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THEME

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

~» KYP, LMI’s, ARE’s.

Where is this notion applied in systems and control?

N
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‘ LYAPUNOV THEORY .




/ LYAPUNOV FUNCTIONS

Consider the classical ‘dynamical system’, the flow

>

—a: = f(x)

solutions x : R — X by 3,

with x € X = R", the state space, f : X — X. Denote the set of

the ‘behavior’. The function

V: X—=R

is said to be a [Lyapunov function] for X if along x € ‘B

4 V() <0

Qquivalent to 1;2 =VV.f<0
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Typical Lyapunov ‘theorem’:

N

V(0) =0, and V(z) >0, V=(z) < 0for0 # = € X

=

V x € B, there holds x(t) — 0 for t — oo ‘global stability’

/




/Reﬁnements: LaSalle’s invariance principle. \

Converse: Kurzweil’s thm.

LQ theory

d
for ik Az, V() =z Xz ~ 1;'2(:1:) =x'Yx

~ |ATX +XA=Y| (Matrix) ‘Lyapunov equation’

A linear system is (asymptotically) stable iff it has a quadratic positive

definite Lyapunov function
& FJsonX=X">0,Y=Y"<0.

Basis for most stability results in control, physics, adaptation,
Keven numerical analysis, system identification. j




/Lyapunov functions play a remarkably central role in the field. \

SEAVKUH PYCCKAH MATEMATHK

¥H

W

Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.
\Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899). /




DISSIPATIVE SYSTEMS '
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A much more appropriate starting point for the study of dynamics
are ‘open’ systems. ~-

U1 — —— Y1
[ ) o
o Z o

U E—— | = Yo
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INPUT/STATE/OUTPUT SYSTEMS

Consider the ‘dynamical system’

IR %:B:f(a:,u), y = h(x,u).

uelU=R"y €Y =RP,z € X = R": the input, output, state.
Behavior 8 = allsol’ns (u,y,z) : R —- U X Y x X,

Let

s:UXxY—R

be a function, called the supply rate.

N
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s(u, y) models something like the power delivered to the system when
the input value is v and output value is y.

SYSTEM




/ DISSIPATIVITY

3. is said to be [ dissipative | w.r.t. the supply rate s if 4

J

V: X —>R,

called the [stomge function, ] such that

V(=) < s(u(),y(-)

along input/output/state trajectories (V (u(-),y(-), xz(-)) € B).

This inequality is called the dissipation inequality.

Equivalent to ‘;Z(m,u) = VV(x) - f(z,u) < s(u, h(x,u))
for all (u,z) € U x X.

Klf equality holds: ‘conservative’ system.




Dissipativity : <> Increase in storage < Supply.

SUPPLY

il

\
STORAGE

¢vv"
DISSIPATION
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Special case: ‘closed system’: ~» |[s = 0| then

dissipativity <+ V is a Lyapunov function.

Dissipativity is a natural generalization of Lyapunov theory to open
systems.

Stability for closed systems ~ Dissipativity for open systems.




PHYSICAL EXAMPLES '




/Electrical circuit:

k Dissipative w.r.t.

(potential, current)

>y_ VeI, (electrical power).

/




System Supply Storage

Electrical VI energy in

circuit V : voltage capacitors and
I : current inductors

etc. etc. etc.




/Mechanical device: \

(position, force, angle, torque)

Dissipative w.r.t.
1 ((5a0) TFe + (5:00) T To)

k (mechanical power) j




System Supply Storage
Electrical VI energy in
circuit V : voltage capacitors and
I : current inductors
Mechanical FTov+ (%O)TT potential +
system F' : force, v : velocity Kinetic energy

0: angle, T : torque

etc.

etc.

etc.
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hermodynamic system:

(heatflow, temperature)

Conservative w.rt. XU Q, + ZI_ Wy,

Dissipative w.r.t. — XU Qe

£=1T_£'
N




System Supply Storage
Electrical VI energy in
circuit V : voltage capacitors and
I : current inductors
Mechanical Flo+ (26)'T potential +
system F' :force, v : velocity Kinetic energy
0: angle, T : torque
Thermodynamic | Q + W internal
system Q : heat, W : work energy
Thermodynamic | —Q /T entropy
system Q : heat, T :temp.
etc. etc. etc.




‘ THE CONSTRUCTION OF STORAGE FUNCTIONS .




fCentral question:

~

Given (a representation of ) 3, the dynamics, and given s,

the supply rate, is the system dissipative w.r.t. s, i.e., does there exist

a storage function V such that the dissipation inequality holds?

—

supply

Assume known dynamics,

input

output

SYSTEM

\ Given the system history, how much ‘energy’ is stored?

/




/Assume henceforth that a number of (reasonable) conditions hold: \

f(0,0) = 0,h(0,0) = 0,s(0,0) = 0;
Maps and functions (including V') smooth;
State space X of X ‘connected’:

every state reachable from every other state;
Observability.

‘Thm’: Let X and s be given.

