

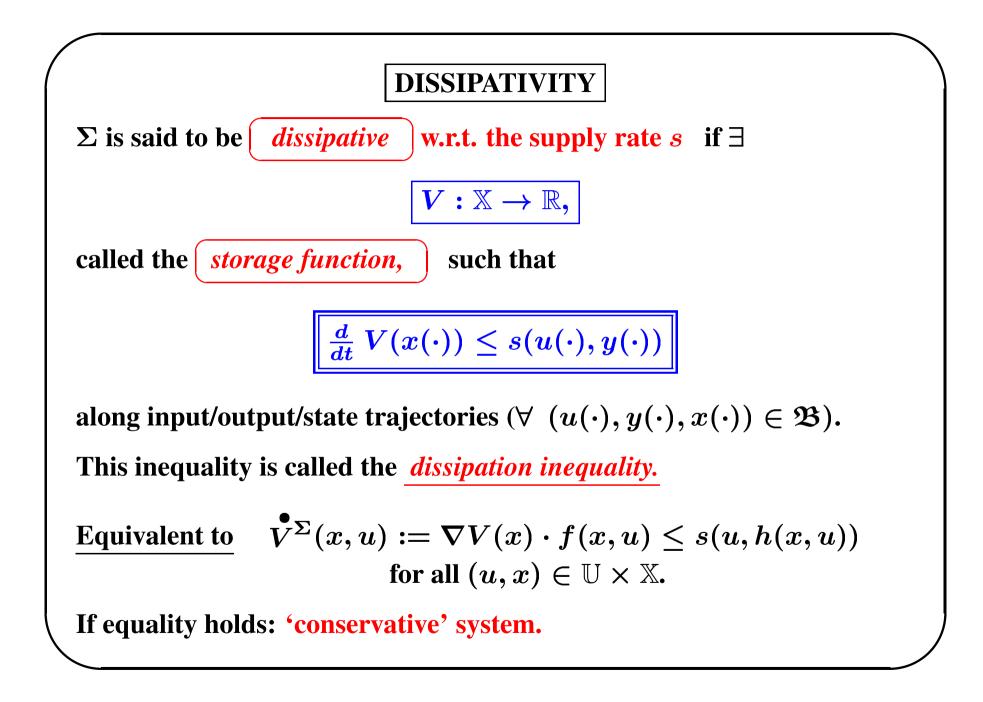
 $u \in \mathbb{U} = \mathbb{R}^{m}, y \in \mathbb{Y} = \mathbb{R}^{p}, x \in \mathbb{X} = \mathbb{R}^{n}$: the input, output, state. <u>Behavior</u> $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

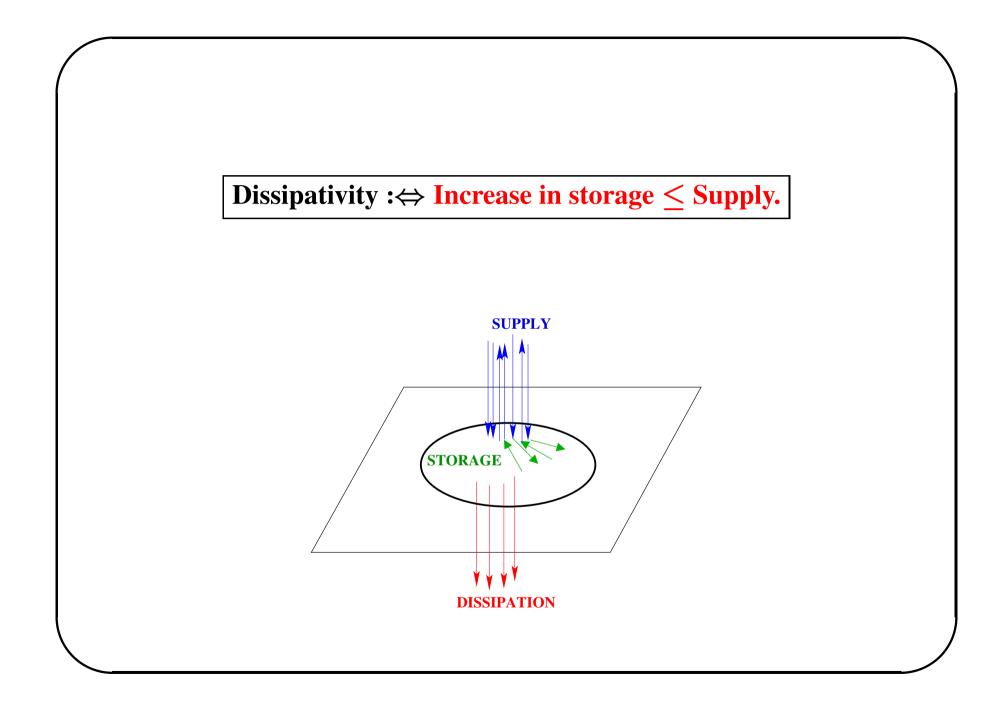
Let

$$s:\mathbb{U} imes\mathbb{Y} o\mathbb{R}$$

be a function, called the *supply rate*.







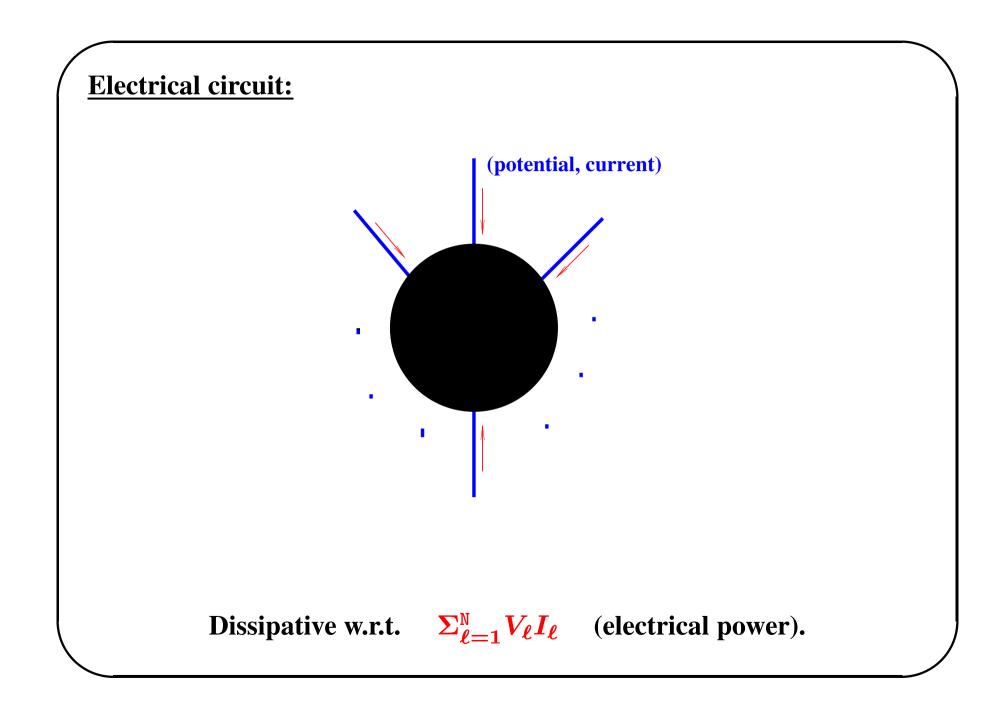
Special case: 'closed system': $\rightarrow s = 0$ then

dissipativity $\leftrightarrow V$ is a Lyapunov function.

