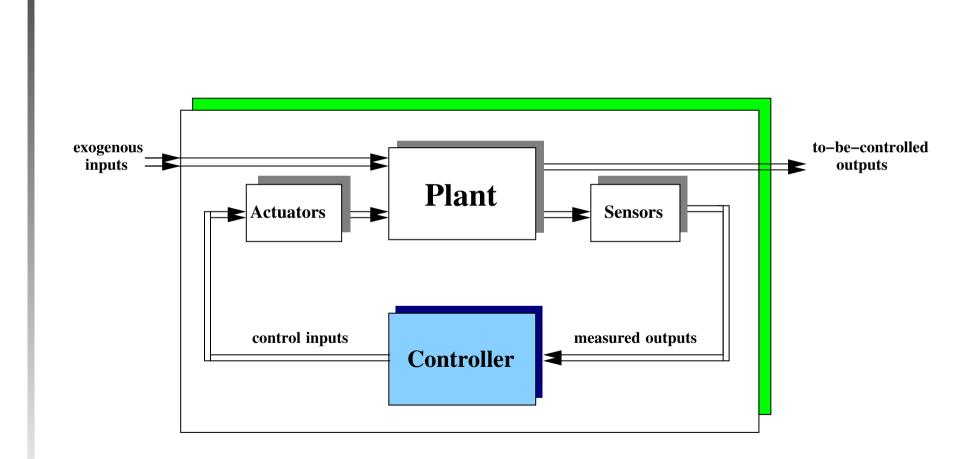
The CANONICAL CONTROLLER and its REGULARITY

Jan C. Willems, K.U. Leuven, Belgium Agung Julius, Un. of Twente, NL Madhu N. Belur, IIT Bombay, India