Then X is dissipative w.r.t. s iff

75 s(u(),y(-)) dt >0

Kfor all periodic (u(+),y(-), xz(-)) € B. j
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The AVAILABLE STORAGE and the REQUIRED SUPPLY

Two universal storage functions:

1. The available storage

Vavailable (.CU()) =
+oo
SUP (4,(.),y(-),2(-)) €B,@(0) =0,z (00)=0 {—/0 s(u(-),y(-)) dt}

2. The required supply

‘/;'equired (330) =

0
inf(u(.),y(.),w(.))6%,3}(—00):0,:13(0)::130 {/ S(U(')? y(')) dt}

o /




SYSTEM

!! Maximize the supply extracted, starting in fixed initial state

\_

~»  available storage.




SYSTEM

!! Minimize the supply needed to set up a fixed initial state

\_

~>  required supply.




Storage f’ns form convex set, every storage function satisfies

Vavailable S | 4 S ‘/;'equired-




LINEAR SYSTEMS with QUADRATIC SUPPLY RATES




4 N

Assume X linear, time-invariant, finite-dimensional:

%szm—kBu, y = Cex,

and s quadratic: e.g.,

s : (u,y) — |[ul]* — [[y]l*.

E.g., for circuits u = %, Yy = %, etc.

Assume (A, B) controllable, (A, C) observable.
G(s) := D + C(Is — A)~ 1B, the transfer function of X.

o /
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Theorem: The following are equivalent:

1. X is dissipative w.r.t. s (i.e., there exists a storage function V'),

2. V(u(:),y(+),z(+)) € BN Ly,
[lw()llee 2 Ny ()llees

3. |||G(iw)|| < 1|forallw € R,

4. 3 a quadratic storage f'n,V(z) =z 'Kz, K = K",

o /




N

/ 5. there exists a solution K = K ' to the

Linear Matrix Inequality (LMI)

ATK+ KA+C™C KB
BTK —TI

6. there exists a solution K = K ' to the

Algebraic Riccati Inequality (ARIneq)

ATK+ KA+ KBB'K+C'C <o,

7. there exists a solution K = K ' to the Algebraic Riccati Equation

(ARE)
ATK4+ KA+ KBB'K+C'C =o.

/
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Solution set (of LMI, ARineq) is convex, compact, and attains
its infimum and its supremum:

K-<K<Kt

These extreme sol’ns K — and K corresponding to the available
storage and the required supply, themselves satisfy the ARE.

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).

control, etc.

N

Connection with optimal LQ control, semi-definite programming, H o

~

/




ﬂmportant refinement: Existence of a V' > 0 (i.e., bounded from belovm

~ [ s,y de>o.

In LQ case &
0 0
o [ZoolluMIFdt > [Z 1ly()II? dt,
® SUPs.ccire(s)>0}H G ()| =: [|Gl]3, < 1,

Note def. of H ..-norm !
e IdsoI’'n K = K" > 0toLMI, ARineq, ARE.

~> KYP-lemma.

\_




APPLICATIONS .
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e Synthesis of RLC-circuits

e Robust stability
(‘the interconnection of dissipative systems is stable’)

e Stabilization (by ‘passivation’)

e Robust stabilization (by making the loop dissipative),
H oo -control

e Norm estimation (e.g., bounding the balanced reduction error)

e Covariance generation




Gissipative systems (and LMI’s which emerged from this) play a
remarkably central role in the field.

Control

Edited by
Tamer Basar

~




BEHAVIORAL SYSTEMS '
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The input/output, nor input/state/output approach are not logical
starting points for studying

e (open) physical systems
e interconnected systems
e dissipative systems

~  ‘behavioral systems’







/ (potential, current) \

(position, force, angle, torque)

(heatflow, temperature)
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BEHAVIORAL SYSTEMS

A dynamical system = | X = (T, W, 23)

T C R, the time-axis (= the relevant time instances),

W, the signal space (= where the variables take on their values),

B C W' : the behavior || (= the admissible trajectories).

N




/ > = (T, W, B) \

For a trajectory w : T — W, we thus have:

w € 5 : the model the trajectory w,
w & B : the model forbids the trajectory w.

Today: T = R,
W = R,
K 8 — sol’s of system of linear constant coefficient ODE’s. j
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DIFFERENTIAL SYSTEMS
Consider
Row + R d + + R, il 0
w —aw + .- w =
0 Ldt dt® ’
with Rg, Ry, , R, € R*X¥,

Combined with the polynomial matrix

R(§) = Ro+ Ri&+ -+ R,E,

we obtain the short notation

d
R(—)w = 0.
()w

N
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A ‘differential system’;

defines the system with

T = R, time,
W = R", w dependent variables,

8 = sol’ns of a linear const. coeff. system of diff. eq’ns.

For example,

Notation: £¥, £°

Py =QC ) w= (u,9)

d
amzAw+Bu,y:Cw+Du,

w = (u,z,y) or (u,y) /




CONTROLLABILITY I




Controllability <<

~

system trajectories must be ‘patch-able’, ‘concatenable’.

w
1

TN

.
''''''

_—

time
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Is the system defined by

dn
dt®

w = 0,

d
Row + Ry—w + - + R,

with w = (wy,wsa, -+ ,wy) and Rg, Ry,--- , R, € R**¥,
i.e.,
d
R(— =0

controllable?

