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The problem
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Given an observed vector time-series�
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find a model for the system that produced these data.

In particular, a deterministic linear time-invariant model
in balanced form.

Today:

think: ‘large’;
‘random-like’ (= persistently exciting).
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Motivation
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Solve (LS)

This yields a state representation. Reduce the
state dimension, by reducing the row dimension of

This leads to the problem:

Construct in a balanced basis.

‘Subspace methods’ do this.
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‘Subspace methods’ do this.
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A ‘sequential’ zero input response series
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A ‘sequential’ zero input response series
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A ’sequential’ zero input response series

Organized into the matrix

IKJ L (
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�� �� � �! � � � % % % �C �� � � C E� �� � % % %�� �1 � �! �1 � % % % �C �1 � � C E� �1 � % % %% % % % % % % % % %�� �� H � �! � � H � % % % �C �� H � � C E� �� H � % % %% % % % % % % % % %

�
QNQNQOQPQOQOQO�

Note
for some

...

...

From Time Series to Balanced Representation - Part I: Theory – p.8/37



A ’sequential’ zero input response series

Organized into the matrix

IKJ L (
�

MNMNMOMPMOMOMO�
�� �� � �! � � � % % % �C �� � � C E� �� � % % %�� �1 � �! �1 � % % % �C �1 � � C E� �1 � % % %% % % % % % % % % %�� �� H � �! � � H � % % % �C �� H � � C E� �� H � % % %% % % % % % % % % %

�
QNQNQOQPQOQOQO�

Note # �� $ � � ( ) # �� � $ * � �� �R for some � �% �

IJ (
�

MNMOMPMOMNMNMS�
++ )

...+ )C TD �

...

�
QNQOQPQOQNQNQS�

U # �� � # �1 � % % % # �� � % % % V

From Time Series to Balanced Representation - Part I: Theory – p.8/37



How does deterministic subspace identification work ?
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Deterministic subspace identification

There are basically five steps. Use the data�
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to compute (an estimate of)

1. a sequential zero input response series

2. the impulse response matrix

3. an SVD of this Hankel matrix

4. the balanced state trajectory

5. (LS) solve, with a (data ind.) system traj.

This yields a desired balanced state representation.
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The question is

How do we compute all these responses,
starting from the data ?
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The model class

Time axis = (discrete-time systems)i ] ‘backward shift’

7 i ; 798 ; X ] 78 j ;

Model class: k # ( ) # $ * �

� ( + # $ , �

l ( �
� � �

�
�

Notation:

m ) *
+ ,

n
; impulse response matrix

o�p q $ r s t uvxw o �y � ` z � o �0 � ` { |� ' � }


But, for good reasons, the (equivalent) representation
as a system of linear difference equations

is often to be preferred. With the polynomial matrix

these equations can be written as
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The behavior of

� ��� �� � �
Call

] � X � � 7 i ;� ] �

] ker

7 7 i ; ;
the ‘behavior’.

Consider also its ‘annihilators’

Note: (the transpose of) each row of belongs to .

the module generated by the transposes of the rows of .
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The behavior generated by

�
� ) *
+ ,

�
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Given

� ) *
+ ,

�

, define its behavior as

� ` � � `
�

� �
�

	

 �  / such that ¡ / ` | /� } � � � ` { /� z �
 ¢

Any ker allows an observable repr.

. Assumed henceforth.

In behavioral theory
observability minimality of the state repr.
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Properties and invariants of

£
Each notion has a version for each representation,m ) *

+ ,
n

< , and � .
We give the most convenient one.

:= the lag in

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

£
Controllability

¤ 7 ;< ¥ 7 ;< ¦ 7 ;

:= input, output, state dimension

:= the lag in

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree

From Time Series to Balanced Representation - Part I: Theory – p.15/37



Properties and invariants of

£

§ 7 ;

:= the lag in

= the degree of in a ‘shortest lag’ repr.7 i ;� ] �
= the observability index
= the narrowest window through which ‘legality’

of � �
can be determined.

There holds: § 7 ; ¦ 7 ;

with = in the single output case.

:= the behavior restr. to the interval
= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

£

§ 7 ;

:= the lag in

�©¨ :«ª ¬ ­ := the behavior restr. to the interval

® j< ¯

= the ‘legal’ prefixes of length

:= the annihilators of degree
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Properties and invariants of

£

§ 7 ;

:= the lag in

�©¨ :«ª ¬ ­ := the behavior restr. to the interval

® j< ¯

= the ‘legal’ prefixes of length

° � := the annihilators of degree

± =

� cG � �0 � � � c� � �0 � � � � _ _ _� � c² � �0 � ³ � ` y

for all � � �

and

0 � �


From Time Series to Balanced Representation - Part I: Theory – p.15/37



Properties and invariants of

£
It follows that

� � � � . � cG _ _ _ � c� � � � 3
�

´µ´¶´µ�
� �0 �

...