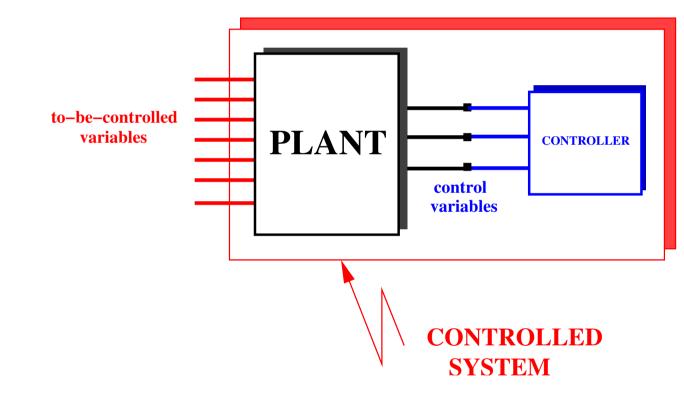
CDC2003, Maui

December 10, 2003

Feedback control

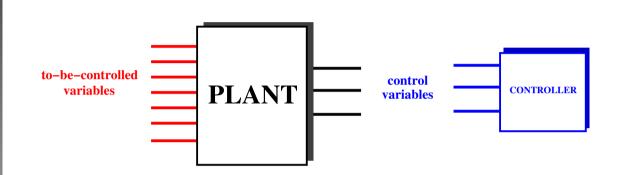


Behavioral control



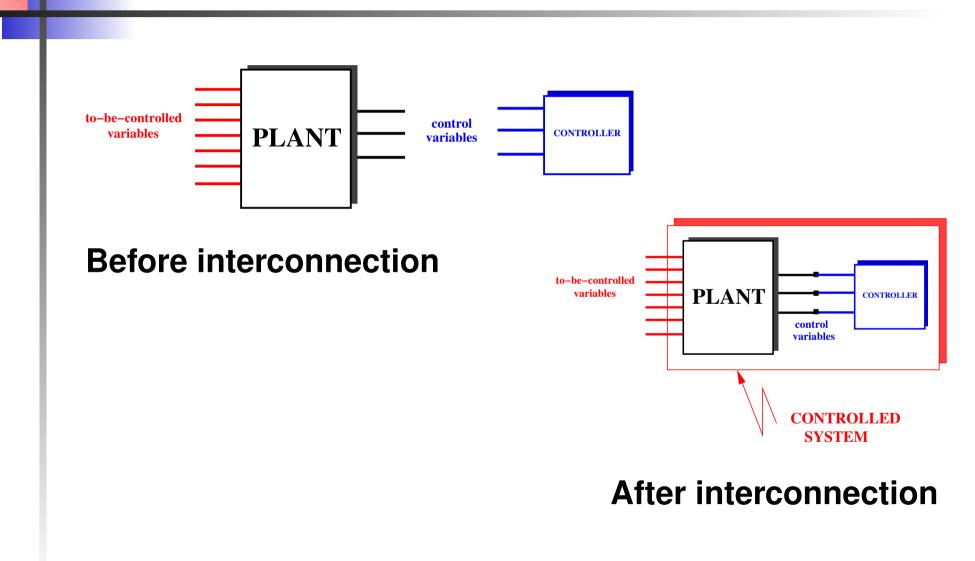
Control as interconnection

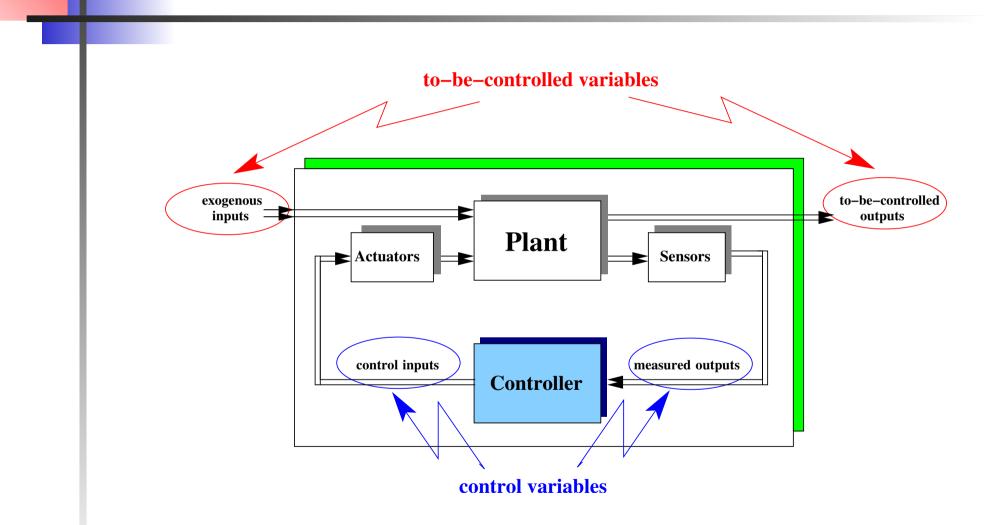
Behavioral control

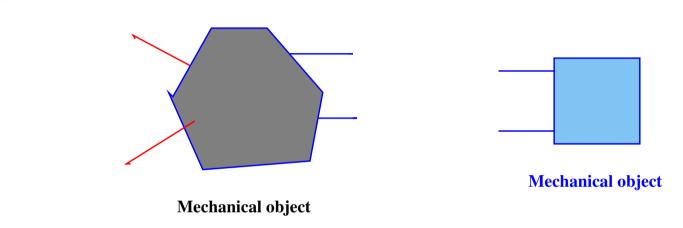


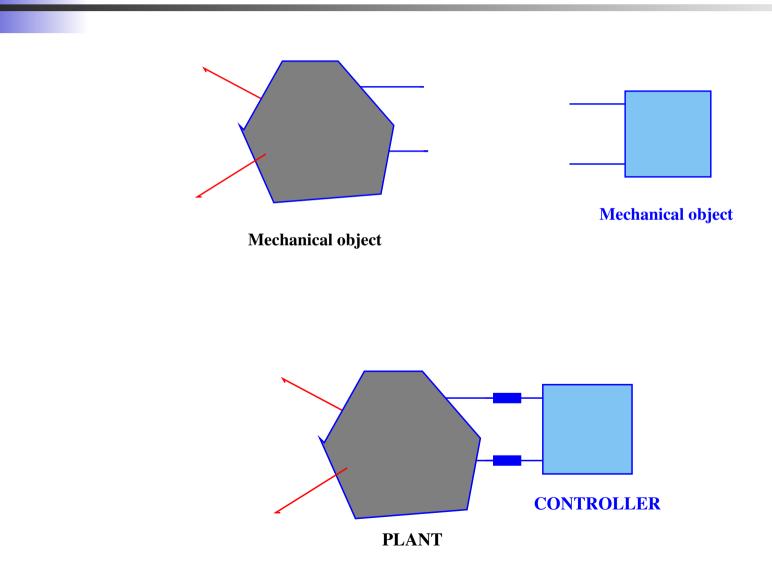
Before interconnection

Behavioral control









Mathematization

Domain of the to-be-controlled variables: ₩ Domain of the control variables: ℂ Typically: families of time-signals

Mathematization

Full plant behavior:

$$\mathcal{P}_{\mathrm{full}} = \{(oldsymbol{w}, oldsymbol{c}) \in \mathbb{W} imes \mathbb{C} \mid \mathsf{allowed} \ \mathsf{by} \ \mathsf{plant} \ \mathsf{laws} \}$$

 $\mathcal{C} = \{ \mathbf{c} \in \mathbb{C} \mid \text{allowed by controller laws} \}$

Full plant behavior:

$$\mathcal{P}_{\text{full}} = \{(w, c) \in \mathbb{W} \times \mathbb{C} \mid \text{allowed by plant laws} \}$$

 $\mathcal{C} = \{ \mathbf{c} \in \mathbb{C} \mid \text{allowed by controller laws} \}$

Controlled behavior:

 $\mathcal{K} := \{ oldsymbol{w} \in \mathbb{W} \mid \exists oldsymbol{c} \in \mathbb{C} \ ext{ such that } (oldsymbol{w}, oldsymbol{c}) \in \mathcal{P}_{ ext{full}} ext{ and } oldsymbol{c} \in \mathcal{C} \}.$

Controlled behavior:

 $\mathcal{K} := \{ oldsymbol{w} \in \mathbb{W} \mid \exists oldsymbol{c} \in \mathbb{C} \ ext{ such that } (oldsymbol{w}, oldsymbol{c}) \in \mathcal{P}_{ ext{full}} ext{ and } oldsymbol{c} \in \mathcal{C} \}.$ We say that $oldsymbol{\mathcal{C}}$ implements $oldsymbol{\mathcal{K}}$,

and that \mathcal{K} is implementable

Controlled behavior:

