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‘ THEME .

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

~s» KYP, LMI’s, ARE’s.

Where is this notion applied in systems and control?

\_
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LYAPUNOV THEORY '




/ ‘ LYAPUNOV FUNCTIONS .

Consider the classical ‘dynamical system’, the flow

DI —iE—f(iB)

with x € X = R", the state space, f : X — X. Denote the set of
solutions © : R — X by 8, the ‘behavior’. The function

V:X—=R

is said to be a [Lyapunov function] for X if along x € B

& V() <o

\Equivalent to V3= VV. f<o




Gypical Lyapunov ‘theorem’: \

V(x) >0and1;2(w) < 0for0#x€eX

—
V x € 9B, there holds x(t) — 0 for t — oo ‘slobal stability’

Refinements: LaSalle’s invariance principle.

Converse: Kurzweil’s thm.

LQ theory leadsto AT X 4+ X A = Y ‘Lyapunov (matrix)
equation’. A linear system is stable iff it has a quadratic positive

definite Lyapunov function.

Basis for most stability results in control, physics, adaptation,
\even numerical analysis, system identification. /
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Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.
Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).




‘ DISSIPATIVE SYSTEMS '




(s

are ‘open’ systems.

/\/>

input

much more appropriate starting point for the study of dynamics

SYSTEM

outpput
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INPUT/STATE/OUTPUT SYSTEMS '

Consider the ‘dynamical system’

3 —:c_f(a: u), y = h(x,u).

uelU=R"y €Y =RP,z € X = R": the input, output, state.
Behavior 25 = allsol’ns (u,y,x) : R —- U X Y X X.

Let

s:UXxY—R

be a function, called the supply rate.

\_
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s(u, y) models something like the power delivered to the system
when the input value is © and output value is y.

SYSTEM




/ ‘ DISSIPATIVITY '

3. is said to be [ dissipative ] w.r.t. the supply rate s if d

V:X—=>R,

called the [ storage function, ] such that

3t V(@) < s(u(-), y(+)

along input/output/state trajectories (V (u(:),y(-),xz(-)) € B).

This inequality is called the dissipation inequality.

Equivalent to ‘;Z(w,u) = VV(x) - f(x,u) < s(u,h(x,u))
for all (u,x) € U X X,

\Ifequality holds: ‘conservative’ system.




Dissipativeness :<> Increase in storage < Supply.

SUPPLY
M

Y
STORAGEb\\Avs‘
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DISSIPATION
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Special case: ‘closed system’: | s = 0

then dissipativeness <> V' is a Lyapunov function.

Dissipativity is a natural generalization of LF to open systems.

Stability for closed systems ~ Dissipativity for open systems.




‘ PHYSICAL EXAMPLES .




System Supply Storage
Electrical VI energy in
circuit V : voltage capacitors and
I : current inductors
Mechanical Flov+ (%H)TT potential +
system F' : force, v :velocity kinetic energy
0: angle, T : torque
Thermodynamic | Q + W internal
system Q : heat, W : work energy
Thermodynamic | —Q /T entropy
system Q : heat, T :temp.
etc. etc. etc.




Electrical circuit:

(potential, current)

Dissipative w.r.t. 2221 VeI, (electrical power).

\_ /
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Mechanical device:

(position, force, angle, torque)

Dissipative w.r.t. 3 ((2q.) " F, + (£60,) "T,) (mech. power).

\_ /
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Thermodynamic system:

(heatflow, temperature)

Conservative w.r.t. >, Qg + 22’:1Wg ,

Dissipative w.r.t.

— =

Q.
Lre




THE CONSTRUCTION OF STORAGE FUNCTIONS '




/Central question:

Given (a representation of ) 3., the dynamics, and

given s, the supply rate,

is the system dissipative w.r.t. s, i.e.,

does there exist a storage function V' such that the

dissipation inequality holds?

Assume henceforth that a number of (reasonable) conditions hold:

f(0,0) = 0,h(0,0) =0,s(0,0) = 0;
Maps and functions (including V') smooth;
State space X of X ‘connected’:

every state reachable from every other state;

Qbservability.
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‘Thm’: Let X and s be given.

Then X is dissipative w.r.t. w iff

fﬂﬂ%ym)ﬁzo

for all periodic (u(-),y(+), x(-)) € B.

