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THEME

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

KYP, LMI’s, ARE’s.

Where is this notion applied in systems and control?
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LYAPUNOV THEORY



LYAPUNOV FUNCTIONS

Consider the classical ‘dynamical system’, the flow

with , the state space, . Denote the set of
solutions by , the ‘behavior’. The function

is said to be a Lyapunov function for if along

Equivalent to



Typical Lyapunov ‘theorem’:

and for

there holds for ‘global stability’

Refinements: LaSalle’s invariance principle.

Converse: Kurzweil’s thm.

LQ theory ‘Lyapunov (matrix)
equation’. A linear system is stable iff it has a quadratic positive
definite Lyapunov function.

Basis for most stability results in control, physics, adaptation,
even numerical analysis, system identification.
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Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.
Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).



DISSIPATIVE SYSTEMS



A much more appropriate starting point for the study of dynamics
are ‘open’ systems.

SYSTEM outputinput



INPUT/STATE/OUTPUT SYSTEMS

Consider the ‘dynamical system’

: the input, output, state.
Behavior all sol’ns

Let

be a function, called the supply rate.



models something like the power delivered to the system
when the input value is and output value is .

supply

input

output

SYSTEM



DISSIPATIVITY

is said to be dissipative w.r.t. the supply rate if

called the storage function, such that

along input/output/state trajectories ( .

This inequality is called the dissipation inequality.

Equivalent to
for all .

If equality holds: ‘conservative’ system.



Dissipativeness Increase in storage Supply.

SUPPLY

DISSIPATION

STORAGE



Special case: ‘closed system’:

then dissipativeness is a Lyapunov function.

Dissipativity is a natural generalization of LF to open systems.

Stability for closed systems Dissipativity for open systems.



PHYSICAL EXAMPLES



System Supply Storage

Electrical
circuit voltage

current

energy in
capacitors and
inductors

Mechanical
system force, velocity

: angle, torque

potential +
kinetic energy

Thermodynamic
system heat, work

internal
energy

Thermodynamic
system heat, temp.

entropy

etc. etc. etc.



Electrical circuit:

(potential, current)

Dissipative w.r.t. (electrical power).



Mechanical device:

(position, force, angle, torque)

Dissipative w.r.t. (mech. power).



Thermodynamic system:

(work)

(heatflow, temperature)

Conservative w.r.t. ,

Dissipative w.r.t.



THE CONSTRUCTION OF STORAGE FUNCTIONS



Central question:

Given (a representation of ) , the dynamics, and

given , the supply rate,

is the system dissipative w.r.t. , i.e.,

does there exist a storage function such that the

dissipation inequality holds?

Assume henceforth that a number of (reasonable) conditions hold:

;
Maps and functions (including ) smooth;
State space of ‘connected’:

every state reachable from every other state;
Observability.



‘Thm’: Let and be given.

Then is dissipative w.r.t. iff

for all periodic .



Two universal storage functions:

1. The available storage

2. The required supply

Storage f’ns form convex set, every storage function satisfies



LINEAR SYSTEMS with QUADRATIC SUPPLY RATES



Assume linear, time-invariant, finite-dimensional:

and quadratic: e.g.,

E.g., for circuits , etc.

Assume controllable, observable.
, the transfer function of .



Theorem: The following are equivalent:

1. is dissipative w.r.t. (i.e., there exists a storage function ),

2. ,
,

3. for all ,

4. a quadratic storage f’n, ,



5. there exists a solution to the
Linear Matrix Inequality (LMI)

6. there exists a solution to the
Algebraic Riccati Inequality (ARIneq)

7. there exists a solution to the
Algebraic Riccati Equation (ARE)



Solution set (of LMI, ARineq) is convex, compact, and attains
its infimum and its supremum:

These extreme sol’ns and themselves satisfy the ARE.

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming.



Important refinement:

Existence of a (i.e., bounded from below) (energy?)

In LQ case

,
Note def. of -norm !

sol’n to LMI, ARineq, ARE.

KYP-lemma.



APPLICATIONS



Synthesis of RLC-circuits

Robust stability and stabilization

Norm estimation



Interconnection laws:

Interconnected system:



Assume

dissipative, storage f’n ,

dissipative, storage f’n

.
For example,

,
;

or , .

Then is a Lyapunov function
for the interconnected system .



Proof:

Small gain theorem, Positive operator theorem, Robust stability.



ROBUST STABILITY

: linear, time-invariant, transfer f’n ,

: uncertain system,

e.g. memoryless: with

Then
stable

Quadratic LF: , from LMI, ARIneq, or ARE.



Leads to:

SYSTEM

sensor output

control input

UNCERTAINPLANT

!! Stabilize robustly

Find a controller that stabilizes for a whole class of systems at once.



sensor output

control input

output
CONTROLLER

input

PLANT

CLOSED LOOP SYSTEM

!! Given plant , find controller such that

-control theory, synthesis of dissipative systems.



Application:
SYSTEM NORM ESTIMATION

Model reduction:

Given a (linear, time-invariant) system , find a system ,
with a low dimensional state space, that approximates well.

‘Well’ small -norm of tf f’n :



+
_



Some beautiful results have been obtained, in particular:

Balanced reduction of linear systems:

Let be a strictly proper, transfer function.
Then admits a representation

with controllable, observable, Hurwitz.

Moreover, can be made to be balanced
(controllability grammian = observability grammian):



. . . . . .

. . . . . .

with the Hankel SV’s of the system.
Assume ‘large’, , ‘small’.



Neglect (heuristic: these are the state components that
are both most difficult to reach and most difficult to observe).
With the obvious partitioning of as

we obtain the -order reduced system

Call its transfer f’n .

Question:

How close is to ?

!! Estimate = .



Theorem (Glover):

with such that , where are
the distinct Hankel SV’s of the system.

bound sum of the neglected SV’s without repetition.



Proof using dissipative systems:

Step 1: Neglect ONE (possibly repeated) SV:

. . .



Consider the ‘error system’:

+
_



Its dynamics:



Relations between system parameters due to balancing:



Now verify (straightforward, tedious):

Whence

Conclude, using LMI-theory,



Step 2: Triangle inequality. In the obvious notation

where = the balanced representation truncated at :
neglect ; .

Whence

Combine step 1 and step 2:

Open problems: improve bound, find storage f’n for .



Generalizations



Drawback 1: requires separation of interaction variables in
inputs and outputs

Behavioral systems.

Drawback 2: imposes storage function = state function.
This is something one would like to prove!

Drawback 3: limited to dynamical (as opposed to distributed,
PDE) systems.



Recap



The notion of a dissipative system:

Generalization of ‘Lyapunov function’ to open systems

Central concept in control theory: many applications to
feedback stability, robust ( -) control, adaptive control,
system identification, passivation control

Other applications: system norm estimates

passive electrical circuit synthesis procedures

Natural systems concept for the analysis of physical systems

Notable special case: second law of thermodynamics

Forms a tread through modern system theory





More info, ms, copy sheets? Surf to
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