� �0 � � � � � �
	

·µ·¶·µ
 ` y

for all � � � � � �� � 0 � �

�
�

´µ´¶´¸�
� �0 �

...

� �0 � � � � � �
	

·µ·¶·¸
 � � �º¹ � � � � � � $� » for all

0 � �

.

Hence, if is uniquely determined by
its ‘short’ sequences and ‘short’ annihilators

and
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Properties and invariants of

£
Hence, if

§ 7 ;<

� � � � . � cG _ _ _ � c¼ ' �
3

�
´µ´µ´¸�

� �0 �
...

� �0 � ½¿¾ � �
	

·µ·µ·¸
 ` y

for all � � ¼ ' �� � 0 � �

�
�

´µ´¶´À�
� �0 �

...

� �0 � ½¿¾ � �
	

·µ·¶·À
 � � �Á¹ � � ¼ » for all

0 � �

.

is

uniquely determined by its ‘short’ sequences and
‘short’ annihilators

and
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Properties and invariants of

£
Hence, if

§ 7 ;< is uniquely determined by
its ‘short’ sequences and ‘short’ annihilators

� ¨ :«ª ¬ ­ and
¬ÃÂ :� =
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Properties and invariants of

£
Another consequence. Consider

� �
� ��� H �� �
��� H �� �

�
�� � � ��

�
� �� H �� ' ¼ �

�� H � � ' ¼ �
�

��
�

� ��� H �� ' ¼ $ � �

��� H �� ' ¼ $ � �
�

�� � � ��
�

� �� H �� �
�� H �� �

�
� �Ä � ÅxÆ�ÈÇ C É

� �
� ��� H H � � �
��� H H � � �

�
�� � � ��

�
� �� H H � ¼ �
�� H H � ¼ �

�
��

�
� ��� H H � ¼ $ � �

��� H H � ¼ $ � �
�

�� � � � �
�

� �� H H � � �
��� H H � � �

�
� �Ä � ÅxÆ�ÈÇ C É

Assume suffix’ = prefix”.

Then their linking

belongs to ,

if , hence if .
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Then their linking

� �
� �� H �� �
�� H � � �

�
�� � � ��

�
� ��� H � � ' ¼ �
��� H �� ' ¼ �

�
��

�
� �� H �� ' ¼ $� �

��� H �� ' ¼ $� �
�

�� � � ��
�

� �� H � � �
��� H �� �

�
��

�
� ��� H H � ¼ $� �
��� H H � ¼ $� �

�
�� � � ��

�
� �� H H �� �
�� H H �� �

�
� �

belongs to

� ¨ :«ª >Ê Â ¬ ­ ,
if

§ 7 ;

, hence if ¦ 7 ;

.
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Fundamental lemma
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Key question

Assume that the vector time-seriesmKËÍÌ Î : ÏËÍÐ Î : Ï
n

<
m ËÍÌ Î > ÏËÍÐ Î > Ï
n

< = = = <
m Ë Ì ÎÑ ÏËÐ ÎÑ Ï
n

has been produced by .

... ...
...

Under what conditions on

and

do they span and hence, if ,
determine the generating behavior ?
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Key question

Assume that the vector time-seriesmKËÍÌ Î : ÏËÍÐ Î : Ï
n

<
m ËÍÌ Î > ÏËÍÐ Î > Ï
n

< = = = <
m Ë Ì ÎÑ ÏËÐ ÎÑ Ï
n

has been produced by .

Then, of course, the vectors

Ò
ËÍÌ Î : ÏËÍÐ Î : Ï

...ËÍÌ Î ¬ ÏËÍÐ Î ¬ Ï
Ó < Ò

ËÍÌ Î > ÏËÍÐ Î > Ï
...ËÍÌ Î ¬ Y : ÏËÐ Î ¬ Y : Ï

Ó < = = = < Ò
Ë Ì Î Ñ Â ¬ Y : ÏËÐ Î Ñ Â ¬ Y : Ï

...Ë Ì ÎÑ ÏËÐ ÎÑ Ï
Ó

belong to
� ¨ :ª ¬ ­ =

... ...
...

Under what conditions on

and

do they span and hence, if ,
determine the generating behavior ?
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Key question

Ò
ËÍÌ Î : ÏËÍÐ Î : Ï

...ËÍÌ Î ¬ ÏËÍÐ Î ¬ Ï
Ó < ÒÒ

ËÍÌ Î > ÏËÍÐ Î > Ï

...ËÍÌ Î ¬ Y : ÏËÐ Î ¬ Y : Ï
ÓÓ < = = = < Ò

Ë Ì Î Ñ Â ¬ Y : ÏËÐ Î Ñ Â ¬ Y : Ï

...Ë Ì ÎÑ ÏËÐ ÎÑ Ï
Ó

Under what conditions onm ËÍÌ Î : ÏËÍÐ Î : Ï
n

<
m ËÍÌ Î > ÏËÍÐ Î > Ï
n

< = = = <
m Ë Ì Î Ñ ÏËÐ Î Ñ Ï
n

and

do they span

� ¨ :«ª ¬ ­ and hence, if

§ 7 ;

