FROM TIME SERIES to BALANCED REPRESENTATION Part II: Algorithms

Ivan Markovsky (University of Leuven) Jan C. Willems (University of Leuven)

Paolo Rapisarda (University of Maastricht) Bart L.M. De Moor (University of Leuven)

ERNSI meeting

Noorwijkerhout, NL, October 7, 2003

Outline

- A new algorithm for balanced subspace identification
- Comparison with Van Overschee–De Moor algorithm
- Comparison with Moonen–Ramos algorithm

Simulations

Conclusions and discussion

A new algorithm for balanced subspace identification

The problem and an outline of the basic algorithm

problem:given: $\tilde{u}, \tilde{y} : [1, T] \rightarrow \mathbb{R}^m \times \mathbb{R}^p$ satisfying the conditions of the fundamental lemmadetermine:an associated balanced state model

basic algorithm (with finite matrices):

- 1. find sequential zero input responses Y_0 , row dim $(Y_0) = \Delta \mathrm{p}$
- 2. find the impulse response $H:[0,2\Delta-1]
 ightarrow \mathbb{R}^{p imes m}$
- 3. compute the SVD of the Hankel matrix of Markov parameters \mathfrak{H}

$$\mathfrak{H} = U \Sigma V^ op$$
, where $\mathfrak{H} \in \mathbb{R}^{\Delta \mathrm{p} imes \Delta \mathrm{m}}$

- 4. find a balanced state sequence $X := \sqrt{\Sigma^{-1}} U^{ op} Y_0$
- 5. find a balanced realization A, B, C, D (by LS)

Impulse response from data

let
$$H(0) := D, \ H(t) := CA^{t-1}B$$
, and $H := \begin{bmatrix} H(0) \\ H(1) \\ \vdots \\ H(2\Delta - 1) \end{bmatrix}$

given
$$ilde{w} = (ilde{u}, ilde{y})$$
, find H

let $\mathcal{H}_{\Delta}(\tilde{w})$ be the block-Hankel matrix with Δ block-rows, composed of the elements $\tilde{w}(1), \tilde{w}(2), \ldots$

$$\mathsf{col}\,\mathsf{span}ig(\mathcal{H}_{2\Delta}(ilde w)ig) = \mathfrak{B}|_{[0,2\Delta-1]} \Longrightarrow \ \exists \, G \, \, \mathsf{s.t.} \ H = \mathcal{H}_{2\Delta}(ilde y)G$$

let n_{max} be an estimate of an upper bound on the system order n

define
$$\mathcal{H}_{\mathrm{n_{max}}+2\Delta}(ilde{u}):=egin{bmatrix}oldsymbol{U_p}\oldsymbol{U_f}\end{bmatrix}$$

$$egin{aligned} &\mathsf{row}\,\mathsf{dim}(U_{\mathsf{p}}) = \mathtt{n}_{\max}\mathtt{m} \ &\mathsf{row}\,\mathsf{dim}(U_{\mathsf{f}}) = 2\Delta\mathtt{m} \end{aligned}$$

Impulse response from data (cont.)

similarly
$$\mathcal{H}_{n_{\max}+2\Delta}(\tilde{y}) := egin{bmatrix} Y_{\mathsf{p}} \\ Y_{\mathsf{f}} \end{bmatrix}$$
 row dim $(Y_{\mathsf{p}}) = n_{\max}p$
row dim $(Y_{\mathsf{f}}) = 2\Delta p$

with G a solution of the system

$$\begin{bmatrix} U_{\mathsf{p}} \\ U_{\mathsf{f}} \\ Y_{\mathsf{p}} \end{bmatrix} G = \begin{bmatrix} 0_{\operatorname{n_{max} \times m}} \\ \begin{bmatrix} I_{\operatorname{m}} \\ 0_{(2\Delta - \mathrm{m}) \times \mathrm{m}} \end{bmatrix} & \rightarrow \text{zero initial conditions} \\ \rightarrow \text{ impulse inputs} \\ \rightarrow \text{zero initial conditions} \end{bmatrix}$$

$$H = Y_{\mathsf{f}} G$$

note: a solution G exists whenever $ilde{u}$ is persistently exciting of order at least $2\Delta + {
m n}_{
m max}$

