FROM TIME SERIES to

 BALANCED REPRESENTATION

 BALANCED REPRESENTATION}

Part II: Algorithms

Ivan Markovsky (University of Leuven)
Jan C. Willems (University of Leuven)
Paolo Rapisarda (University of Maastricht)
Bart L.M. De Moor (University of Leuven)

Outline

- A new algorithm for balanced subspace identification
- Comparison with Van Overschee-De Moor algorithm
- Comparison with Moonen-Ramos algorithm
- Simulations
- Conclusions and discussion

A new algorithm for balanced subspace identification

The problem and an outline of the basic algorithm

$$
\text { problem: } \quad \text { given: } \quad \tilde{u}, \tilde{\boldsymbol{y}}:[1, T] \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{p}
$$

satisfying the conditions of the fundamental lemma determine: an associated balanced state model
basic algorithm (with finite matrices):

1. find sequential zero input responses $\quad \boldsymbol{Y}_{0}$, row $\operatorname{dim}\left(\boldsymbol{Y}_{\mathbf{0}}\right)=\Delta \mathrm{p}$
2. find the impulse response $\boldsymbol{H}:[0,2 \Delta-1] \rightarrow \mathbb{R}^{p \times m}$
3. compute the SVD of the Hankel matrix of Markov parameters \mathfrak{H}

$$
\mathfrak{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}, \quad \text { where } \quad \mathfrak{H} \in \mathbb{R}^{\boldsymbol{\Delta} \mathrm{p} \times \boldsymbol{\Delta m}_{\mathrm{m}}}
$$

4. find a balanced state sequence $\quad X:=\sqrt{\Sigma^{-1}} U^{\top} \boldsymbol{Y}_{0}$
5. find a balanced realization $\quad A, B, C, D$ (by LS)

Impulse response from data
let $H(0):=D, H(t):=C A^{t-1} B$, and $H:=\left[\begin{array}{c}H(0) \\ H(1) \\ (\because \Delta-1)\end{array}\right]$

$$
\text { given } \tilde{w}=(\tilde{u}, \tilde{y}), \quad \text { find } \quad \boldsymbol{H}
$$

let $\mathcal{H}_{\Delta}(\tilde{w})$ be the block-Hankel matrix with Δ block-rows, composed of the elements $\tilde{w}(1), \tilde{w}(2), \ldots$
$\operatorname{col} \operatorname{span}\left(\mathcal{H}_{2 \Delta}(\tilde{w})\right)=\left.\mathfrak{B}\right|_{[0,2 \Delta-1]} \Longrightarrow \exists G$ s.t.
$H=\mathcal{H}_{2 \Delta}(\tilde{y}) G$
let $n_{\text {max }}$ be an estimate of an upper bound on the system order n
define $\quad \mathcal{H}_{\mathrm{n}_{\max }+2 \Delta}(\tilde{\boldsymbol{u}}):=\left[\begin{array}{c}U_{\mathrm{p}} \\ U_{\mathrm{f}}\end{array}\right]$ row $\operatorname{dim}\left(U_{\mathrm{p}}\right)=\mathrm{n}_{\text {max }} \mathrm{m}$
row $\operatorname{dim}\left(U_{\mathrm{f}}\right)=2 \Delta \mathrm{~m}$

Impulse response from data (cont.)

similarly $\mathcal{H}_{n_{\max }+2 \Delta}(\tilde{\boldsymbol{y}}):=\left[\begin{array}{l}\boldsymbol{Y}_{\mathrm{p}} \\ \boldsymbol{Y}_{\mathrm{f}}\end{array}\right] \quad \begin{aligned} & \operatorname{row} \operatorname{dim}\left(\boldsymbol{Y}_{\mathrm{p}}\right)=\mathrm{n}_{\max } \mathrm{p} \\ & \operatorname{row~dim}\left(\boldsymbol{Y}_{\mathrm{f}}\right)=2 \Delta \mathrm{p}\end{aligned}$
with G a solution of the system