,
determine the generating behavior ?
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Persistency of excitation

The vector time-series

��� �� � � ��� �� � � 
 
 
 ��� � � �
is said to be persistently exciting of order if the

Hankel matrix�
MPMOMNMNMNMOMPMOMS�

�� �� � �� �1 � ��� �h � % % % �� �" ' � $ � �

�� �1 � �� �h � ��� �Ô � % % % �� �" ' � $1 �

�� �h � �� �Ô � ��� �Õ � % % % �� �" ' � $ h �

...
...

...
. . .

...��� � � � ��� � � $ � � ��� � � $1 � % % % �� � " �
�

QPQOQNQNQNQOQPQOQS�

is of full row rank. Pers. of exc. no linear relations.
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Fundamental lemma

Assume that the observed vector time-series�
� ��� �� �
��� �� �

�
��

�
� ��� �1 �
��� �1 �

�
�� � � ��

�
� ��� �" �
��� �" �

�
�

has been generated by a controllable finite dimensional linear

time-invariant system Ö behavior .

Then the vectors

...
...

...

span if is persistently exc. of order
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Fundamental lemma

Assume that the observed vector time-series�
� ��� �� �
��� �� �

�
��

�
� ��� �1 �
��� �1 �

�
�� � � ��

�
� ��� �" �
��� �" �

�
�

has been generated by a controllable finite dimensional linear

time-invariant system Ö behavior . Then the vectors×
ØÙ

�� �� ��� �� �

...��� � ¼ ���� � ¼ �
Ú

ÛÜ Ý
×

ØÙ
�� �1 ��� �1 �

...�� � ¼ $� ��� � ¼ $� �
Ú

ÛÜ ÝÞ Þ Þ Ý
×

ØÙ
�� �" ' ¼ $� ��� �" ' ¼ $� �

...�� � " ��� �" �
Ú

ÛÜ

span

ß ¹ � � ¼ » if
àâá �äã � ÝÞ Þ Þ Ý àâá �å �

is persistently exc. of order

???
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Fundamental lemma

Assume that the observed vector time-series�
� ��� �� �
��� �� �

�
��

�
� ��� �1 �
��� �1 �

�
�� � � ��

�
� ��� �" �
��� �" �

�
�

has been generated by a controllable finite dimensional linear

time-invariant system Ö behavior . Then the vectors×
ØÙ

�� �� ��� �� �

...��� � ¼ ���� � ¼ �
Ú

ÛÜ Ý
×

ØÙ
�� �1 ��� �1 �

...�� � ¼ $� ��� � ¼ $� �
Ú

ÛÜ ÝÞ Þ Þ Ý
×

ØÙ
�� �" ' ¼ $� ��� �" ' ¼ $� �

...�� � " ��� �" �
Ú

ÛÜ

span

ß ¹ � � ¼ » if
àâá �äã � ÝÞ Þ Þ Ý àâá �å �

is persistently exc. of orderæç è � �

From Time Series to Balanced Representation - Part I: Theory – p.21/37



Fundamental lemma

Hence, under the assumptions of
1. controllability and 2. persistency of excitation,

the span (& hence left annihilators) of the data vectors

ÒÒÒÒ
ËÍÌ Î : ÏËÍÐ Î : ÏËÍÌ Î > ÏËÍÐ Î > Ï

...ËÍÌ Î ¬ ÏËÍÐ Î ¬ Ï
ÓÓÓÓ <
ÒÒÒÒ

ËÍÌ Î > ÏËÍÐ Î > ÏËÍÌ Îé ÏËÍÐ Î é Ï
...ËÍÌ Î ¬ Y : ÏËÐ Î ¬ Y : Ï

ÓÓÓÓ < = = = <
ÒÒÒÒ

Ë Ì Î Ñ Â ¬ Y : ÏËÐ Î Ñ Â ¬ Y : ÏË Ì Î Ñ Â ¬ Y > ÏËÐ Î Ñ Â ¬ Y > Ï

...Ë Ì ÎÑ ÏËÐ ÎÑ Ï
ÓÓÓÓ

determines , provided 3.

§ 7 ;
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Conclusion

Under reasonable conditions
(contr., suff. large, persistency of excitation),

the data matrix

4
4 ]

ÒÒÒÒÒ
�� �� � ��� �1 � % % % �� �" ' ¼ $ � �

...
...

...
...��� � ¼ � ��� � ¼ $ � � % % % �� � " �

�� �� � �� �1 � % % % �� �" ' ¼ $ � �

...
...

...
...��� � ¼ � ��� � ¼ $ � � % % % �� � " �

ÓÓÓÓÓ

has the ‘correct’ span and the ‘correct’ left kernel.