More samples of the impulse response

H computed above is with length at most $\frac{1}{2m}T - n_{max}$

moreover for efficiency and accuracy we want to keep Δ small

it is possible, however, to find an arbitrary long $oldsymbol{H}$

we will compute iteratively blocks of $L < rac{1}{2 extsf{m}}T - extsf{n}_{ extsf{max}}$ consecutive samples of the impulse response

there are conflicting criteria in the choice of L, we want:

small L for efficiency and statistical accuracy (under noise) but large L for numerical stability

More samples of the impulse response (cont.)

$$\begin{array}{ccc} \mathsf{let} & F_{\mathsf{u}}^{(1)} := \begin{bmatrix} 0_{\operatorname{n_{\max}} \times \mathsf{m}} \\ \begin{bmatrix} I_{\mathsf{m}} \\ 0_{(L-\mathsf{m}) \times \mathsf{m}} \end{bmatrix} \end{array} \quad \mathsf{and} \quad F_{\mathsf{y}}^{(1)} := \begin{bmatrix} 0_{\operatorname{n_{\max}} \times \mathsf{m}} \\ * \end{bmatrix}$$

for $k=1,2,\ldots$ solve the system

$$\begin{bmatrix} U_{\mathsf{p}} \\ U_{\mathsf{f}} \\ Y_{\mathsf{p}} \end{bmatrix} G^{(k)} = \begin{bmatrix} F_{\mathsf{u}}^{(k)} \\ F_{\mathsf{y},\mathsf{p}}^{(k)} \end{bmatrix} \quad \text{where} \quad F_{\mathsf{y}}^{(k)} =: \begin{bmatrix} F_{\mathsf{y},\mathsf{p}}^{(k)} \\ F_{\mathsf{y},\mathsf{f}}^{(k)} \end{bmatrix}$$

define $H^{(k)}:=Y_{\mathsf{f}}G^{(k)}, \quad F_{\mathsf{y},\mathsf{f}}^{(k)}:=H^{(k)}, \quad \mathsf{and shift} \quad F_{\mathsf{u}},F_{\mathsf{y}}$

$$F_{\mathsf{u}}^{(k+1)} := egin{bmatrix} \sigma^L F_{\mathsf{u}}^{(k)} \ 0_{L imes \mathsf{m}} \end{bmatrix} \ , \ \ F_{\mathsf{y}}^{(k+1)} := egin{bmatrix} \sigma^L F_{\mathsf{y}}^{(k)} \ st \end{bmatrix}$$

More samples of the impulse response (cont.)

 ${}_{\pmb{\sigma}}M$ is the matrix obtained from M by deleting its first row

the result
$$H := egin{bmatrix} H^{(1)} \ H^{(2)} \ \cdots \end{bmatrix}$$
 of the algorithm is the impulse response

monitor $||H^{(k)}||$ and stop when it is small enough

note: gives an automatic way to determine the "depth" constant Δ

Zero input response

let $ilde{y}_0: [0,1,\ldots,\Delta] o \mathbb{R}^p$ be a zero input response (due to an initial condition x_0)

given $ilde{w} = (ilde{u}, ilde{y})$, find a zero input response $ilde{y}_0$

let $\mathcal{T}_{\Delta}(H)$ be the lower triangular block-Toeplitz matrix with Δ block-rows and Δ block-columns, composed of $H(1), H(2), \ldots$

with a computed impulse response H of length Δ

$$ilde{y}_0 = ilde{y}(1{:}\Delta) - \mathcal{T}_\Delta(H) ilde{u}(1{:}\Delta)$$

in particular $Y_0 = \mathcal{H}_{\Delta}(\tilde{y}) - \mathcal{T}_{\Delta}(H)\mathcal{H}_{\Delta}(\tilde{u})$ is a sequential sequence of zero input responses

Zero input response (cont.)

another approach: with *q* a solution of the system

$$egin{bmatrix} U_{\mathsf{p}} \ U_{\mathsf{f}} \ Y_{\mathsf{p}} \end{bmatrix} g = egin{bmatrix} * \ 0 \ * \end{bmatrix} extstyle \to \mathsf{set initial conditions} \ o \mathsf{zero input} \ o \mathsf{set initial conditions} \ o \mathsf{set initial conditions} \end{cases}$$

$$ilde{y}_0 = Y_{\mathsf{f}} \, g$$

in particular with G a solution of the system

$$\left[egin{array}{c} U_{\mathsf{p}} \ U_{\mathsf{f}} \ Y_{\mathsf{p}} \end{array}
ight] G = \left[egin{array}{c} U_{\mathsf{p}} \ 0 \ Y_{\mathsf{p}} \end{array}
ight]$$