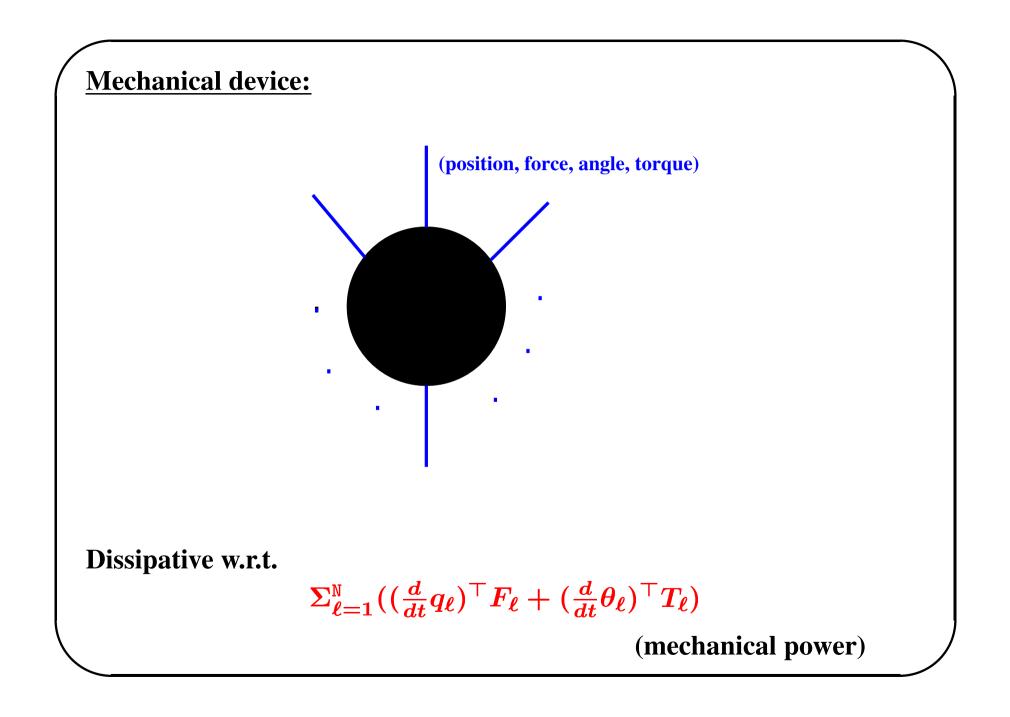
Dissipativity is a natural generalization of Lyapunov theory to open systems.

Stability for closed systems \simeq **Dissipativity** for open systems.

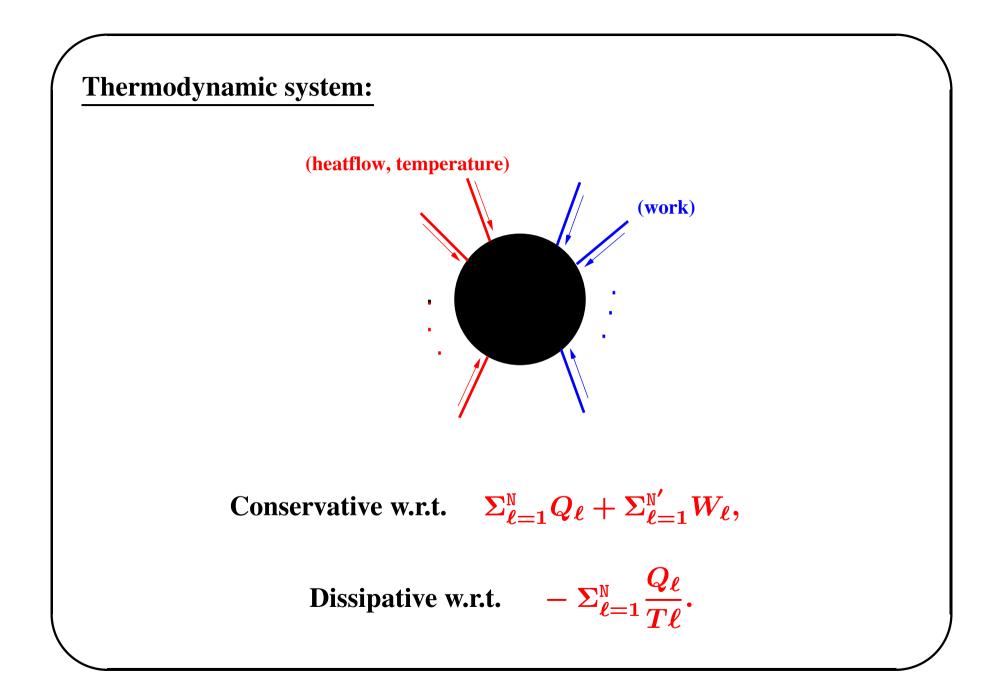
PHYSICAL EXAMPLES



System	Supply	Storage
Electrical	$V^{ op}I$	energy in
circuit	V : voltage	capacitors and
	I : current	inductors
etc.	etc.	etc.