We say that \mathcal{C} implements \mathcal{K} ,

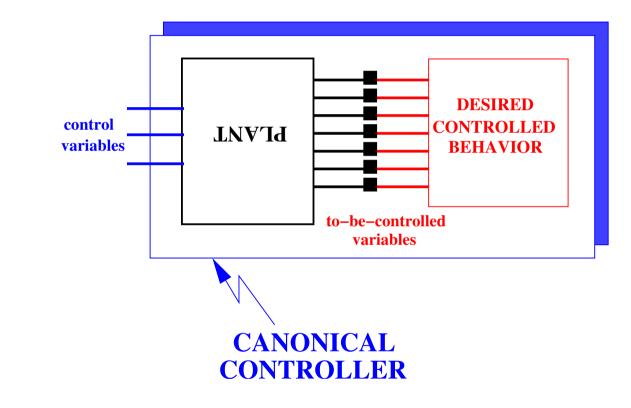
and that \mathcal{K} is implementable

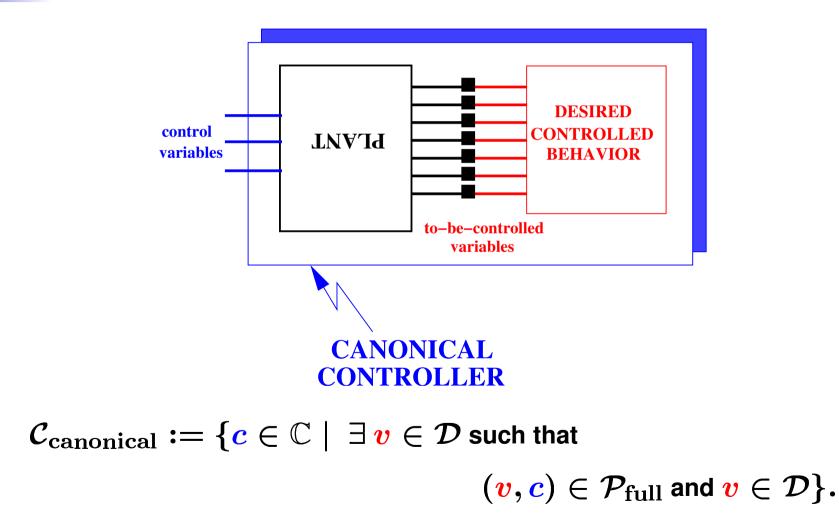
Questions:

Which C implements the

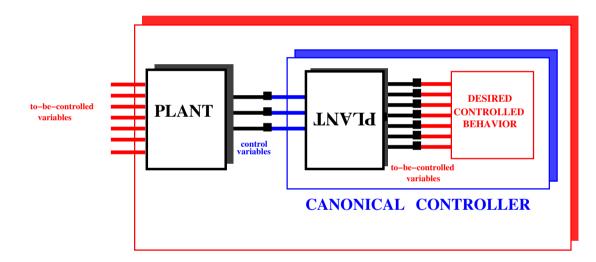
desired controlled behavior \mathcal{D} ?

Given \mathcal{P}_{full} , which $\mathcal{K} \subseteq \mathbb{W}$ are implementable?

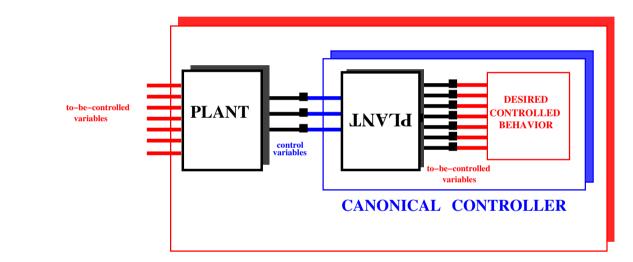




The canonically controlled system:

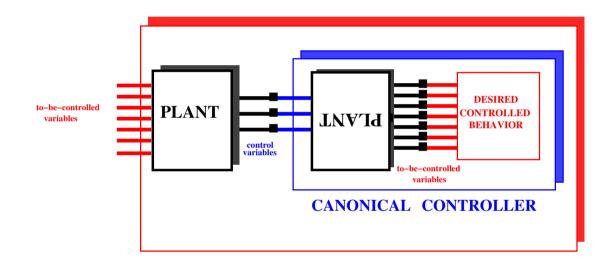


The canonically controlled system:



This is the **internal model principle** at work!

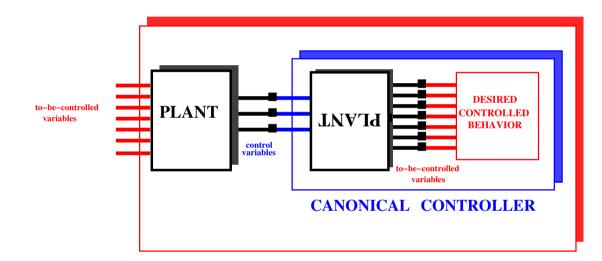
The canonically controlled system:



Theorem:

 \mathcal{D} is implementable $\Leftrightarrow \mathcal{C}_{\mathrm{canonical}}$ implements it.

The canonically controlled system:



Theorem:

 \mathcal{D} is implementable $\Leftrightarrow \mathcal{C}_{canonical}$ implements it.

Does $C_{canonical}$ have good properties?

LTIS

We henceforth restrict attention to

linear time-invariant differential systems.

LTIS

We henceforth restrict attention to linear time-invariant differential systems.