 $Y_0 := Y_f G$ is a Hankel matrix of sequential zero input responses

i.e., the oblique projection in the classical subspace algorithms

More samples of the free response

let
$$F_{\mathsf{u}}^{(1)} := egin{bmatrix} U_{\mathsf{p}} \\ 0 \end{bmatrix}$$
 and $F_{\mathsf{y}}^{(1)} := egin{bmatrix} Y_{\mathsf{p}} \\ * \end{bmatrix}$

for $k=1,2,\ldots$ solve the system

$$\begin{bmatrix} U_{\mathsf{p}} \\ U_{\mathsf{f}} \\ Y_{\mathsf{p}} \end{bmatrix} G^{(k)} = \begin{bmatrix} F_{\mathsf{u}}^{(k)} \\ F_{\mathsf{y},\mathsf{p}}^{(k)} \end{bmatrix} \quad \text{where} \quad F_{\mathsf{y}}^{(k)} =: \begin{bmatrix} F_{\mathsf{y},\mathsf{p}}^{(k)} \\ F_{\mathsf{y},\mathsf{f}}^{(k)} \end{bmatrix}$$

define $Y_0^{(k)}:=Y_{\mathsf{f}}G^{(k)}\,,\ F_{\mathsf{y},\mathsf{f}}^{(k)}:=Y_0^{(k)},\ ext{ and shift }F_{\mathsf{u}},F_{\mathsf{y}}$

$$F_{\mathsf{u}}^{(k+1)} := egin{bmatrix} \sigma^L F_{\mathsf{u}}^{(k)} \ 0 \end{bmatrix} \ , \ F_{\mathsf{y}}^{(k+1)} := egin{bmatrix} \sigma^L F_{\mathsf{y}}^{(k)} \ st \end{pmatrix}$$

Balanced state sequence

with
$$H = \begin{bmatrix} H(0) \\ H(1) \\ \dots \end{bmatrix}$$
, σH denotes the shift-and-cut seq. $\begin{bmatrix} H(1) \\ H(2) \\ \dots \end{bmatrix}$

Hankel matrix of the Markov parameters: $\mathfrak{H} = \mathcal{H}_{\Delta}(\sigma H)$

$$\mathfrak{H} = U\Sigma V^{ op} = \underbrace{U\sqrt{\Sigma}}_{\Gamma_{\mathsf{bal}}} \underbrace{\sqrt{\Sigma}V^{ op}}_{\Delta_{\mathsf{bal}}}$$
 $\Gamma_{\mathsf{bal}} = \begin{bmatrix} C_{\mathsf{bal}} & & & \\ C_{\mathsf{bal}}A_{\mathsf{bal}} & & \\ & \ddots & \\ & & C_{\mathsf{bal}}A_{\mathsf{bal}}^{\Delta-1} \end{bmatrix}, \quad \Delta_{\mathsf{bal}} = \begin{bmatrix} B_{\mathsf{bal}} & A_{\mathsf{bal}}B_{\mathsf{bal}} & \cdots & A_{\mathsf{bal}}^{\Delta-1}B_{\mathsf{bal}} \end{bmatrix}$

matrix of sequential zero input responses: Y_0

$$Y_0 = \Gamma X = \Gamma_{\mathsf{bal}} X_{\mathsf{bal}} \implies ig| X_{\mathsf{bal}} = \sqrt{\Sigma^{-1}} U^ op Y_0$$

Balanced model estimation by LS

$$X_{\mathsf{bal}} = \begin{bmatrix} x_{\mathsf{n}_{\mathsf{max}}+1} & x_{\mathsf{n}_{\mathsf{max}}+2} & \cdots & x_{\mathsf{n}_{\mathsf{max}}+T+1-L} \end{bmatrix}$$

$$egin{bmatrix} x_{\mathrm{n}_{\mathrm{max}}+2} & x_{\mathrm{n}_{\mathrm{max}}+3} & \cdots & x_{\mathrm{n}_{\mathrm{max}}+T+1-L} \ y_{\mathrm{n}_{\mathrm{max}}+1} & y_{\mathrm{n}_{\mathrm{max}}+2} & \cdots & y_{\mathrm{n}_{\mathrm{max}}+T-L} \ \end{bmatrix} =$$

$$\begin{bmatrix} \hat{A} & \hat{B} \\ \hat{C} & \hat{D} \end{bmatrix} \begin{bmatrix} x_{n_{\max}+1} & x_{n_{\max}+2} & \cdots & x_{n_{\max}+T-L} \\ u_{n_{\max}+1} & u_{n_{\max}+2} & \cdots & u_{n_{\max}+T-L} \end{bmatrix}$$
(LS)