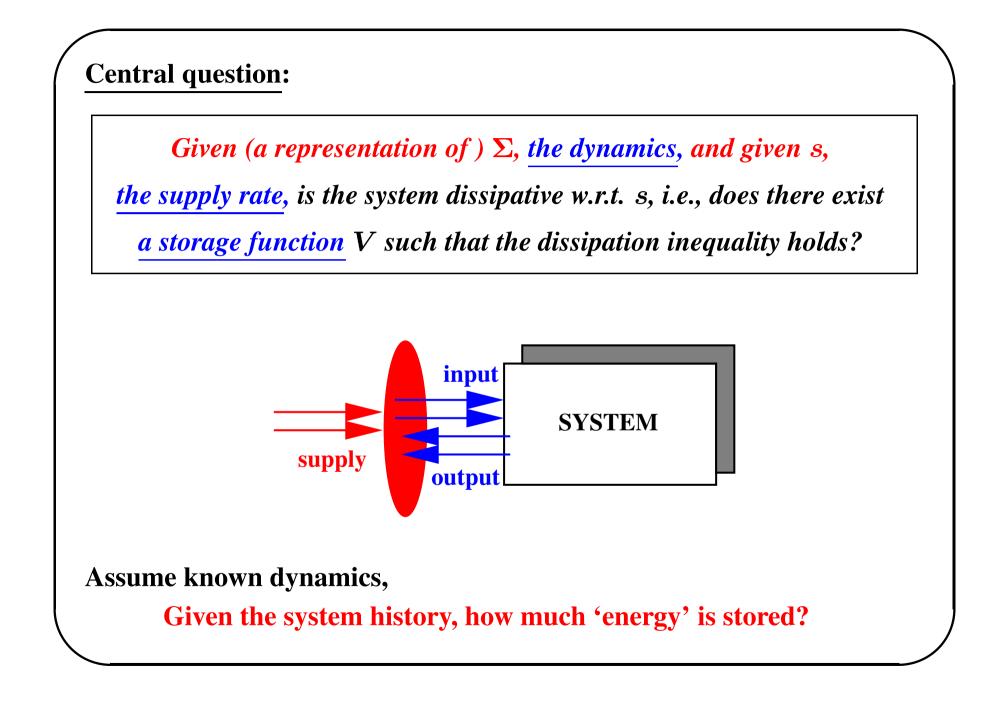


System	Supply	Storage
Electrical	$V^{ op}I$	energy in
circuit	V : voltage	capacitors and
	I : current	inductors
Mechanical	$F^ op v + (rac{d}{dt} heta)^ op T$	potential +
system	F : force, v : velocity	kinetic energy
	θ : angle, T : torque	
etc.	etc.	etc.



System	Supply	Storage
Electrical	$V^ op I$	energy in
circuit	V : voltage	capacitors and
	I : current	inductors
Mechanical	$F^{ op}v + (rac{d}{dt} heta)^{ op}T$	potential +
system	F : force, v : velocity	kinetic energy
	θ : angle, T : torque	
Thermodynamic	Q+W	internal
system	Q : heat, W : work	energy
Thermodynamic	-Q/T	entropy
system	Q : heat, T : temp.	
etc.	etc.	etc.

THE CONSTRUCTION OF STORAGE FUNCTIONS



Assume henceforth that a number of (reasonable) conditions hold:

f(0,0) = 0, h(0,0) = 0, s(0,0) = 0;

Maps and functions (including V) smooth;

State space X of Σ 'connected':

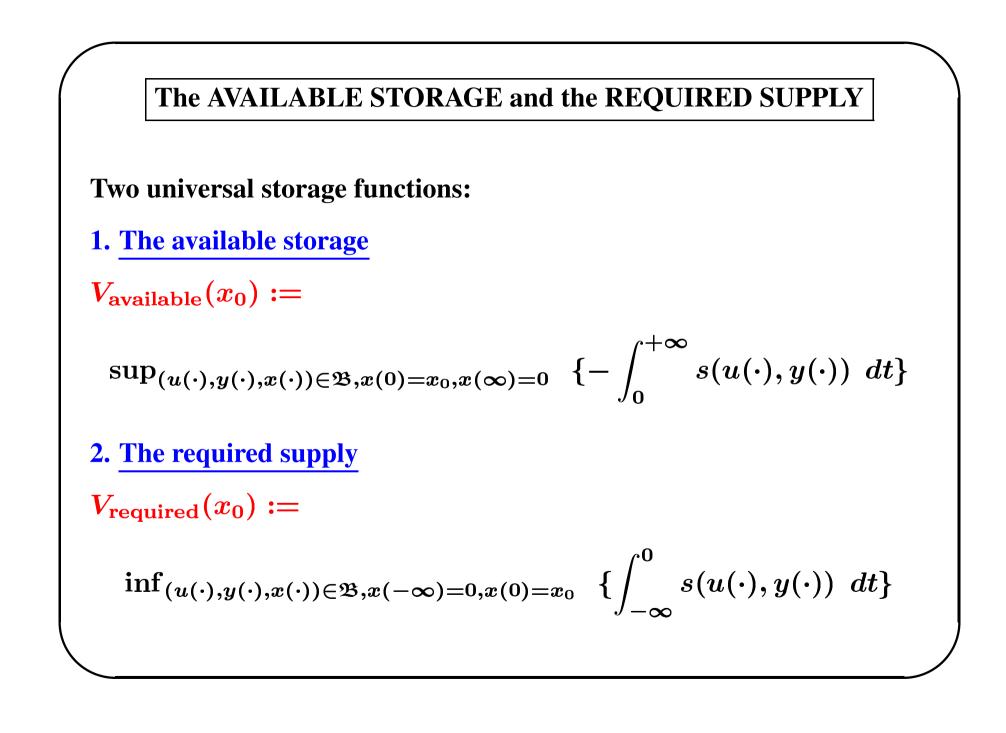
every state reachable from every other state; Observability.

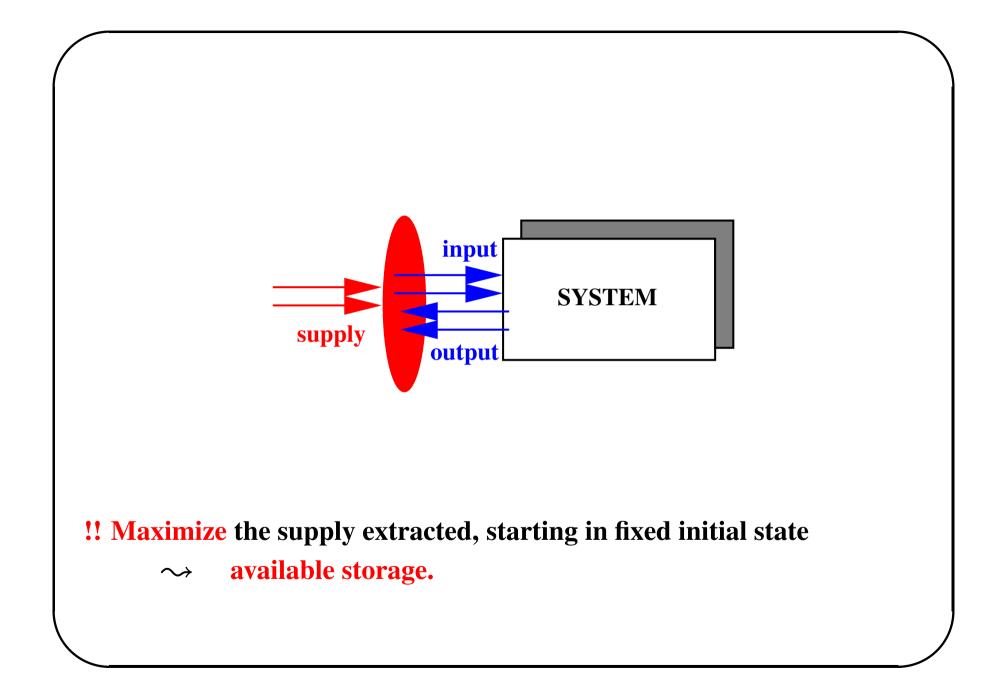
<u>'Thm'</u>: Let Σ and s be given.