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

Under reasonable conditions the data matrix has the
‘correct’ span and the ‘correct’ left kernel.

any response, in particular, seq. zero input resp.,
impulse resp., etc., can be obtained by solving

�
MOMOMPMOMNMNMNMOMPMOMNMNMS�

� �� �
...� � ¼ �

� �� �

...� � ¼ �
�

QOQOQPQOQNQNQNQOQPQOQNQNQS�
( �
� ��ê
� I

�
� ë

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

and linking and solving, with ¦íì îï § 7 ;
or ¦ 7 ;

,

ÒÒÒÒÒÒÒÒÒÒÒÒÒ

� �� �

...� � ¼ ' ðòñ óô �

� � ¼ ' ðñ óô $ � �

...� � ¼ �
� �� �

...� � ¼ ' ðòñ óô �

� � ¼ ' ðõñ óô $ � �
...� � ¼ �

ÓÓÓÓÓÓÓÓÓÓÓÓÓ

ÒÒÒÒÒÒÒÒÒÒÒÒÒ
� � ¼ ' ðòñ óô $ � �

...� � ¼ �
� � ¼ $ � �

...� �1 ¼ ' ðòñ óô �

� � ¼ ' ðñ óô $ � �

...� � ¼ �
� � ¼ $ � �

...� �1 ¼ ' ðòñ óô �
ÓÓÓÓÓÓÓÓÓÓÓÓÓ

]
4

4 ö

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

and proceeding recursively

ÒÒÒÒÒÒÒÒÒÒÒÒÒ
� � ¼ H $ � �

...� � ¼ H $ ðõñ óô �

� � ¼ H $ ðõñ óô $ � �

...� � ¼ H $ ¼ �

� � ¼ H $ ðñ óô �

...� � ¼ �

� � ¼ H $ ðñ óô $ � �
...� � ¼ H $ ¼ �

ÓÓÓÓÓÓÓÓÓÓÓÓÓ

ÒÒÒÒÒÒÒÒÒÒÒÒÒ
� � ¼ H $ ðñ óô $ � �

...� � ¼ $ ¼ H �

� � ¼ H $ ¼ $ � �

...� � ¼ $ ¼ H $ ð÷ñ óô �

� � ¼ H $ ðñ óô $ � �

...� � ¼ $ ¼ H �

� � ¼ H $ ¼ $ � �

...� � ¼ $ ¼ H $ ð÷ñ óô �
ÓÓÓÓÓÓÓÓÓÓÓÓÓ

]
4

4 ö

This way, an arbitrary long sequence

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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Conclusion

This way, an arbitrary long sequence

�
�

� � �� �
� �� �

	

 �

�
� � �� �

� �� �
	


 � 
 
 
 �
�

� � �0 �
� �0 �

	

 � � � �º¹ � � � »

can be obtained.

Note: These algorithms allow nicely for
(LS) approximate computations.
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An idea of the proof

Assume �
� �� �� �

�� �� �
	


 �
�

� ��� �� �
�� �� �

	

 �
 
 
 �

�
� ��� � � �

�� � � �
	


 � �¹ � � " »


with
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An idea of the proof

Assume �
� �� �� �

�� �� �
	


 �
�

� ��� �� �
�� �� �

	

 �
 
 
 �

�
� ��� � � �

�� � � �
	


 � �¹ � � " »


SISO case ø �

determined by

ù ð � �0 � ú � � ù ð ' � � �0 � ú¾ � � � _ _ _� ùG � �0 �

` û ð � �0 � ú � � û ð ' � � �0 � ú¾ � � � _ _ _� ûG � �0 �

ù � ¡ � � ` û � ¡ � �

ù �� � ` ùG � ù� � � _ _ _� ù ð� ð � with ù ð ü ` y �

û �� � ` ûG � û� � � _ _ _� û ð� ð
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An idea of the proof

Assume ý
þ ÿ�� �� �

ÿ�� �� �
�

� �
ý

þ ÿ � �	 �
ÿ�� �	 �

�
� �
 
 
 �

ý
þ ÿ � � � �

ÿ�� � � �
�

� � �¹� 
 � »


ù � ¡ � � � û � ¡ � �

ù �� � � ù�� � ù� � ��� � � � ù ð� ð � with ù ð ü � � �

û �� � � û� � û� � ��� � � � û ð� ð


��� � �� �� �  ! " # $% &
' $% &

(
) 


 
! " % # $% &
% ' $% &

(
) 
* * * 


 
! " % + # $% &

% + ' $% &
(

) 
* * * ,
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An idea of the proof

Data matrix:

ÒÒÒÒÒÒÒÒ
-/. $� & -/. $0 & 1 1 1 -/. $ � " ¼2 � &

-/. $0 & -/. $3 & 1 1 1 -/. $ � " ¼2 0 &

...
...