The *behavior* \mathfrak{B} belongs to $\mathfrak{L}^{ imes}$: \Leftrightarrow \exists a polynomial matrix $R \in \mathbb{R}^{ullet imes imes}[\xi]$ such that

 $\mathfrak{B} = \{w \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{\scriptscriptstyle {\mathbb W}}) \mid R(rac{d}{dt})w = 0\}$.

Control of LTIS

Plant:

$$\mathcal{P}_{\mathrm{full}} \in \mathfrak{L}^{w+c}.$$

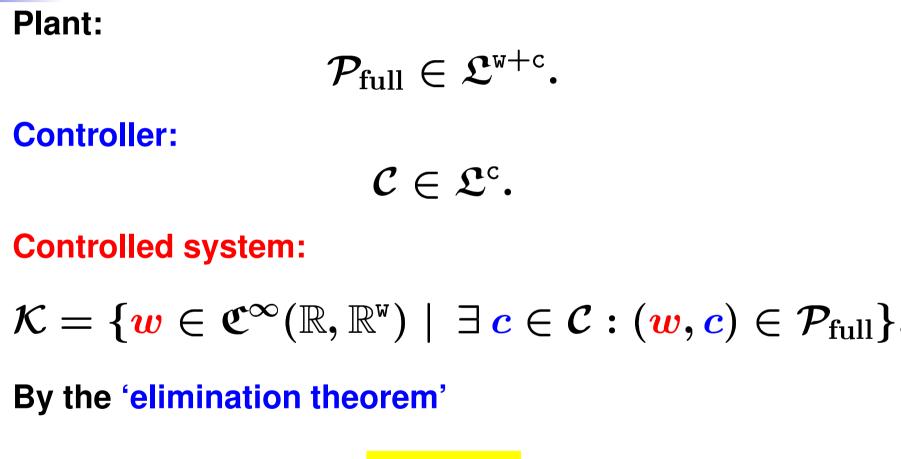
Controller:

 $\mathcal{C} \in \mathfrak{L}^{c}$.

Controlled system:

 $\mathcal{K} = \{ oldsymbol{w} \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{w}) \mid \exists oldsymbol{c} \in \mathcal{C} : (oldsymbol{w},oldsymbol{c}) \in \mathcal{P}_{ ext{full}} \}$

Control of LTIS



$$\mathcal{K}\in\mathfrak{L}^{\scriptscriptstyle{W}}$$

Which behaviors $\mathcal{K} \in \mathfrak{L}^{w}$ can be implemented by attaching a controller $\mathcal{C} \in \mathfrak{L}^{c}$ to a given plant $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$?

Which behaviors $\mathcal{K} \in \mathfrak{L}^{w}$ can be implemented by attaching a controller $\mathcal{C} \in \mathfrak{L}^{c}$ to a given plant $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$?

This question has a very concrete and intuitive answer. Theorem: Let $\mathcal{P}_{\mathrm{full}} \in \mathfrak{L}^{w+c}$ be given.

The behavior $\mathcal{K}\in\mathfrak{L}^{\scriptscriptstyle W}$ is implementable if and only if

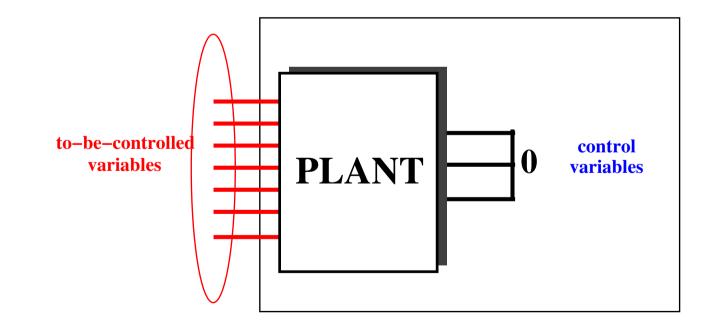
$$\mathcal{N} \subseteq \mathcal{K} \subseteq \mathcal{P}$$

The behavior $\mathcal{K}\in\mathfrak{L}^{w}$ is implementable if and only if $\mathcal{N}\subseteq\mathcal{K}\subseteq\mathcal{P}$