$$
\begin{gathered}
{\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}} \\
\boldsymbol{Y}_{\mathrm{p}}
\end{array}\right] G=\left[\begin{array}{c}
0_{\mathrm{n}_{\max } \times \mathrm{m}} \\
{\left[\begin{array}{c}
I_{\mathrm{m}} \\
0_{(2 \Delta-\mathrm{m}) \times \mathrm{m}}
\end{array}\right]} \\
0_{\mathrm{n}_{\max } \times \mathrm{m}}
\end{array}\right] \begin{array}{l}
\rightarrow \text { zero initial conditions } \\
\rightarrow \text { impulse inputs } \\
\rightarrow \text { zero initial conditions }
\end{array}} \\
H=\boldsymbol{Y}_{\mathrm{f}} \boldsymbol{G}
\end{gathered}
$$

note: a solution G exists whenever $\tilde{\boldsymbol{u}}$ is persistently exciting of order at least $2 \Delta+\mathrm{n}_{\text {max }}$

More samples of the impulse response

H computed above is with length at most $\quad \frac{1}{2 m} T-\mathrm{n}_{\max }$
moreover for efficiency and accuracy we want to keep Δ small
it is possible, however, to find an arbitrary long H
we will compute iteratively blocks of $L<\frac{1}{2 \mathrm{~m}} T-\mathrm{n}_{\text {max }}$ consecutive samples of the impulse response
there are conflicting criteria in the choice of L, we want:
small L for efficiency and statistical accuracy (under noise) but large L for numerical stability

More samples of the impulse response (cont.)
let $\quad F_{\mathrm{u}}^{(1)}:=\left[\begin{array}{c}\mathbf{0}_{\mathrm{n}_{\text {max }} \times \mathrm{m}} \\ {\left[\begin{array}{c}\boldsymbol{I}_{\mathrm{m}} \\ \mathbf{0}_{(L-\mathrm{m}) \times \mathrm{m}}\end{array}\right]}\end{array}\right] \quad$ and $\quad \boldsymbol{F}_{\mathrm{y}}^{(1)}:=\left[\begin{array}{c}0_{\mathrm{n}_{\text {max }} \times \mathrm{m}} \\ *\end{array}\right]$
for $k=1,2, \ldots$ solve the system

$$
\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}} \\
Y_{\mathrm{p}}
\end{array}\right] G^{(k)}=\left[\begin{array}{c}
F_{\mathrm{u}}^{(k)} \\
\boldsymbol{F}_{\mathrm{y}, \mathrm{p}}^{(k)}
\end{array}\right] \quad \text { where } \quad \boldsymbol{F}_{\mathrm{y}}^{(k)}=:\left[\begin{array}{c}
\boldsymbol{F}_{\mathrm{y}, \mathrm{p}}^{(k)} \\
\boldsymbol{F}_{\mathrm{y}, \mathrm{f}}^{(k)}
\end{array}\right]
$$

define $\quad \boldsymbol{H}^{(k)}:=\boldsymbol{Y}_{\mathrm{f}} G^{(k)}, \quad \boldsymbol{F}_{\mathrm{y}, \mathrm{f}}^{(k)}:=\boldsymbol{H}^{(k)}, \quad$ and shift $\quad \boldsymbol{F}_{\mathrm{u}}, \boldsymbol{F}_{\mathrm{y}}$

$$
F_{\mathrm{u}}^{(k+1)}:=\left[\begin{array}{c}
\sigma^{L} F_{\mathrm{u}}^{(k)} \\
0_{L \times \mathrm{m}}
\end{array}\right] \quad, \quad F_{\mathrm{y}}^{(k+1)}:=\left[\begin{array}{c}
\sigma^{L} F_{\mathrm{y}}^{(k)} \\
*
\end{array}\right]
$$

More samples of the impulse response (cont.)

σM is the matrix obtained from M by deleting its first row
the result $H:=\left[\begin{array}{c}H^{(1)} \\ H^{(2)} \\ \ldots\end{array}\right]$ of the algorithm is the impulse response
monitor $\left\|\boldsymbol{H}^{(k)}\right\|$ and stop when it is small enough
note: gives an automatic way to determine the "depth" constant Δ