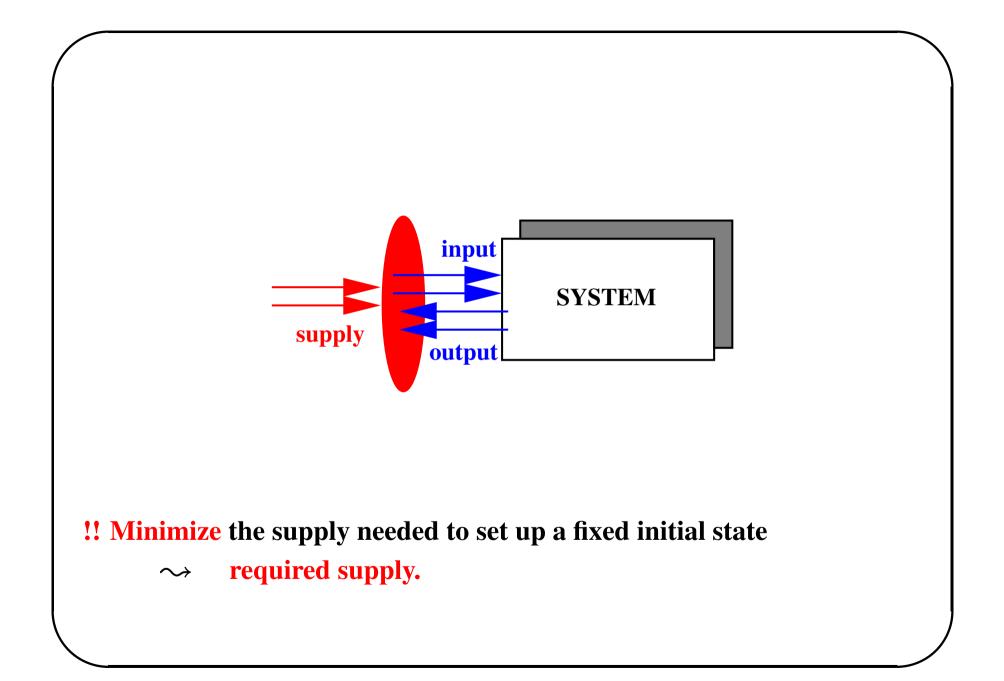
Then Σ is dissipative w.r.t. s iff

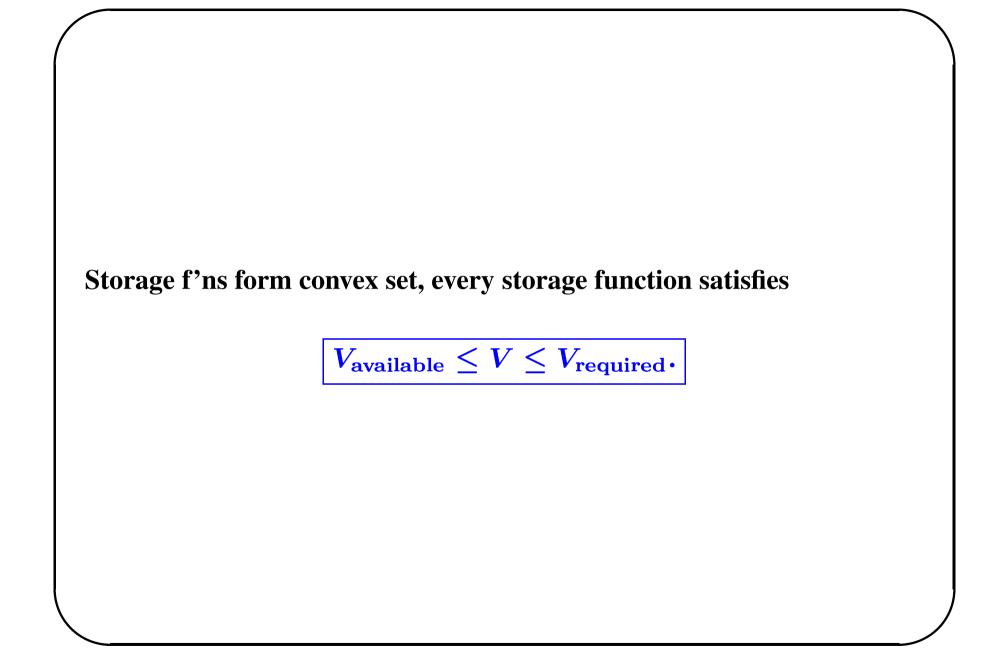
$$\oint s(u(\cdot),y(\cdot)) \;\; dt \geq 0$$

for all periodic $(u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}$.









Assume Σ linear, time-invariant, finite-dimensional:

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx,$$

and s quadratic: e.g.,

$$s:(u,y)\mapsto ||u||^2-||y||^2.$$

E.g., for circuits
$$u = \frac{V+I}{2}, y = \frac{V-I}{2}$$
, etc.

Assume (A, B) controllable, (A, C) observable. $G(s) := D + C(Is - A)^{-1}B$, the transfer function of Σ . **Theorem:** The following are equivalent:

1. Σ is dissipative w.r.t. *s* (i.e., there exists a storage function *V*),

2. $\forall (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B} \cap \mathcal{L}_2,$ $||u(\cdot)||_{\mathcal{L}_2} \geq ||y(\cdot)||_{\mathcal{L}_2},$

3. $||G(i\omega)|| \leq 1$ for all $\omega \in \mathbb{R}$,

4. \exists a quadratic storage f'n, $V(x) = x^{\top}Kx, K = K^{\top}$,

5. there exists a solution $K = K^{\top}$ to the **Linear Matrix Inequality (LMI)** $egin{array}{ccc} A^ op K+KA+C^ op C & KB \ B^ op K & -I \end{array} &\leq 0, \end{array}$ 6. there exists a solution $K = K^{\top}$ to the **Algebraic Riccati Inequality (ARIneq)** $A^{\top}K + KA + KBB^{\top}K + C^{\top}C < 0,$

7. there exists a solution $K = K^{\top}$ to the <u>Algebraic Riccati Equation</u> (ARE)

 $A^{\top}K + KA + KBB^{\top}K + C^{\top}C = 0.$

Solution set (of LMI, ARineq) is convex, compact, and attains its infimum and its supremum:

 $K^- \leq K \leq K^+$

These extreme sol'ns K^- and K^+ corresponding to the available storage and the required supply, themselves satisfy the ARE.