...
...-/. $ ¼ & -/. $ ¼2 � & 1 1 1 - . $ � &

-/4 $� & -4 $ 0 & 1 1 1 -/4 $ � " ¼ 2 � &

-/4 $0 & -4 $ 3 & 1 1 1 -/4 $ � " ¼ 2 0 &

...
...

...
...-4 $ ¼ & -4 $ ¼2 � & 1 1 1 -/4 $ � &

ÓÓÓÓÓÓÓÓ

For , the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For 5 6 7

, the left kernel contains

8 " #9 " #: 1 1 1 " #<; ' 9 ' : 1 1 1 ' ; = *

For , the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For 6 7

, the left kernel contains the rows of

 
>?>@>@>?>@>@!

" #9 1 1 1 " #; � 1 1 1 �

� " #9 1 1 1 " #; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " #9 1 1 1 " #/;

' 9 1 1 1 ' ; � 1 1 1 �

� ' 9 1 1 1 ' ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � ' 9 1 1 1 ' ;

(
A?A@A@A?A@A@)

B

row

�
B

row

0
B

row

C " ð

Assume that the kernel contains another vector, not in
their span
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An idea of the proof

For 6 7

, the left kernel contains the rows of

 
>?>@>@>?>@>@!

" #9 1 1 1 " #; � 1 1 1 �

� " #9 1 1 1 " #; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " #9 1 1 1 " #/;

' 9 1 1 1 ' ; � 1 1 1 �

� ' 9 1 1 1 ' ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � ' 9 1 1 1 ' ;

(
A?A@A@A?A@A@)

B

row

�
B

row

0
B

row

C " ð

Assume that the kernel contains another vector, not in
their span

8ED 9 1 1 1 1 1 1 1 1 DF G : H 9 1 1 1 1 1 1 1 1 HF G : =
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An idea of the proof

Extend the data matrix to a larger window:

IIIIIIII
-/. $� & -/. $0 & 1 1 1 -/. $ � " C J2 � &

-/. $0 & -/. $3 & 1 1 1 -/. $ � " C J2 0 &

...
...

...
...-/. $ C J & -/. $ C J2 � & 1 1 1 -/. $ � &

-4 $� & -4 $ 0 & 1 1 1 -4 $ � " C J2 � &

-4 $0 & -4 $ 3 & 1 1 1 -4 $ � " C J2 0 &

...
...

...
...-4 $ C J & -4 $ C J2 � & 1 1 1 -4 $ � &

KKKKKKKK

Then the left kernel contains the rows of

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

row

row

row

...
...

. . .
...

...
...

...
...

. . .
...

...
...

row

row

row
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An idea of the proof

Then the left kernel contains the rows of

 
>?>@>L>L>L>M!

" #9 1 1 1 " #/; � 1 1 1 �

� " #9 1 1 1 " #<; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " #9 1 1 1 " #;

' 9 1 1 1 ' ; � 1 1 1 �

� ' 9 1 1 1 ' ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � ' 9 1 1 1 ' ;

(
A?A@ALALALAM)

B

row

�
B

row

0
B

row

C J " ð

...
...

. . .
...

...
...

...
...

. . .
...

...
...

row

row

row
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An idea of the proof

Then the left kernel contains the rows of

 
>?>@>L>L>L>M!

" #9 1 1 1 " #/; � 1 1 1 �

� " #9 1 1 1 " #<; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " #9 1 1 1 " #;

' 9 1 1 1 ' ; � 1 1 1 �

� ' 9 1 1 1 ' ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � ' 9 1 1 1 ' ;

(
A?A@ALALALAM)

B

row

�
B

row

0
B

row

C J " ð

 
>L>L>L>@>?>M!

D 9 1 DF G : � 1 �

� D 9 1 DF G : 1 �
...

...
. . .

...
...

...� 1 � D 9 1 DF G :
H 9 1 HF G : � 1 �

� H 9 1 HF G : 1 �

...
...

. . .
...

...
...� 1 � H 9 1 HF G :

(
ALALALA@A?AM)

B

row

�
B

row

0
B

row

C J " C2 �
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An idea of the proof

Then the left kernel contains the rows of

 
>?>@>L>L>L>M!

" #9 1 1 1 " #/; � 1 1 1 �

� " #9 1 1 1 " #<; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " #9 1 1 1 " #;

' 9 1 1 1 ' ; � 1 1 1 �

� ' 9 1 1 1 ' ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � ' 9 1 1 1 ' ;

(
A?A@ALALALAM)

B

row

�
B

row

0
B

row

C J " ð

 
>L>L>L>@>?>M!

D 9 1 DF G : � 1 �

� D 9 1 DF G : 1 �
...

...
. . .

...
...

...� 1 � D 9 1 DF G :
H 9 1 HF G : � 1 �

� H 9 1 HF G : 1 �

...
...

. . .
...