A new algorithm

input: $\begin{aligned}
\tilde{u}(1), \dots, \tilde{u}(T), \quad \tilde{y}(1), \dots, \tilde{y}(T) \\
\text{an upper bound } n_{\max} \text{ for the system order}
\end{aligned}$ 1. zero input response: $Y_0 = Y_f G$, where $\begin{bmatrix} U_p \\ U_f \\ Y_p \end{bmatrix} G = \begin{bmatrix} U_p \\ 0 \\ Y_p \end{bmatrix}$ 2. impulse response: $H = Y_f G$, where $\begin{bmatrix} U_p \\ U_f \\ Y_p \end{bmatrix} G = \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix}$ 3. SVD: $\mathfrak{H} = \mathcal{H}_{\Delta}(\sigma H) = U\Sigma V^{\top}$

- 4. balanced state sequence: $X = \sqrt{\Sigma^{-1}} U^{ op} Y_0$
- 5. balanced model: solve the LS problem (LS)

output: $\hat{A}, \hat{B}, \hat{C}, \hat{D}$

Comparison with the

algorithm Van Overschee–De Moor

Algorithm Van Overschee–De Moor

input:
$$\tilde{u}_0, \ldots, \tilde{u}_T$$
 $\tilde{y}_0, \ldots, \tilde{y}_T$ and $i, i \geq n_{\max}$

$$\begin{bmatrix} U_p \\ U_f \end{bmatrix} := \mathcal{H}_{2n_{\max}}(\tilde{u}), \begin{bmatrix} Y_p \\ Y_f \end{bmatrix} := \mathcal{H}_{2n_{\max}}(\tilde{y}) \quad \stackrel{\text{row dim}(U_p) = im}{\text{row dim}(U_f) = im}$$
1. oblique projection: $Y_0 := Y_f/_{U_f} \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$
2. weight matrix: $W = U_p^\top (U_p U_p^\top)^{-1} J$

3. SVD: $Y_0W = U\Sigma V^ op$

- 4. balanced state sequence: $X_{\rm f} = \sqrt{\Sigma^{-1}} U^{ op} Y_0$
- 5. balanced model: solve the LS problem (LS)

output: $\hat{A}, \hat{B}, \hat{C}, \hat{D}$

Comments

- the oblique proj. $Y_{\rm f}/_{U_{\rm f}} \left[egin{array}{c} U_{\rm p} \\ Y_{\rm p} \end{array}
 ight]$ contains seq. zero input responses
- Y_0W contains impulse responses + initial condition responses
- Y_0W is only approximately a Hankel matrix of Markov param.
- for large n_{max} the initial conditions responses die out and the impulse responses dominate
- due to the Hankel structure most elements are recomputed many times
- in approximate case the matrix Y_0W is not Hankel

Comparison

both VO–DM and the new algorithm match the basic outline

- steps 4 (balanced state seq.) and 5 (LS) are the same
- different are the methods for computing the impulse response and the zero input response
- In algorithm VO–DM computes the Hankel matrix itself
- the new algorithm computes the impulse response (and constructs the Hankel matrix from the response)

The oblique projection

the oblique projection $A/_BC$ is closely related to the solution of the system $\left[egin{array}{c} C \ B \end{array}
ight] G = \left[egin{array}{c} C \ 0 \end{array}
ight]$ that we use

 $A/_BC$ — project A obliquely onto C along B

$$A/_B C := A \begin{bmatrix} C^{ op} & B^{ op} \end{bmatrix} \begin{bmatrix} CC^{ op} & CB^{ op} \\ BC^{ op} & BB^{ op} \end{bmatrix}^+ \begin{bmatrix} C \\ 0 \end{bmatrix}$$
 (OBL)
 $Y_{f}/_{U_{f}} \begin{bmatrix} U_{p} \\ Y_{p} \end{bmatrix}$ is the standard way of computing $Y_0 = \Gamma X$

let G be the least-norm, least-squares solution of the system

$$\begin{bmatrix} C \\ B \end{bmatrix} G = \begin{bmatrix} C \\ 0 \end{bmatrix} \quad \text{then} \quad A/_B C = AG$$