Extensive theory, relation with other system representations, many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming, \mathcal{H}_∞ control, etc.

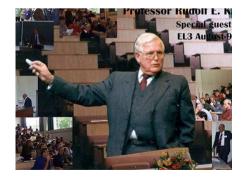
Important refinement: Existence of a $V \ge 0$ (i.e., bounded from below)

$$\rightsquigarrow \int_{-\infty}^0 s(u(\cdot),y(\cdot)) \;\; dt \geq 0.$$

In LQ case \Leftrightarrow

- $\int_{-\infty}^{0} ||u(\cdot)||^2 dt \ge \int_{-\infty}^{0} ||y(\cdot)||^2 dt$,
- $\sup_{\{s \in \mathbb{C} | \operatorname{Re}(s) > 0\}} ||G(s)|| =: ||G||_{\mathcal{H}_{\infty}} \leq 1$, Note def. of \mathcal{H}_{∞} -norm !
- \exists sol'n $K = K^{\top} \ge 0$ to LMI, ARineq, ARE.

→ KYP-lemma.

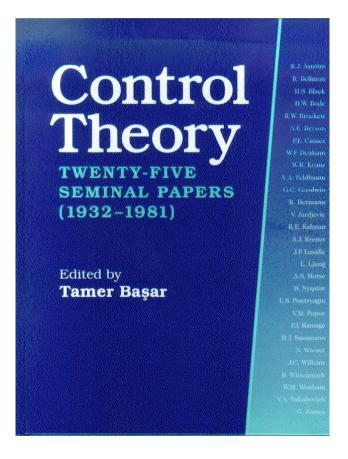


- Synthesis of RLC-circuits
- Robust stability

('the interconnection of dissipative systems is stable')

- **Stabilization** (by 'passivation')
- Robust stabilization (by making the loop dissipative), \mathcal{H}_{∞} -control
- Norm estimation (e.g., bounding the balanced reduction error)
- Covariance generation
- • •

Dissipative systems (and **LMI's** which emerged from this) play a remarkably central role in the field.