...
...� 1 � H 9 1 HF G :

(
ALALALA@A?AM)

B

row

�
B

row

0
B

row

C J " C2 �

If all rows were linearly independent, then at each extension step, the

rank of the data matrix remains constant. But, persistency of excitationN

the rank increases by 1. O conflict, when

P Q � P �SR .
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An idea of the proof

Then the left kernel contains the rows of

 
>?>@>L>L>L>M!

" T9 1 1 1 " T/; � 1 1 1 �

� " T9 1 1 1 " T<; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � " T9 1 1 1 " T;

U 9 1 1 1 U ; � 1 1 1 �

� U 9 1 1 1 U ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � U 9 1 1 1 U ;

(
A?A@ALALALAM)

B

row

�
B

row

0
B

row

C J " V

 
>L>L>L>@>?>M!

D 9 1 DF G : � 1 �

� D 9 1 DF G : 1 �
...

...
. . .

...
...

...� 1 � D 9 1 DF G :
H 9 1 HF G : � 1 �

� H 9 1 HF G : 1 �

...
...

. . .
...

...
...� 1 � H 9 1 HF G :

(
ALALALA@A?AM)

B

row

�
B

row

0
B

row

C J " C2 �

Therefore one of the rows of the second matrix must be linearly

dependent on the rows preceding it and the rows of the first matrix.

Written in polynomial notation, this yields
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An idea of the proof

WX YZ W X [ \ W X ] 5 ^ WX Y
_ ` WX [ WX ]

with, without loss of generality, and

^

co-prime.

This means that must be a factor of both and .

If degree

this contradicts the fact that is controllable.
Whence, , but then
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An idea of the proof

WX YZ W X [ \ W X ] 5 ^ WX Y
_ ` WX [ WX ]

with, without loss of generality, and

^

co-prime.
This means that must be a factor of both and `.

If degree

this contradicts the fact that is controllable.
Whence, , but then
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An idea of the proof

WX YZ W X [ \ W X ] 5 ^ WX Y
_ ` WX [ WX ]

with, without loss of generality, and

^

co-prime.
This means that must be a factor of both and `.

If degree

W X acb
this contradicts the fact that is controllable.

Whence, , but then
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An idea of the proof

WX YZ W X [ \ W X ] 5 ^ WX Y
_ ` WX [ WX ]

with, without loss of generality, and

^

co-prime.
This means that must be a factor of both and `.

If degree

W X acb
this contradicts the fact that is controllable.

Whence, 5 7
, but then

YZ WX [ \ W X ] 5 ^ WX Y
_ ` W X [ W X ]
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An idea of the proof

and hence

8ED 9 1 1 1 1 1 1 1 1 DF G : H 9 1 1 1 1 1 1 1 1 HF G : =

is in the span of the rows of

 
>?>@>?>@>L>M!

" T9 1 1 1 " T; � 1 1 1 �

� " T9 1 1 1 " T; 1 1 1 �
...

...
. . .

...
. . .

...� 1 1 1 � " T9 1 1 1 " T/;
U 9 1 1 1 U ; � 1 1 1 �

� U 9 1 1 1 U ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � U 9 1 1 1 U ;

(
A?A@A?A@ALAM)

B

row

�
B

row

0
B

row

C " V

Therefore, the data matrix had the ’correct’ kernel to
begin with. QED
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An idea of the proof

and hence

8ED 9 1 1 1 1 1 1 1 1 DF G : H 9 1 1 1 1 1 1 1 1 HF G : =

is in the span of the rows of

 
>?>@>?>@>L>M!

" T9 1 1 1 " T; � 1 1 1 �

� " T9 1 1 1 " T; 1 1 1 �
...

...
. . .

...
. . .

...� 1 1 1 � " T9 1 1 1 " T/;
U 9 1 1 1 U ; � 1 1 1 �

� U 9 1 1 1 U ; 1 1 1 �

...
...

. . .
...

. . .
...� 1 1 1 � U 9 1 1 1 U ;

(
A?A@A?A@ALAM)

B

row

�
B

row

0
B

row

C " V

Therefore, the data matrix had the ’correct’ kernel to
begin with. QED
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Van Overschee - De Moor from this perspective
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Van Overschee - De Moor subspace identification

1. How can we compute a sequential zero input
response series?

1. Solve for (through ) in

p

p

??

p

p

f

f

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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Van Overschee - De Moor subspace identification

Define the ‘past’ and ‘future’ input and output data matrices by

ý
dedfdfdedfd¸þ

ÿhg

pÿji

pÿkg

fÿ i

f

�
lelflflelflE�

�
ý

dedEdfdedfdfdedfdedEdfdµþ
- . $� & -/. $0 & 1 1 1 -/. $ � " 0 C2 � &1 1 1 1 1 1-/. $ C & - . $ C2 � & 1 1 1 - . $ � " C &

-/4 $� & -4 $0 & 1 1 1 -4 $ � " 0 C2 � &1 1 1 1 1 1-4 $ C & -/4 $ C2 � & 1 1 1 -4 $ � " C &

-/. $ C2 � & - . $ C2 0 & 1 1 1 -/. $ � " C2 � &1 1 1 1 1 1- . $0 C & -/. $ 0 C2 � & 1 1 1 -/. $ � &

-4 $ C2 � & -/4 $ C2 0 & 1 1 1 -4 $ � " C2 � &1 1 1 1 1 1-/4 $0 C & -4 $0 C2 � & 1 1 1 -4 $ � &
�

lelElflelflflelflelElflf�

Assume R �m � P �

& pers. of excitation, as needed.