\_
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wo universal storage functions:

1. The available storage

Vavailable (CUO) =
oo
SUD (4(.),y(-) 2 (-)) €5B,2(0) =wo 2 (00) =0 {—/O s(u(-),y(+)) dt}

2. The required supply

Wequired (CUO) =
0
inf (4(.),(),2 () €8, (—00)=0,2(0) = {/ s(u(-),y(-)) dt}

Storage f’ns form convex set, every storage function satisfies

Vavailable S |4 S ‘/;'equired°

\_ /




LINEAR SYSTEMS with QUADRATIC SUPPLY RATES
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Assume X linear, time-invariant, finite-dimensional:

%w:Aw—l—Bu, y = Czx,

and s quadratic: e.g.,

st (uyy) > [[ullz — [Jy|[2.

E.g., for circuits u = %, Yy = %, etc.

Assume (A, B) controllable, (A, C) observable.
G(s) := D + C(Is — A)~ 1B, the transfer function of X.

\_

/
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Theorem: The following are equivalent:

1. X is dissipative w.r.t. s (i.e., there exists a storage function V),

2. V(u(-),y(+),z(-)) € BN Ly,
lu()lle. < yC)lle.

3. [[|G(iw)|| < 1]forallw € R,

4. 3 a quadratic storage f'n,V(z) =z Kz, K = KT,

\_




/ 5. there exists a solution K = K ' to the \
Linear Matrix Inequality (LMI)

ATK+KA+C'C KB
BTK —T

6. there exists a solution X = K " to the

Algebraic Riccati Inequality (ARIneq)

A' K+ KA+ KBB'K+C'C <o,

7. there exists a solution K = K ' to the
Algebraic Riccati Equation (ARE)

ATK4+ KA+ KBB'"K4+C'C =o.

\_ /
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Solution set (of LMI, ARineq) is convex, compact, and attains
its infimum and its supremum:

K- <K<KT

These extreme sol’ns K~ and K+ themselves satisfy the ARE.

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming.

\_




ﬁmportant refinement:

Existence of a V' > 0 (i.e., bounded from below) (energy?)

~ [ ),y dt>o.

In LQ case &
0 0
o [ollu)*dt > [~ [ly(-)]|? dt,
® SUD.cciRe(s)>0} G (S)|| = |[|Gllno, <1,

Note def. of H .-norm !
e IdsoI’'n K = K" > 0to LMI, ARineq, ARE.

~» KYP-lemma.

\_




APPLICATIONS '




Synthesis of RLC-circuits
—> Robust stability and stabilization

—> Norm estimation




Y1 U2

Interconnection laws: u1 = y2, us = y1.

\Interconnected system: 31 A Y.
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Assume
e (X4, sq) dissipative, storage f’n V7,
e (X5, s5) dissipative, storage f’n V5,

o s1(u1,y1) + s2(yz2,u2) = 0.
For example,

s1: w1,y — [|ull]? — p?lly1ll?,
S2 t U2,Y2 /02||U2||2 — ||y2||2;
or s; : u,Y — UIyl, S2 1 U2,Y2 > —’U;_yzo

Then V; + V5 is a Lyapunov function

\_

for the interconnected system > A 2.




Proof:

\_

EVi@1()) < 51 (n (), 1())

£ Va(@2()) < 2(ua (), 32())

d
= a(vl(wl()) + Va(z2(+)) < 0.

~>  Small gain theorem, Positive operator theorem, Robust stability.

/




/ ‘ ROBUST STABILITY '

>.1: linear, time-invariant, transfer f’n G,

3.2: uncertain system,
e.g. memoryless: uy — yo = f(uz,t) with

|| f (uz, )]

[z

< P VU2, L.

Then

||G||’Hoo < % == 21 A\ 22 stable.

\Quadratic LF: V(z) = 2" Kz, K from LMI, ARIneq, or ARE. /
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Leads to:

control input

——
—
= | PLANT
————
————

sensor output

UNCERTAIN
SYSTEM

!! Stabilize robustly

\_

Find a controller that stabilizes for a whole class of systems at once.




control input illpllt
T— —
T— —
CONTROLLER — PLANT
=} -
S = output
sensor output
CLOSED LOOP SYSTEM

! Given plant >0 ,),,,¢, find controller > ,,¢c11er Such that

||CTYcontrolled||’7‘-Lc>o < %

~» H oo-control theory, synthesis of dissipative systems.

\_
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Application:

‘ SYSTEM NORM ESTIMATION '

Model reduction:

Given a (linear, time-invariant) system 2., find a system X.cquceds
with a low dimensional state space, that approximates 3 well.