Zero input response

let $\quad \tilde{y}_{0}:[0,1, \ldots, \Delta] \rightarrow \mathbb{R}^{p} \quad$ be a zero input response (due to an initial condition x_{0})

$$
\text { given } \tilde{w}=(\tilde{u}, \tilde{y}), \quad \text { find a zero input response } \tilde{y}_{0}
$$

let $\mathcal{T}_{\Delta}(H)$ be the lower triangular block-Toeplitz matrix with Δ block-rows and Δ block-columns, composed of $H(1), H(2), \ldots$
with a computed impulse response H of length Δ

$$
\tilde{y}_{0}=\tilde{y}(1: \Delta)-\mathcal{T}_{\Delta}(H) \tilde{u}(1: \Delta)
$$

in particular $\quad Y_{0}=\mathcal{H}_{\Delta}(\tilde{y})-\mathcal{T}_{\Delta}(H) \mathcal{H}_{\Delta}(\tilde{u}) \quad$ is a sequential sequence of zero input responses

Zero input response (cont.)

another approach: with \boldsymbol{g} a solution of the system

$$
\left[\begin{array}{l}
U_{\mathrm{p}} \\
\boldsymbol{U}_{\mathrm{f}} \\
\boldsymbol{Y}_{\mathrm{p}}
\end{array}\right] g=\left[\begin{array}{l}
* \\
0 \\
*
\end{array}\right] \begin{aligned}
& \rightarrow \text { set initial conditions } \\
& \rightarrow \text { zero input } \\
& \rightarrow \text { set initial conditions }
\end{aligned}
$$

$$
\tilde{y}_{0}=Y_{\mathrm{f}} g
$$

in particular with G a solution of the system $\left[\begin{array}{c}U_{\mathrm{p}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{p}}\end{array}\right] G=\left[\begin{array}{c}U_{\mathrm{p}} \\ 0 \\ Y_{\mathrm{p}}\end{array}\right]$
$Y_{0}:=Y_{\mathrm{f}} G \quad$ is a Hankel matrix of sequential zero input responses
i.e., the oblique projection in the classical subspace algorithms

More samples of the free response

let $\quad F_{\mathrm{u}}^{(1)}:=\left[\begin{array}{c}U_{\mathrm{p}} \\ 0\end{array}\right] \quad$ and $\quad F_{\mathrm{y}}^{(1)}:=\left[\begin{array}{c}Y_{\mathrm{p}} \\ *\end{array}\right]$
for $k=1,2, \ldots$ solve the system

$$
\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}} \\
\boldsymbol{Y}_{\mathrm{p}}
\end{array}\right] \boldsymbol{G}^{(k)}=\left[\begin{array}{c}
\boldsymbol{F}_{\mathrm{u}}^{(k)} \\
\boldsymbol{F}_{\mathrm{y}, \mathrm{p}}^{(k)}
\end{array}\right] \quad \text { where } \quad \boldsymbol{F}_{\mathrm{y}}^{(k)}=:\left[\begin{array}{c}
\boldsymbol{F}_{\mathrm{y}, \mathrm{p}}^{(k)} \\
\boldsymbol{F}_{\mathrm{y}, \mathrm{f}}^{(k)}
\end{array}\right]
$$

define $\quad Y_{0}^{(k)}:=Y_{\mathrm{f}} G^{(k)}, \quad F_{\mathrm{y}, \mathrm{f}}^{(k)}:=Y_{0}^{(k)}, \quad$ and shift $F_{\mathrm{u}}, F_{\mathrm{y}}$

$$
F_{\mathrm{u}}^{(k+1)}:=\left[\begin{array}{c}
\sigma^{L} F_{\mathrm{u}}^{(k)} \\
0
\end{array}\right] \quad, \quad F_{\mathrm{y}}^{(k+1)}:=\left[\begin{array}{c}
\sigma^{L} F_{\mathrm{y}}^{(k)} \\
*
\end{array}\right]
$$

Balanced state sequence

\square with $H=\left[\begin{array}{c}H(0) \\ H(1) \\ \cdots\end{array}\right], \sigma H$ denotes the shift-and-cut seq. $\left[\begin{array}{c}H(1) \\ H(2) \\ \cdots\end{array}\right]$
Hankel matrix of the Markov parameters: $\quad \mathfrak{H}=\mathcal{H}_{\Delta}(\sigma H)$

$$
\mathfrak{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}=\underbrace{\boldsymbol{U} \sqrt{\Sigma}}_{\boldsymbol{\Gamma}_{\text {bal }}} \underbrace{\sqrt{\Sigma} \boldsymbol{V}^{\top}}_{\boldsymbol{\Delta}_{\text {bal }}}
$$