1. Solve for (through ) in

p

p

??

p

p

f

f

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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Van Overschee - De Moor subspace identification

1. Solve for

n n

(through ) in

 
>@>?>@>@>@!

-So

p-qp

pr

??

(
A@A?A@A@A@)

�
 

>@>?>@>@>@!
-o

p-Sp
p-o
f-p
f

(
A@A?A@A@A@)

s

is obviously a seq. zero input resp. .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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Van Overschee - De Moor subspace identification

1. Solve for

n n

(through ) in

 
>@>?>@>@>@!

-So

p-qp

pr

??

(
A@A?A@A@A@)

�
 

>@>?>@>@>@!
-o

p-Sp
p-o
f-p
f

(
A@A?A@A@A@)

s

n n

is obviously a seq. zero input resp. t .

= the oblique projection of the row span of f ,

along the row span of f, onto the row span of p

p

!
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Van Overschee - De Moor subspace identification

1. Solve for

n n

(through ) in

 
>@>?>@>@>@!

-So

p-qp

pr

??

(
A@A?A@A@A@)

�
 

>@>?>@>@>@!
-o

p-Sp
p-o
f-p
f

(
A@A?A@A@A@)

s

n n

is obviously a seq. zero input resp. t .

t = the oblique projection of the row span of

u

f ,

along the row span of

u

f, onto the row span of

ý
þ

ÿkg

pÿji

p

�
� !
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Van Overschee - De Moor subspace identification

2. How can we compute (an estimate of) the Hankel
matrix?

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

2. How can we compute (an estimate of) the Hankel
matrix?

By solving for in:

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

IIIIIIIIIIIIIII
rwv xv rv xv 1 1 1 rv xv yv xvrzv xv rv xv 1 1 1 yv xv rv xv1 1 { 1 1rwv xv yv xv 1 1 1 rv xv rv xvyv xv rv xv 1 1 1 rv xv rv xv| | 1 1 1 | |1 1 1 1 1 1 1| | 1 1 1 | |rwv xv rv xv 1 1 1 rv xv rv xv1 1 1 1 1 1 1rzv xv rv xv 1 1 1 rv xv rv xv}q~ $� & }q~ $0 & 1 1 1 }q~ $ C "� & } ~ $ C &}q~ $ 0 & }q~ $3 & 1 1 1 } ~ $ C & } ~ $ C2 � &

1 1 1 1 1 1 1}q~ $ C "� & } ~ $ C & 1 1 1 }q~ $ 0 C " 3 & }q~ $0 C " 0 &}q~ $ C & } ~ $ C2 � & 1 1 1 }q~ $ 0 C " 0 & }q~ $0 C "� &
KKKKKKKKKKKKKKK

5
IIII

u

pu

pu

fu

f

KKKK

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

Or, since the columns of

ý
dfdfdedfdEdµþ

ÿkg

pÿ i

p

�
i �

�
lflflelflElf�

are spanned by the

columns of

ý
dedfdedEdfdµþ

ÿkg

pÿ i

pÿjg
fÿki
f

�
lelflelElflf�

, by solving for

�

in

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .

From Time Series to Balanced Representation - Part I: Theory – p.31/37



Van Overschee - De Moor subspace identification

IIIIIIIIIIIIIII
rwv xv rv xv 1 1 1 rv xv yv xvrzv xv rv xv 1 1 1 yv xv rv xv1 1 { 1 1rwv xv yv xv 1 1 1 rv xv rv xvyv xv rv xv 1 1 1 rv xv rv xv| | 1 1 1 | |1 1 1 1 1 1 1| | 1 1 1 | |rwv xv rv xv 1 1 1 rv xv rv xv1 1 1 1 1 1 1r�v xv rv xv 1 1 1 rv xv rv xv}<~ $� & }<~ $0 & 1 1 1 }<~ $ C "� & } ~ $ C &}q~ $ 0 & }q~ $3 & 1 1 1 } ~ $ C & } ~ $ C2 � &

1 1 1 1 1 1 1}<~ $ C "� & } ~ $ C & 1 1 1 }<~ $ 0 C " 3 & }<~ $0 C " 0 &}q~ $ C & } ~ $ C2 � & 1 1 1 }q~ $ 0 C " 0 & }q~ $0 C "� &
KKKKKKKKKKKKKKK