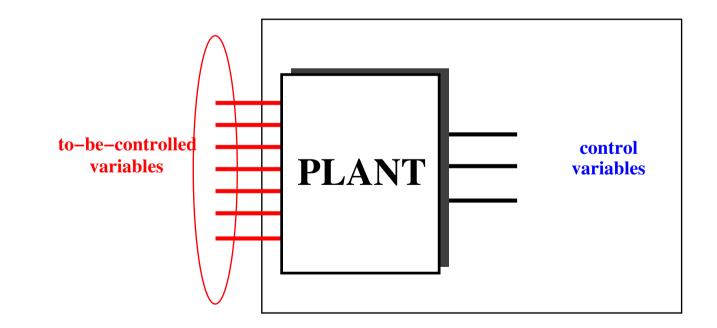
where $\mathcal{N} \in \mathfrak{L}^{\mathbb{W}}$ is the *hidden behavior* defined by $\mathcal{N} := \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathbb{W}}) \mid (w, 0) \in \mathcal{P}_{\text{full}} \},\$ and \mathcal{P} is the *manifest plant behavior* defined by

 $\mathcal{P} := \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \mid \exists \ c : (w, c) \in \mathcal{P}_{\mathrm{full}} \}.$

$\mathcal{N} \in \mathfrak{L}^{W}$, the *hidden behavior*



$\mathcal{P} \in \mathfrak{L}^{W}$, the *manifest plant behavior*



The effect of the canonical controller

Theorem: Consider $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$ and $\mathcal{D} \in \mathfrak{L}^{w}$. The controlled behavior implemented by the associated canonical controller $\mathcal{C}_{canonical} \in \mathfrak{L}^{c}$ is

$$\mathcal{K} = \mathcal{N} + \mathcal{D} \cap \mathcal{P}$$

with \mathcal{N} the hidden and \mathcal{P} the manifest plant behavior.

The effect of the canonical controller

Theorem: Consider $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$ and $\mathcal{D} \in \mathfrak{L}^{w}$. The controlled behavior implemented by the associated canonical controller $\mathcal{C}_{canonical} \in \mathfrak{L}^{c}$ is

$$\mathcal{K} = \mathcal{N} + \mathcal{D} \cap \mathcal{P}$$

with \mathcal{N} the hidden and \mathcal{P} the manifest plant behavior.

Corollary: The canonical controller implements $\mathcal{D} \in \mathfrak{L}^{\mathbb{W}}$ if and only if $\mathcal{N} \subseteq \mathcal{D} \subseteq \mathcal{P}$ i.e. if and only if \mathcal{D} is implementable.

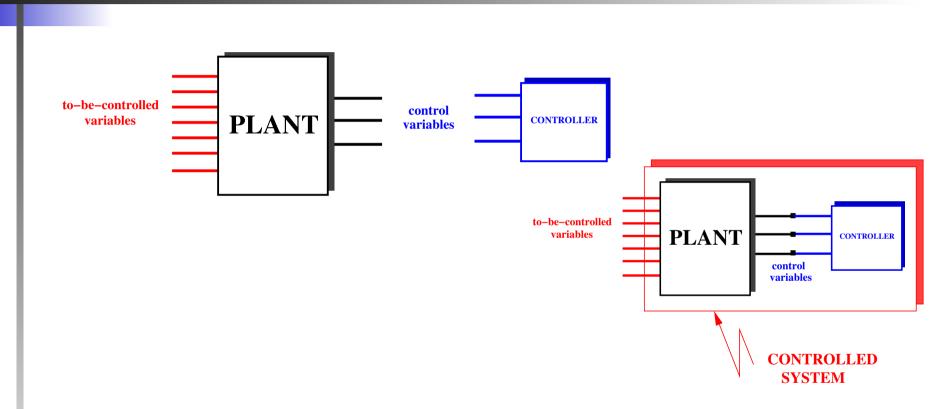
The full controlled behavior $\mathcal{K}_{\mathrm{full}} \subseteq \mathcal{P}_{\mathrm{full}}$ is defined by $\mathcal{K}_{\mathrm{full}} := \{(w, c) \in \mathcal{P}_{\mathrm{full}} \mid c \in \mathcal{C}\}.$