$\Gamma_{\text {bal }}=\left[\begin{array}{c}C_{\text {bal }}^{C_{\text {bal }}} \boldsymbol{A}_{\text {bal }} \\ C_{\text {bal }} A_{\text {bal }}^{\Delta-1}\end{array}\right], \quad \Delta_{\text {bal }}=\left[\begin{array}{llll}B_{\text {bal }} & A_{\text {bal }} B_{\text {bal }} & \cdots & A_{\text {bal }}^{\Delta-1} B_{\text {bal }}\end{array}\right]$
matrix of sequential zero input responses: $\quad Y_{0}$

$$
Y_{0}=\Gamma X=\Gamma_{\text {bal }} X_{\text {bal }} \Longrightarrow X_{\text {bal }}=\sqrt{\Sigma^{-1}} U^{\top} Y_{0}
$$

Balanced model estimation by LS

$$
\begin{gather*}
X_{\text {bal }}=\left[\begin{array}{llll}
x_{\mathrm{n}_{\max }+1} & \boldsymbol{x}_{\mathrm{n}_{\max }+2} & \cdots & \boldsymbol{x}_{\mathrm{n}_{\max }+T+1-L}
\end{array}\right] \\
{\left[\begin{array}{llll}
\boldsymbol{x}_{\mathrm{n}_{\max }+2} & \boldsymbol{x}_{\mathrm{n}_{\max }+3} & \cdots & \boldsymbol{x}_{\mathrm{n}_{\max }+T+1-L} \\
\boldsymbol{y}_{\mathrm{n}_{\max }+1} & \boldsymbol{y}_{\mathrm{n}_{\max }+2} & \cdots & \boldsymbol{y}_{\mathrm{n}_{\max }+T-L}
\end{array}\right]=} \\
{\left[\begin{array}{ll}
\hat{\boldsymbol{A}} & \hat{\boldsymbol{B}} \\
\hat{\boldsymbol{C}} & \hat{D}
\end{array}\right]\left[\begin{array}{llll}
\boldsymbol{x}_{\mathrm{n}_{\max }+1} & \boldsymbol{x}_{\mathrm{n}_{\max }+2} & \cdots & \boldsymbol{x}_{\mathrm{n}_{\max }+T-L} \\
\boldsymbol{u}_{\mathrm{n}_{\max }+1} & \boldsymbol{u}_{\mathrm{n}_{\max }+2} & \cdots & \boldsymbol{u}_{\mathrm{n}_{\max }+T-L}
\end{array}\right]} \tag{LS}
\end{gather*}
$$

A new algorithm
input:

$$
\tilde{u}(1), \ldots, \tilde{u}(T), \quad \tilde{y}(1), \ldots, \tilde{y}(T)
$$

an upper bound $\mathrm{n}_{\text {max }}$ for the system order

1. zero input response: $Y_{0}=Y_{\mathrm{f}} \boldsymbol{G}$, where $\left[\begin{array}{c}U_{\mathrm{p}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{p}}\end{array}\right] \boldsymbol{G}=\left[\begin{array}{c}U_{\mathrm{p}} \\ \mathbf{Y}_{\mathrm{p}}\end{array}\right]$
2. impulse response: $\boldsymbol{H}=\boldsymbol{Y}_{\mathrm{f}} \boldsymbol{G}$, where $\left[\begin{array}{c}\boldsymbol{U}_{\mathrm{p}} \\ \boldsymbol{U}_{\mathrm{f}} \\ \boldsymbol{Y}_{\mathrm{p}}\end{array}\right] \boldsymbol{G}=\left[\begin{array}{c}\mathbf{0} \\ \mathbf{I} \\ \mathbf{0} \\ \mathbf{0}\end{array}\right]$
3. SVD: $\mathfrak{H}=\mathcal{H}_{\Delta}(\boldsymbol{\sigma} \boldsymbol{H})=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$
4. balanced state sequence: $\quad \boldsymbol{X}=\sqrt{\Sigma^{-1}} U^{\top} \boldsymbol{Y}_{\mathbf{0}}$
5. balanced model: solve the LS problem (LS)
output: $\quad \hat{A}, \hat{B}, \hat{C}, \hat{D}$