5 III
u

pu

p

t
KKK �

Solution
p p p

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

Solution � 5 u�

p

W u

p

u�

p

X � �
where

5
IIIII

��� �� ��� �� � � � � � �� �� ��

��� �� ��� �� � � � �� �� � � ��

� � � �

��� �� �� �� � � � � � �� � � ��

�� �� ��� �� � � � � � �� � � ��
KKKKK

the following estimate of the Hankel matrix :

p p p

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

Solution � 5 u�

p

W u

p

u�

p

X � �
the following estimate of the Hankel matrix :

�� 5 II
}<~ $� & } ~ $0 & 1 1 1 }<~ $ C "� & }<~ $ C &}q~ $0 & } ~ $3 & 1 1 1 }q~ $ C & } ~ $ C2 � &

1 1 1 1 1 1 1} ~ $ C "� & }q~ $ C & 1 1 1 } ~ $0 C " 3 & } ~ $0 C " 0 &} ~ $ C & }q~ $ C2 � & 1 1 1 } ~ $0 C " 0 & } ~ $0 C "� &
KK

� 5 t u�

p

W u

p

u �

p

X � �

Note: no new eq’ns to be solved, once we have .
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Van Overschee - De Moor subspace identification

Solution � 5 u�

p

W u

p

u�

p

X � �
the following estimate of the Hankel matrix :

� 5 t u�
p

W u
p

u �

p

X � �

Note: no new eq’ns to be solved, once we have t .
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Van Overschee - De Moor subspace identification

3. SVD this Hankel matrix

� 5 �

4. Obtain the balanced state trajectory
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Van Overschee - De Moor subspace identification

3. SVD this Hankel matrix

� 5 �

4. Obtain the balanced state trajectory

����� � P � � � ��� � P � 	 � � � � ��� � �z� P � � � � � � "� g � i �
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Van Overschee - De Moor subspace identification

3. SVD this Hankel matrix

� 5 �

4. Obtain the balanced state trajectory

����� � P � � � ��� � P � 	 � � � � ��� � �z� P � � � � � � "� g � i �

��� � P � � � � ��� � P � 	 � �� � � � ��� � � � P � � �

are estimates of a
balanced state traj. separating the ‘past’ and ‘future’.
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Van Overschee - De Moor subspace identification

IIIIIII
u

pu

p�
u

fu

f

KKKKKKK
5

IIIIIIIIIIIIIII
-/. $� & - . $0 & 1 1 1 - . $ � " 0 C2 � &

1 1 1 1 1 1-/. $ C & - . $ C2 � & 1 1 1 -/. $ � " C &

-4 $� & -4 $0 & 1 1 1 -/4 $ � " 0 C2 � &

1 1 1 1 1 1-4 $ C & -/4 $ C2 � & 1 1 1 -4 $ � " C &

}/� $ C2 � & }/� $ C2 0 & 1 1 1 }� $ � " C2 � &

-/. $ C2 � & - . $ C2 0 & 1 1 1 -/. $ � " C2 � &

1 1 1 1 1 1-/. $0 C & -/. $0 C2 � & 1 1 1 -/. $ � &

-4 $ C2 � & -/4 $ C2 0 & 1 1 1 -4 $ � " C2 � &

1 1 1 1 1 1-/4 $0 C & -4 $0 C2 � & 1 1 1 -4 $ � &
KKKKKKKKKKKKKKK

From Time Series to Balanced Representation - Part I: Theory – p.33/37



Van Overschee - De Moor subspace identification

3. SVD this Hankel matrix

� 5 �

4. Obtain the balanced state trajectory

����� � P � � � ��� � P � 	 � � � � ��� � �z� P � � � � � � "� g � i �

5. Compute the (LS) sol’n of the linear equations

 
! }� $ C2 0 & 1 1 1 }� $ � " C2 � &

-/4 $ C2 � & 1 1 1 -4 $ � " C &
(

) �
 

! � �
� �

(
)

 
! }� $ C2 � & 1 1 1 }� $ � " C &

-/. $ C2 � & 1 1 1 - . $ � " C &
(

)

This solution yields the desired balanced system.
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More on this, and other algorithms, in Ivan’s talk
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Algorithms that pass from

u�� b u�� directly to a state

resp.

u�� and, from there, to (an est. of)

Y � �
� �

]

:
known for some time. Difficulty:

arrive directly at a balanced model.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

The algorithms may be viewed as part of the
research question:
Develop algorithms that pass from a given system
representation directly to a balanced state
representation, or reduction.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

These insights will be used for setting up effective
algorithms for subspace-like identification.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Summary

From data to balanced state representation:
sequential zero input response series

Hankel matrix
SVD

balanced state trajectory
est. of syst. parameters.

Under reasonable conditions, every system
response can be obtained by solving a linear
equation involving the Hankel matrix of the data.

The combined stochastic/deterministic case from
this vantage point is our next target.
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Thank you
Thank you

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you
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