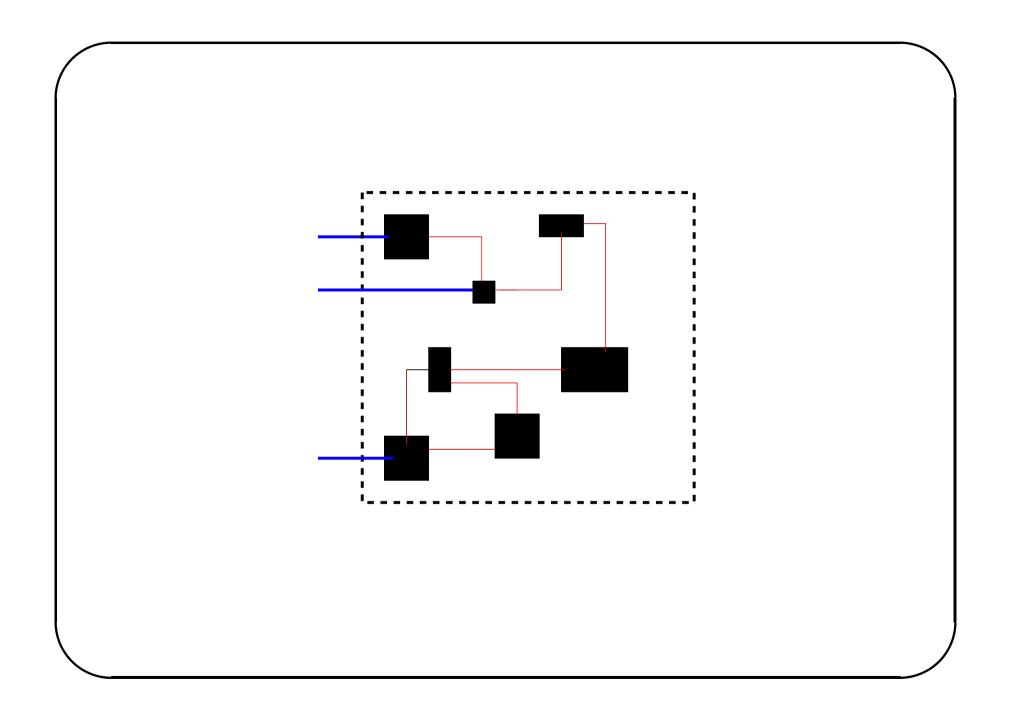


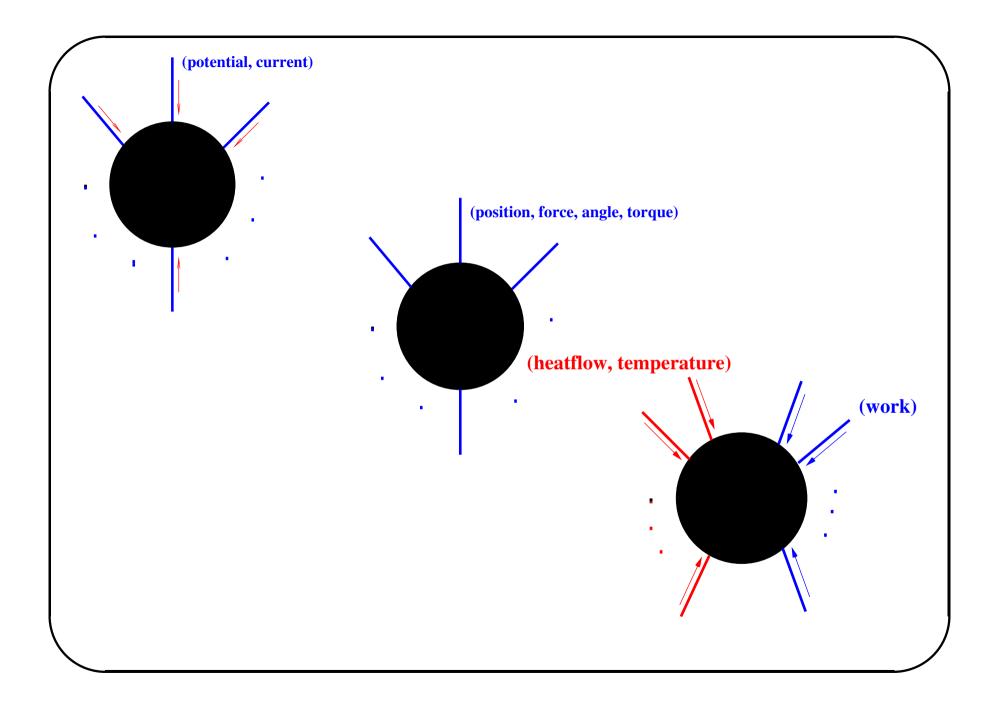
BEHAVIORAL SYSTEMS

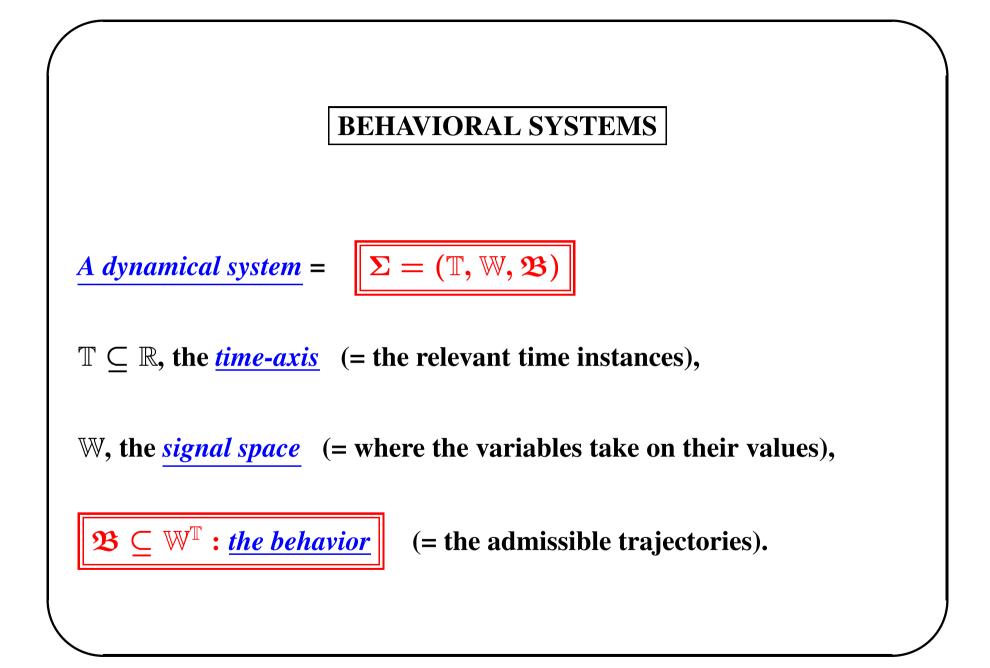
The input/output, nor input/state/output approach are **not** logical starting points for studying

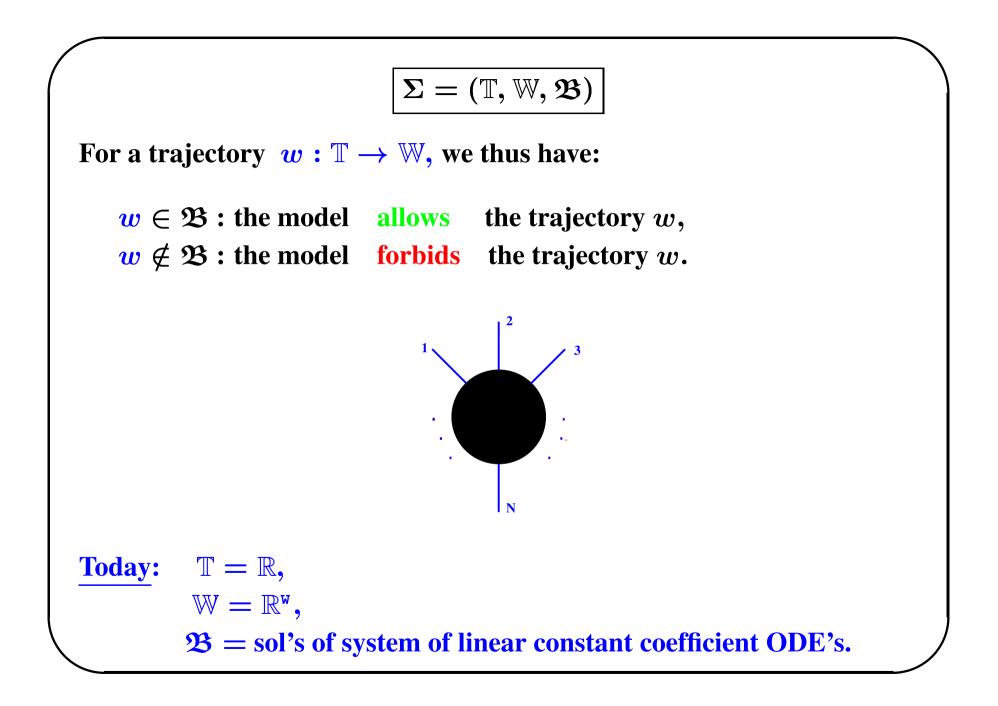
- (open) physical systems
- interconnected systems
- dissipative systems
- • •

\rightsquigarrow 'behavioral systems'









DIFFERENTIAL SYSTEMS

Consider

$$R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \dots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,$$

with $R_0, R_1, \cdots, R_n \in \mathbb{R}^{\bullet \times w}$.

Combined with the polynomial matrix

$$R(\xi) = R_0 + R_1 \xi + \cdots + R_n \xi^n,$$

we obtain the short notation

$$R(rac{d}{dt})w = 0.$$

$$R(rac{d}{dt})w = 0.$$

defines the system with

 $\mathbb{T} = \mathbb{R}, \text{ time,}$ $\mathbb{W} = \mathbb{R}^{W}, \text{ w dependent variables,}$ $\mathfrak{B} = \text{sol'ns of a linear const. coeff. system of diff. eq'ns.}$

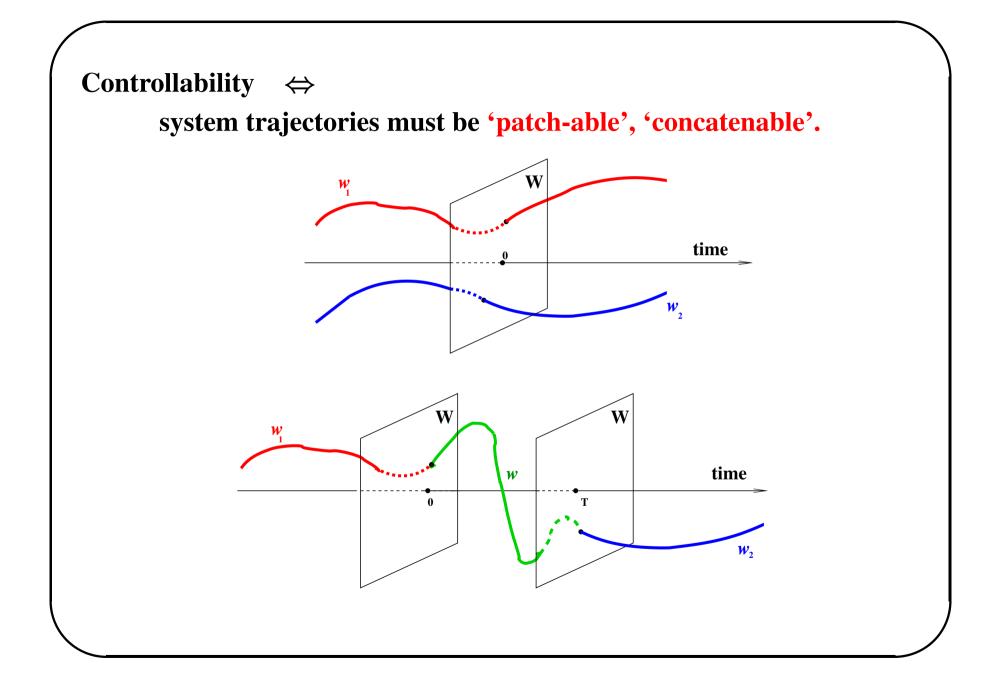
A 'differential system'; <u>Notation</u>: £^w, £[●]