Comparison with the

algorithm Van Overschee-De Moor

Algorithm Van Overschee-De Moor

 input: $\quad \tilde{u}_{0}, \ldots, \tilde{\boldsymbol{u}}_{\boldsymbol{T}} \quad \tilde{\boldsymbol{y}}_{0}, \ldots, \tilde{\boldsymbol{y}}_{\boldsymbol{T}} \quad$ and $\quad i, \quad i \geq \mathrm{n}_{\text {max }}$$\left[\begin{array}{c}U_{\mathrm{p}} \\ U_{\mathrm{f}}\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\text {max }}}(\tilde{\boldsymbol{u}}), \quad\left[\begin{array}{c}\boldsymbol{Y}_{\mathrm{p}} \\ Y_{\mathrm{f}}\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\text {max }}}(\tilde{\boldsymbol{y}}) \begin{aligned} & \begin{array}{c}\mathrm{rowdim}\left(U_{\mathrm{p}}\right)=i \mathrm{~m} \\ \mathrm{rowdim}\left(U_{\mathrm{f}}\right)=i \mathrm{~m}\end{array}\end{aligned}$

1. oblique projection: $\quad \boldsymbol{Y}_{\mathbf{0}}:=\boldsymbol{Y}_{\mathrm{f}} / \boldsymbol{U}_{\mathrm{f}}\left[\begin{array}{c}\boldsymbol{U}_{\mathrm{p}} \\ \boldsymbol{Y}_{\mathrm{p}}\end{array}\right]$
2. weight matrix: $W=U_{\mathrm{p}}^{\top}\left(U_{\mathrm{p}} U_{\mathrm{p}}^{\top}\right)^{-1} J$
3. SVD: $\quad \boldsymbol{Y}_{\mathbf{0}} \boldsymbol{W}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$
4. balanced state sequence: $\quad X_{f}=\sqrt{\Sigma^{-1}} U^{\top} Y_{0}$
5. balanced model: solve the LS problem (LS)
output: $\quad \hat{A}, \hat{B}, \hat{C}, \hat{D}$

Comments

- the oblique proj. $Y_{\mathrm{f}} / U_{\mathrm{f}}\left[\begin{array}{c}U_{\mathrm{p}} \\ Y_{\mathrm{p}}\end{array}\right]$ contains seq. zero input responses
- $\boldsymbol{Y}_{0} \boldsymbol{W}$ contains impulse responses $+\begin{gathered}\text { initial condition } \\ \text { responses }\end{gathered}$
- $Y_{0} W$ is only approximately a Hankel matrix of Markov param.
- for large $\mathrm{n}_{\text {max }}$ the initial conditions responses die out and the impulse responses dominate
- due to the Hankel structure most elements are recomputed many times
- in approximate case the matrix $Y_{0} W$ is not Hankel

Comparison

- both VO-DM and the new algorithm match the basic outline
- steps 4 (balanced state seq.) and 5 (LS) are the same
- different are the methods for computing the impulse response and the zero input response
- algorithm VO-DM computes the Hankel matrix itself
- the new algorithm computes the impulse response (and constructs the Hankel matrix from the response)

The oblique projection

the oblique projection $A /{ }_{B} C$ is closely related to the solution of the system $\left[\begin{array}{c}C \\ B\end{array}\right] G=\left[\begin{array}{c}C \\ 0\end{array}\right]$ that we use
$A /{ }_{B} C$ - project A obliquely onto C along B

$$
A /{ }_{B} C:=A\left[\begin{array}{ll}
C^{\top} & B^{\top}
\end{array}\right]\left[\begin{array}{ll}
C C^{\top} & C B^{\top} \tag{OBL}\\
B C^{\top} & B B^{\top}
\end{array}\right]^{+}\left[\begin{array}{c}
C \\
0
\end{array}\right]
$$