Comparison with

Moonen–Ramos algorithm

Algorithm Moonen–Ramos

$$egin{bmatrix} U_{\mathsf{p}} \ U_{\mathsf{f}} \end{bmatrix} := \mathcal{H}_{2 \mathsf{n}_{\max}}(ilde{u})$$

$$egin{bmatrix} Y_{\mathsf{p}} \ Y_{\mathsf{f}} \end{bmatrix} := \mathcal{H}_{2\mathtt{n}_{\max}}(ilde{y})$$

 $\mathsf{row}\,\mathsf{dim}(U_{\mathsf{p}}) = \mathtt{n}_{\max}\mathtt{m}$ $\mathsf{row}\,\mathsf{dim}(U_{\mathsf{f}}) = \mathtt{n}_{\max}\mathtt{m}$

 $\mathsf{row}\,\mathsf{dim}(Y_\mathsf{p}) = \mathtt{n}_{\max}\mathtt{p}$ $\mathsf{row}\,\mathsf{dim}(Y_\mathsf{f}) = \mathtt{n}_{\max}\mathtt{p}$

let the rows of $\begin{bmatrix} T_1 & T_2 & T_3 & T_4 \end{bmatrix}$ form a basis for the left kernel of $\begin{bmatrix} V_p \\ V_p \\ U_f \\ V_f \end{bmatrix}$

Algorithm Moonen–Ramos

Comments

- the main computation is to find the annihilators T_i efficient implementation should exploit the Hankel structure
- we have a "dual" algorithm, to the one discussed, that recursively computes the left kernel of the data matrix
- $[T_1 T_2] \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$ is a state sequence (shift-and-cut operator)
- $T_4^+[T_1 \ T_2] \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$ is a matrix of zero input responses
- $T_4^+(T_2T_4^+T_3-T_1)$ is the Hankel matrix

Comparison

Moonen–Ramos algorithm also fits into the basic outline

- steps 4 (balanced state seq.) and 5 (LS) are the same
- Ithe impulse and a free responses are computed via the annihilators T_i
- again most elements are recomputed many times

therefore under noise $T_4^+(T_2T_4^+T_3-T_1)$ is not Hankel

Simulations

Simulation setup

aim: to show correctness and advantages of the new algorithm

but we do not discuss numerical efficiency (depends heavily on the implementation)

example used in all experiments:

third order random stable SISO system $T=100, ~~ ilde{u}$ is unity variance white noise

 $ilde{w}$ is corrupted by white noise with standard deviation σ

if not stated otherwise: $n_{max} = n$ and L = n

Impulse response estimation

- solid red exact impulse response H
- dashed blue impulse response computed from data

 \hat{H}

Free response estimation

 $Y_0 = \Gamma X$ — exact sequence of free responses \hat{Y}_0 — estimated sequence of free responses

error of estimation: $e = ||Y_0 - \hat{Y}_0||_F$

σ	0.0	0.1	0.2	0.4
new algorithm	10^{-14}	1.33	2.84	4.48
oblique proj.	10^{-11}	2.02	4.03	5.44

the oblique projection is computed by (OBL)

note: the new algorithm uses more overdetermined system of equations and does not square the data

Closeness to balancing

the algorithms return a finite time balanced model

we illustrate the effect of the depth parameter Δ on the balancing

closeness to exact balancing

 \mathcal{C}/\mathcal{O} — contr./obsrv. Gramian of the exact balanced model $\hat{\mathcal{C}}/\hat{\mathcal{O}}$ — contr./obsrv. Gramian of the identified model

$$e^2 := rac{||\mathcal{C} - \hat{\mathcal{C}}||_F^2 + ||\mathcal{O} - \hat{\mathcal{O}}||_F^2}{||\mathcal{C}||_F^2 + ||\mathcal{O}||_F^2}$$

Closeness to balancing (cont.)

Conclusions and discussion

Conclusions

- impulse response and sequential sequence of zero input responses are the main tools for balanced model identification
- they are classically computed via the oblique projection
- we showed system theoretic interpretation of the oblique proj.
- arbitrary long responses can be computed from finite data set
- Computation of impulse response instead of Hankel matrix of Markov parameters can improve efficiency and accuracy
- next goal: efficient numerical implementation