The full controlled behavior $\mathcal{K}_{full} \subseteq \mathcal{P}_{full}$ is defined by $\mathcal{K}_{full} := \{(w, c) \in \mathcal{P}_{full} \mid c \in \mathcal{C}\}.$ Consider the maps $m, p : \mathfrak{L}^{w} \to \{0, 1, \dots, w\}$ with $m(\mathfrak{B})$ the number of input variables, and $p(\mathfrak{B})$ the number of output variables in \mathfrak{B}.

The full controlled behavior $\mathcal{K}_{full} \subseteq \mathcal{P}_{full}$ is defined by $\mathcal{K}_{full} := \{(w, c) \in \mathcal{P}_{full} \mid c \in \mathcal{C}\}.$ Consider the maps $m, p : \mathfrak{L}^{w} \to \{0, 1, \dots, w\}$ with $m(\mathfrak{B})$ the number of input variables, and $p(\mathfrak{B})$ the number of output variables in \mathfrak{B} .

The controller $\mathcal{C}\in\mathfrak{L}^{c}$ is said to be regular if

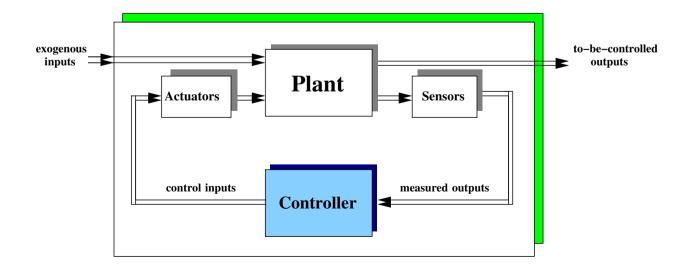
 $p(\mathcal{K}_{full}) = p(\mathcal{P}_{full}) + p(\mathcal{C})$

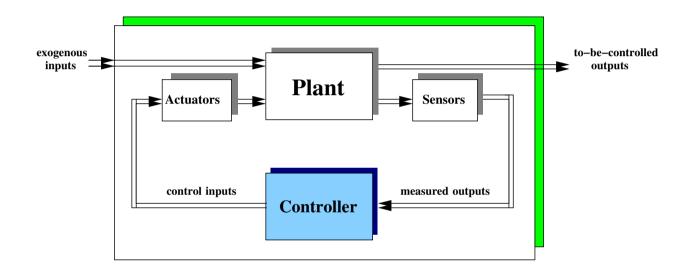


Regularity :=

if the controller has p bound (i.e. output) variables, then the plant looses p free variables after interconnection.

A controller is regular if and only if it can be realized as a feedback controller with a (possibly non-proper) transfer function from an output to an input in \mathcal{P}_{full} for an input/output partition of c.





 \Rightarrow A controller is regular if and only if it can be viewed as an 'intelligent controller' that processes sensor inputs outputs into actuator inputs.

 \Rightarrow A controller is regular if and only if it can be viewed as an 'intelligent controller' that processes sensor inputs outputs into actuator inputs.

If \mathcal{P} is controllable, then every implementable \mathcal{K} is regularly implementable.

Theorem: Equivalent for a $\mathcal{P}_{full} \in \mathfrak{L}^{w+c}$: $\mathcal{P}_c = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^c)$: the control variables are free;

Theorem: Equivalent for a $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$:

• $\mathcal{P}_c = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^c)$: the control variables are free;

Every controller is regular;

Theorem: Equivalent for a $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$:

• $\mathcal{P}_c = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^c)$: the control variables are free;

Every controller is regular;

The canonical controller is regular.

Theorem: Equivalent for a $\mathcal{P}_{\text{full}} \in \mathfrak{L}^{w+c}$:

• $\mathcal{P}_c = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^c)$: the control variables are free;

Every controller is regular;

The canonical controller is regular.

 \Rightarrow The canonical controller is regular if and only if every controller is regular.

Hence the canonical controller is maximally irregular.