$Y_{\mathrm{f}} / U_{\mathrm{f}}\left[\begin{array}{c}U_{\mathrm{p}} \\ Y_{\mathrm{p}}\end{array}\right]$ is the standard way of computing $Y_{\mathbf{0}}=\Gamma \boldsymbol{X}$
let G be the least-norm, least-squares solution of the system

$$
\left[\begin{array}{l}
C \\
B
\end{array}\right] G=\left[\begin{array}{l}
C \\
0
\end{array}\right] \quad \text { then } \quad A /{ }_{B} C=A G
$$

Comparison with

Moonen-Ramos algorithm

Algorithm Moonen-Ramos

$$
\begin{array}{ll}
{\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}}
\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\max }}(\tilde{\boldsymbol{u}})} & {\left[\begin{array}{c}
\boldsymbol{Y}_{\mathrm{p}} \\
\boldsymbol{Y}_{\mathrm{f}}
\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\max }}(\tilde{\boldsymbol{y}})} \\
\text { row } \operatorname{dim}\left(\boldsymbol{U}_{\mathrm{p}}\right)=\mathrm{n}_{\text {max }^{m}} & \text { row } \operatorname{dim}\left(\boldsymbol{Y}_{\mathfrak{p}}\right)=\mathrm{n}_{\max } \mathrm{p} \\
\text { row } \operatorname{dim}\left(\boldsymbol{U}_{\mathrm{f}}\right)=\mathrm{n}_{\text {max } \mathrm{m}} & \text { row } \operatorname{dim}\left(\boldsymbol{Y}_{\mathfrak{f}}\right)=\mathrm{n}_{\max } \mathrm{p}
\end{array}
$$

let the rows of $\left[\begin{array}{llll}T_{1} & T_{2} & T_{3} & T_{4}\end{array}\right]$ form a basis for the left kernel of $\left[\begin{array}{c}U_{\mathrm{p}} \\ Y_{\mathrm{p}} \\ U_{\mathrm{f}} \\ Y_{\mathrm{f}}\end{array}\right]$

$$
\left[\begin{array}{llll}
T_{1} & T_{2} & T_{3} & T_{4}
\end{array}\right]\left[\begin{array}{c}
U_{\mathrm{p}} \\
\boldsymbol{Y}_{\mathrm{p}} \\
U_{\mathrm{f}} \\
\boldsymbol{Y}_{\mathrm{f}}
\end{array}\right]=0
$$

Algorithm Moonen-Ramos

input: $\quad \tilde{\boldsymbol{u}}_{0}, \ldots, \tilde{\boldsymbol{u}}_{\boldsymbol{T}}, \quad \tilde{\boldsymbol{y}}_{0}, \ldots, \tilde{\boldsymbol{y}}_{\boldsymbol{T}} \quad$ and $\quad \mathrm{n}_{\text {max }}$

$$
\left[\begin{array}{c}
U_{\mathrm{p}} \\
U_{\mathrm{f}}
\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\max }}(\tilde{\boldsymbol{u}}),\left[\begin{array}{c}
\boldsymbol{Y}_{\mathrm{p}} \\
\boldsymbol{Y}_{\mathrm{t}}
\end{array}\right]:=\mathcal{H}_{2 \mathrm{n}_{\max }}(\tilde{\boldsymbol{y}}) \quad \begin{aligned}
& \mathrm{rowdim}\left(U_{\mathrm{p}}\right)=\mathrm{n}_{\max } \mathrm{m} \\
& \text { rowdim }\left(U_{\mathrm{t}}\right)=\mathrm{n}_{\max }
\end{aligned}
$$

0. annihilators: $\left[\begin{array}{llll}T_{1} & T_{2} & T_{3} & T_{4}\end{array}\right]$
1. free response: $\quad \boldsymbol{Y}_{0}=\boldsymbol{T}_{\mathbf{4}}^{+}\left[\begin{array}{ll}\boldsymbol{T}_{\mathbf{1}} & \boldsymbol{T}_{\mathbf{2}}\end{array}\right]\left[\begin{array}{c}\boldsymbol{U}_{\mathrm{p}} \\ \boldsymbol{Y}_{\mathrm{p}}\end{array}\right]$
2. impulse response: $T_{4}^{+}\left(T_{2} T_{4}^{+} T_{3}-T_{1}\right)$
3. SVD: $\quad \mathfrak{H}=T_{4}^{+}\left(T_{2} T_{4}^{+} T_{3}-T_{1}\right)=U \Sigma V^{\top}$
4. balanced state sequence: $\quad X_{f}=\sqrt{\Sigma^{-1}} U^{\top} \boldsymbol{Y}_{\mathbf{0}}$
5. balanced model: solve the LS problem (LS)
output: $\quad \hat{A}, \hat{B}, \hat{C}, \hat{D}$