For example,

$$P(\frac{d}{dt})y = Q(\frac{d}{dt})u, \quad w = (u, y)$$

 $\frac{d}{dt}x = Ax + Bu, \ y = Cx + Du, \ w = (u, x, y) \text{ or } (u, y)$

CONTROLLABILITY



Is the system defined by

$$R_0 w + R_1 rac{d}{dt} w + \cdots + R_n rac{d^n}{dt^n} w = 0,$$

with
$$w=(w_1,w_2,\cdots,w_{\scriptscriptstyle W})$$
 and $R_0,R_1,\cdots,R_{\scriptscriptstyle n}\in\mathbb{R}^{ullet imes w},$

i.e.,

$$R(rac{d}{dt})w=0,$$

controllable?

We are looking for conditions on the polynomial matrix Rand algorithms in the coefficient matrices R_0, R_1, \cdots, R_n .

<u>Thm</u>: The following are equivalent:

1. $R(\frac{d}{dt})w = 0$ defines a controllable system

2. $\| \operatorname{rank}(R(\lambda)) \text{ is independent of } \lambda \text{ for } \lambda \in \mathbb{C}.$

Example:
$$r_1(\frac{d}{dt})w_1 = r_2(\frac{d}{dt})w_2$$
 (w_1, w_2 scalar)

is controllable if and only if r_1 and r_2 have no common factor.

Representations of \mathfrak{L}^{\bullet}:

$$R(rac{d}{dt})oldsymbol{w}=0$$

called a *'kernel' representation* of $\mathfrak{B} = \ker(R(\frac{d}{dt}))$

Another representation:

$$w = M(\frac{d}{dt})\ell$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

<u>**Theorem</u>**: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:</u>

- 1. B is controllable
- 2. B admits an image representation
- 3. •••

QDF's

The quadratic map acting on $w:\mathbb{R}\to\mathbb{R}^{w}$ and its derivatives, defined by

$$w\mapsto \sum_{k,\ell} (rac{d^k}{dx^k}w)^ op \Phi_{k,\ell}(rac{d^\ell}{dx^\ell}w)$$

is called *quadratic differential form* (QDF). $\Phi_{k,\ell} \in \mathbb{R}^{W \times W}$; WLOG: $\Phi_{k,\ell} = \Phi_{\ell,k}^{\top}$.

Introduce the 2-variable polynomial matrix Φ

$$\Phi(\zeta,\eta) = \sum_{k,\ell} \Phi_{k,\ell} \zeta^k \eta^\ell.$$

Denote the QDF as Q_{Φ} . QDF's are parametrized by $\mathbb{R}^{W \times W}[\zeta, \eta]$.

DISSIPATIVE BEHAVIORAL SYSTEMS

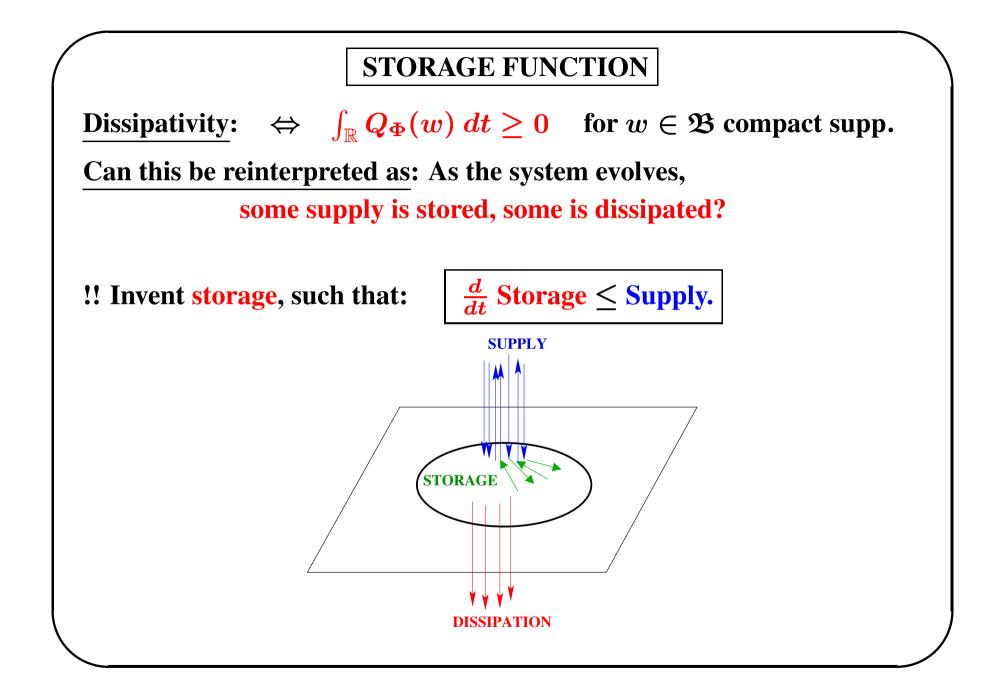
We consider only controllable linear differential systems and **QDF**'s for supply rates. E.g., $V^{\top}I$ for electrical circuits, $F^{\top}\frac{d}{dt}q$ for mechanical systems, ...