‘Well’ ~» small Hoo-normof tf f’n v +— € = vy — yYreduced:

||y — Yreduced | |£,2

[lufle,

||G — Greduced”?—too — SUPo#uecl,

\_




| S

23reduced

Yreduced
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Some beautiful results have been obtained, in particular:

Balanced reduction of linear systems:

Let G € RP*™(s) be a strictly proper, H o transfer function.
Then G admits a representation

DI %w:Aw—l—Bu, y = Czx,

with (A, B) controllable, (A, C') observable, A Hurwitz.

Moreover, 3. can be made to be balanced

(controllability grammian = observability grammian):

\_




AT . 4 . A +CC'T =

On On

witho, > o5 > -+« > o, > 0 the Hankel SV’s of the system.
Assume 04, ...,0% ‘large’, oy >> ox41,0%4+1 ... ,0, ‘small’.

A . + . A" +B"B=0

0

/




/Neglect Tx4+1,°°** 5 Ly (heuristic: these are the state components that\
are both most difficult to reach and most difficult to observe).
With the obvious partitioning of A, B, C as

A1 Ajp2 B,
A= , B = 9CZ[C1 Cz}a
Az1 A2 B

we obtain the k-order reduced system

. d — —
Z:reduced . Exl — Allxl ‘|‘ Blua Yreduced — Clw1°

Call its transfer £'n Grequced(s) = C1(Is — A1) 1 Bj.

Question:

How close is XY cquceq t0 22?

|| —Yreduced| |£2

\!!EStimate |G = Creduceallre = SUPozues, iy, /
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Theorem (Glover):

with k’ such that o = oy, whereo; > o5, > - --

the distinct Hankel SV’s of the system.

01 =02 = *** =0y, =: 0,4
> Opy 41 = 0Op 42 = *** = Opy4n, =
>...

/

> 0'n1..._|_nn,_1_|_1 == 0'n1_|_..._|_nn,_1_|_2 =

H oo —bound < 2x sum of the neglected SV’s without repetition.

\_
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Proof using dissipative systems:

Step 1: Neglect ONE (possibly repeated) SV:

01

ol
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Consider the ‘error system’:
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Its dynamics:

d
Ewl = Ajiz1 + Ai2x2 + Biu,
d
sz = Azi1x1 + Az2x2 + Bau,
y = Cizi+ Caxo,
d . Aq1x1 + B
—q = xXr u
a3 L1 11L1 1U,
g — leéla
e = y—y
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Relations between system parameters due to balancing:

Aq1137 + ElAI = —BlB;_a
Al +3,A, = —-C/Cy,
Aj20 +31A;, = —B;B,,
Aj o +321A12 = —C/Cs,
0(A22 + A),) = —ByB] = —C, C,.
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Now verify (straightforward, tedious):
d 1
a[(wl — &) —(5131 —&1) + (x1 +&1) " (—) (x1 + 21)

+2 x, x2]
~1
= |[2voul|* — [|[Vo “el|?
_ . —1
—||12v/ou — Vo B 27 (x1 + #1) — Vo B, 3|

Whence 7V (z) < (20)[|ul[* — |le]|.

Conclude, using LMI-theory, ||G — G1||n. < 20.

\_ /




Step 2: Triangle inequality. In the obvious notation G — Grequced

— (Gn’ — Gn’—l) + (Gn’—l — Gn’—z) Tt (Gk""l o Gk’)’
where G = the balanced representation truncated at o:
neglect az+1, c..,o0'n’;s Gy = G, Greduced = G-

Whence

||G - Greduced”’H,oo <

|Gw —Gw -1 |H oo +| |G -1 =G 2|+ - -+ |G 41— G |3

Combine step 1 and step 2:

||G - Greduced”’i—too S 2o'n’ + 2o'n’—l + e + 2O'k’—|—1

Open problems: improve bound, find storage f’n for G — Greduced-

\_ /




‘ Generalizations '
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e Drawback 1: requires separation of interaction variables in

inputs and outputs
~~» Behavioral systems.

e Drawback 2: imposes storage function = state function.

This is something one would like to prove!

e Drawback 3: limited to dynamical (as opposed to distributed,
PDE) systems.

\_
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The notion of a dissipative system:

Generalization of ‘Lyapunov function’ to open systems

Central concept in control theory: many applications to
feedback stability, robust (.. -) control, adaptive control,
system identification, passivation control

Other applications: system norm estimates

passive electrical circuit synthesis procedures

Natural systems concept for the analysis of physical systems
Notable special case: second law of thermodynamics

Forms a tread through modern system theory
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