We are looking for conditions on the polynomial matrix R

N

and algorithms in the coefficient matrices Rqg, R1,--- , R,.
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Thm: The following are equivalent:

1. R(%)fw = 0 defines a controllable system

2. | rank(R(A)) is independent of A for A € C.

d d
Example: rl(a)fwl = frz(a)wz (w1, wo scalar)

is controllable if and only if 7, and r have no common factor.

N




/Representations of £°:

Another representation:

R(%)w =0

Elimination theorem =

called a ‘kernel’ representation of 5 — ker(R(%))

w = M(%)E

called an ‘image’ representation of B = im(M (%))

every image is also a kernel.

¢ Which kernels are also images ??

N
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Theorem: The following are equivalent for 28 € £° :

1. B is controllable

2. | B admits an image representation

3. ...
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by

QDF’s

dk - dE
w — Zk,e(@w) ‘I’k,e(@’w)

is called quadratic differential form (QDF).
Pr,e € R™¥; WLOG: 10 = P ..

Introduce the 2-variable polynomial matrix ®

®(¢,m) =) PpeCFnt.
W

Kl)enote the QDF as Q. QDF’s are parametrized by R**¥[{, n].

~

The quadratic map acting on w : R — R" and its derivatives, defined

/




DISSIPATIVE BEHAVIORAL SYSTEMS '
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We consider only controllable linear differential systems

and QDFE’s for supply rates.

E.g., V ' I for electrical circuits, F' " %q for mechanical systems, ...

Definition: 25 € £°, controllable, is said to be dissipative
with respect to the supply rate Qs (a QDF) if

for all w € B of compact support.

In any trajectory from rest back to rest, supply is absorbed.

N




/ STORAGE FUNCTION \

Dissipativity: < [, Qa(w)dt >0 forw € B compact supp.

Can this be reinterpreted as: As the system evolves,

some supply is stored, some is dissipated?

!! Invent storage, such that: dit Storage < Supply.

SUPPLY

il

\
STORAGE

¢vv"

K DISSIPATION /




/ MAIN RESULT \

Theorem: Let 2B € £° be controllable, and Q¢ be a QDF. Then

/ Qs (w)dt >0 forallw € B of compact support
R

if and only if
there exists a QDF, (Qy, the storage function such that

2Qu(w)(t) < Qa(w)(t)
forallw € B andt € R.

Qote: The computation of W is an LMI involving R (or M) and P! /




/ OUTLINE of the PROOF \

Using controllability and the existence of an image representation,
reduce to case that w is ‘free’.

Now consider, for a given (smooth) w : R — R",

0
infimum / Qs (W) dt,

with infimum taken over all w0 € 8 such that w(t) = w(t) fort > 0.
~»  the ‘available storage’.

Prove that this infimum is a QDF, Q¢ (w)(0), and that it qualifies as a

Qtorage function. j
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This proof provides (but does not rely on!) a simple proof of the
following (known) factorization result for polynomial matrices.
Consider

X'T(6)X(&)=Y(E)

Y is a given real polynomial matrix; X is the unknown.

For Y € R[£], a scalar, this eq’n is solvable (for X € R?[£] ) iff

Y(a) >0 for all o« € R.

For Y € R®*°®[£], itis solvable (with X € R®*®[£]!) iff

Y(a)=Y"(a) >0 foralla € R.

N




/Btw: For multivariable polynomials, and under the obvious symmetry\
and positivity requirement,

Y(a)=Y " (a) >0 foralla € R®,

this equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®*®[£], but it can be solved over the
matrices of rational functions, i.e., for X € R®**®(&).

This is Hilbert’s 17-th pbm!




Remarks

e Very important refinement:
[°_ Qs(w) dt > 0 < I U such that Qg (w) > 0.

e The storage function is always a state function.
Not so for discrete-time systems (Kaneko).

e Generalized to systems describes by PDE’s. Uses factorizability for
multivariable polynomials. Constructs stored energy and flux (the
‘Poynting vector’) for Maxwell’s eq’ns.

e Applies to H o problem in behavioral setting, with the famous
& ‘coupling condition’ of two storage functions. /




‘ RECAP '




/T he notion of a dissipative system: \
e Generalization of ‘Lyapunov function’ to open systems

e (entral concept in control theory: many applications to feedback
stability, stabilization, robust ( o.-) control, adaptive control,
system identification, passivation control

e Stimulated emergence of LMI’s, semi-definite programming

e Other applications: system norm estimates, passive electrical
circuit synthesis procedures, covariance generation

e Combined with behavioral systems, dissipativity forms a natural
systems concept for the analysis of open physical systems

e Notable special case: second law of thermodynamics

K. Forms a tread through modern system theory j




-~

More info, copy sheets?  Surf to

http://www.esat.kuleuven.ac.be/~jwillems

Thank you ! I