Comments

- the main computation is to find the annihilators \boldsymbol{T}_{i} efficient implementation should exploit the Hankel structure
- we have a "dual" algorithm, to the one discussed, that recursively computes the left kernel of the data matrix
- $\left[T_{1} T_{2}\right]\left[\begin{array}{c}U_{\mathrm{p}} \\ Y_{\mathrm{p}}\end{array}\right]$ is a state sequence (shift-and-cut operator)
- $T_{4}^{+}\left[T_{1} T_{2}\right]\left[\begin{array}{c}U_{\mathrm{p}} \\ Y_{\mathrm{p}}\end{array}\right]$ is a matrix of zero input responses
- $T_{4}^{+}\left(T_{2} T_{4}^{+} T_{3}-T_{1}\right)$ is the Hankel matrix

Comparison

- Moonen-Ramos algorithm also fits into the basic outline
- steps 4 (balanced state seq.) and 5 (LS) are the same
- the impulse and a free responses are computed via the annihilators $\boldsymbol{T}_{\boldsymbol{i}}$
- again most elements are recomputed many times
therefore under noise $T_{4}^{+}\left(T_{2} T_{4}^{+} T_{3}-T_{1}\right)$ is not Hankel

Simulations

Simulation setup

aim: to show correctness and advantages of the new algorithm
we do not discuss numerical efficiency
but
(depends heavily on the implementation)
example used in all experiments:
third order random stable SISO system
$T=100, \quad \tilde{u}$ is unity variance white noise
\tilde{w} is corrupted by white noise with standard deviation σ
if not stated otherwise: $\quad \mathrm{n}_{\max }=\mathrm{n} \quad$ and $\quad L=\mathrm{n}$

Impulse response estimation

$$
\|H-\hat{H}\|_{F}=10^{-15}
$$

up to the numerical precision exact match

$\|\boldsymbol{H}-\hat{\boldsymbol{H}}\|=0.02$

$\|H-\hat{H}\|=0.21$

Free response estimation

$Y_{0}=\Gamma X \quad-\quad$ exact sequence of free responses
$\hat{Y}_{0} \quad-\quad$ estimated sequence of free responses

$$
\text { error of estimation: } \quad e=\left\|Y_{0}-\hat{Y}_{0}\right\|_{F}
$$

σ	0.0	0.1	0.2	0.4
new algorithm	10^{-14}	1.33	2.84	4.48
oblique proj.	10^{-11}	2.02	4.03	5.44

the oblique projection is computed by (OBL)
note: the new algorithm uses more overdetermined system of equations and does not square the data

Closeness to balancing

the algorithms return a finite time balanced model
we illustrate the effect of the depth parameter Δ on the balancing
closeness to exact balancing
$\mathcal{C} / \mathcal{O}$ - contr./obsrv. Gramian of the exact balanced model
$\hat{\mathcal{C}} / \hat{\mathcal{O}}$ - contr./obsrv. Gramian of the identified model

$$
e^{2}:=\frac{\|\mathcal{C}-\hat{\mathcal{C}}\|_{F}^{2}+\|\mathcal{O}-\hat{\mathcal{O}}\|_{F}^{2}}{\|\mathcal{C}\|_{F}^{2}+\|\mathcal{O}\|_{F}^{2}}
$$

Closeness to balancing (cont.)

green - VO-DM, $V=I \quad$ red - VO-DM
 blue - M-R
 new $\equiv \mathbf{M}-$ R

Conclusions and discussion

Conclusions

- impulse response and sequential sequence of zero input responses are the main tools for balanced model identification
- they are classically computed via the oblique projection
- we showed system theoretic interpretation of the oblique proj.
- arbitrary long responses can be computed from finite data set
- computation of impulse response instead of Hankel matrix of Markov parameters can improve efficiency and accuracy
- next goal: efficient numerical implementation