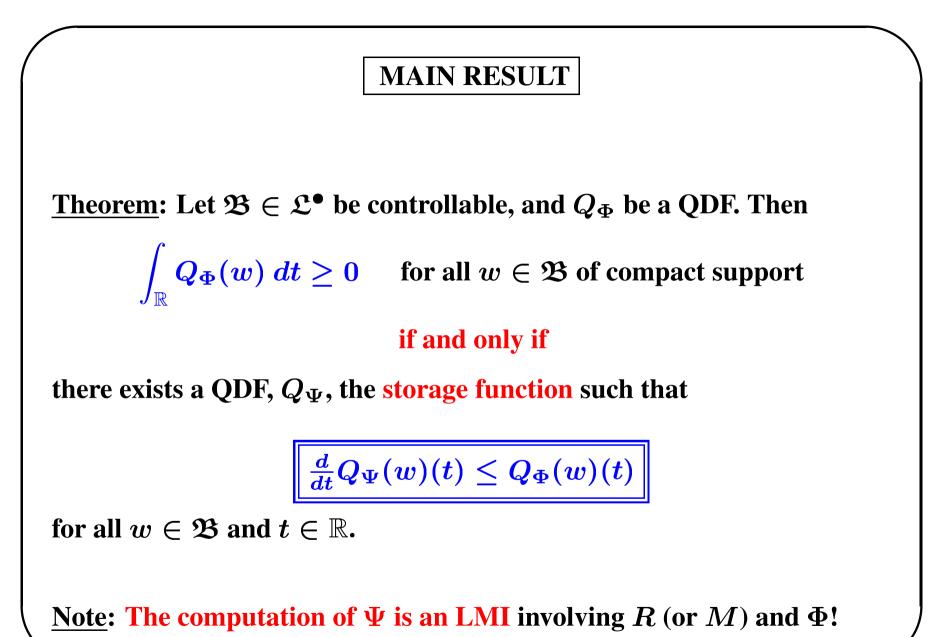
<u>Definition</u>: $\mathfrak{B} \in \mathfrak{L}^{\bullet}$, controllable, is said to be *dissipative* with respect to the supply rate Q_{Φ} (a QDF) if

 $\int_{\mathbb{R}} Q_{\Phi}(w) \ dt \geq 0$

for all $w \in \mathfrak{B}$ of compact support.

In any trajectory from rest back to rest, supply is absorbed.





OUTLINE of the PROOF

Using controllability and the existence of an image representation, reduce to case that w is 'free'.

Now consider, for a given (smooth) $w : \mathbb{R} \to \mathbb{R}^{w}$,

$$\text{infimum } \int_{-\infty}^0 Q_\Phi(\hat{w}) \, dt,$$

with infimum taken over all $\hat{w} \in \mathfrak{B}$ such that $\hat{w}(t) = w(t)$ for $t \ge 0$. \rightsquigarrow the 'available storage'.

Prove that this infimum is a QDF, $Q_{\Psi}(w)(0)$, and that it qualifies as a storage function.

This proof provides (but does not rely on!) a simple proof of the following (known) factorization result for polynomial matrices. Consider

$$X^{\top}(\xi)X(\xi) = Y(\xi)$$

Y is a given real polynomial matrix; X is the unknown.

For $Y \in \mathbb{R}[\xi]$, a scalar, this eq'n is solvable (for $X \in \mathbb{R}^2[\xi]$) iff $Y(\alpha) > 0$ for all $\alpha \in \mathbb{R}$.

For $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, it is solvable (with $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$!) iff

 $Y(\alpha) = Y^{ op}(\alpha) \geq 0$ for all $\alpha \in \mathbb{R}$.

Btw: For multivariable polynomials, and under the obvious symmetry and positivity requirement,

 $Y(\alpha) = Y^{ op}(\alpha) \ge 0$ for all $\alpha \in \mathbb{R}^n$,

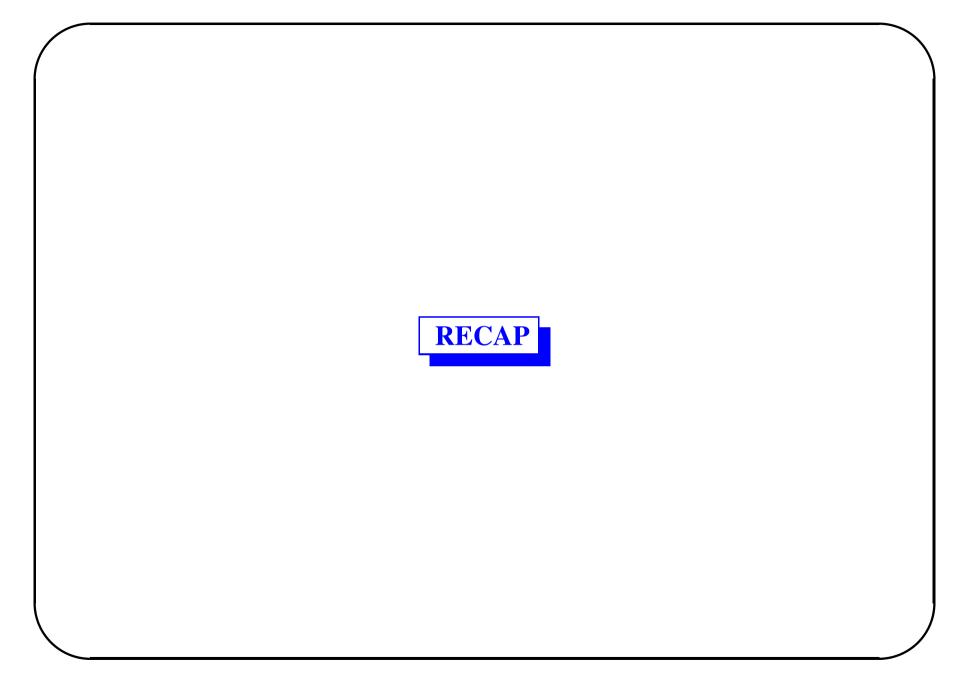
this equation can nevertheless in general <u>not</u> be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, but it can be solved over the matrices of rational functions, i.e., for $X \in \mathbb{R}^{\bullet \times \bullet}(\xi)$.

This is Hilbert's 17-th pbm!

Remarks

- Very important refinement: $\int_{-\infty}^{0} Q_{\Phi}(w) dt \ge 0 \Leftrightarrow \exists \Psi \text{ such that } Q_{\Psi}(w) \ge 0.$
- The storage function is always a state function. Not so for discrete-time systems (Kaneko).
- Generalized to systems describes by PDE's. Uses factorizability for multivariable polynomials. Constructs stored energy and flux (the 'Poynting vector') for Maxwell's eq'ns.

• Applies to \mathcal{H}_{∞} problem in behavioral setting, with the famous 'coupling condition' of two storage functions.



The notion of a dissipative system:

- Generalization of 'Lyapunov function' to open systems
- Central concept in control theory: many applications to feedback stability, stabilization, robust (*H*∞-) control, adaptive control, system identification, passivation control
- Stimulated emergence of LMI's, semi-definite programming
- Other applications: system norm estimates, passive electrical circuit synthesis procedures, covariance generation
- Combined with behavioral systems, dissipativity forms a natural systems concept for the analysis of open physical systems
- Notable special case: second law of thermodynamics
- Forms a tread through modern system theory

