

A dissipative system absorbs 'supply' (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

 \sim KYP, LMI's, ARE's.

Where is this notion applied in systems and control?

OUTLINE

- Lyapunov theory
- Dissipative systems
- Physical examples
- Construction of the storage function
- LQ theory ~> LMI's, etc.
- Applications in systems and control
- Extensions
- Polynomial spectral factorization
- Recapitulation

LYAPUNOV FUNCTIONS

Consider the classical 'dynamical system', the *flow*

$$\Sigma: \quad \frac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the *state space*, $f : \mathbb{X} \to \mathbb{X}$. Denote the set of solutions $x : \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the 'behavior'. The function

$$V:\mathbb{X}
ightarrow\mathbb{R}$$

is said to be a (Lyapunov function) for Σ if along $x \in \mathfrak{B}$

 $rac{d}{dt} V(x(\cdot)) \leq 0$

Equivalent to $V^{\Sigma} := \nabla V \cdot f \leq 0$

Typical Lyapunov 'theorem':

$$V(x) > 0$$
 and $\overset{ullet}{V}{}^{\Sigma}(x) < 0$ for $0 \neq x \in \mathbb{X}$

 $\forall x \in \mathfrak{B}$, there holds $x(t) \to 0$ for $t \to \infty$ 'global stability'

<u>Refinements</u>: LaSalle's invariance principle.

<u>Converse</u>: Kurzweil's thm.

<u>LQ theory</u> *leadsto* $A^{\top}X + XA = Y$ 'Lyapunov (matrix) equation'. A linear system is stable iff it has a quadratic positive definite Lyapunov function.

Basis for most stability results in control, physics, adaptation, even numerical analysis, system identification.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.

Introduced Lyapunov's 'second method' in his Ph.D. thesis (1899).

INPUT/STATE/OUTPUT SYSTEMS

Consider the 'dynamical system'

$$\Sigma: \quad \frac{d}{dt} x = f(x, u), \quad y = h(x, u).$$

 $u \in \mathbb{U} = \mathbb{R}^{m}, y \in \mathbb{Y} = \mathbb{R}^{p}, x \in \mathbb{X} = \mathbb{R}^{n}$: the input, output, state. <u>Behavior</u> $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

Let

$$s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$$

be a function, called the *supply rate*.

s(u, y) models something like the power delivered to the system when the input value is u and output value is y.

Dissipativeness : \Leftrightarrow Increase in storage \leq Supply.

Special case: 'closed system': s = 0

then dissipativeness $\leftrightarrow V$ is a Lyapunov function.

Dissipativity is a natural generalization of LF to open systems.

Stability for closed systems \simeq **Dissipativity** for open systems.

PHYSICAL EXAMPLES

System	Supply	Storage
Electrical circuit	$V^{ op}I$ V:voltage I:current	energy in capacitors and inductors
Mechanical system	$F^{ op}v + (rac{d}{dt} heta)^{ op}T$ F: force, $v:$ velocity heta: angle, $T:$ torque	potential + kinetic energy
Thermodynamic system	Q+W Q: heat, W : work	internal energy
Thermodynamic system	$\begin{array}{c c} -Q/T \\ Q : \text{heat,} & T : \text{temp.} \end{array}$	entropy
etc.	etc.	etc.

Central question:

Given (a representation of) Σ , the dynamics, and

given s, the supply rate,

is the system dissipative w.r.t. s, i.e.,

does there exist a storage function V such that the

dissipation inequality holds?

Assume henceforth that a number of (reasonable) conditions hold:

f(0,0) = 0, h(0,0) = 0, s(0,0) = 0;

Maps and functions (including V) smooth;

State space X of Σ 'connected':

every state reachable from every other state;

Observability.

<u>'Thm'</u>: Let Σ and s be given.

Then Σ is dissipative w.r.t. w iff

$$\oint s(u(\cdot),y(\cdot)) \; dt \geq 0$$

for all periodic $(u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}$.

Two universal storage functions:

1. The available storage

 $V_{\text{available}}(x_0) :=$

$$\sup_{(u(\cdot),y(\cdot),x(\cdot))\in\mathfrak{B},x(0)=x_0,x(\infty)=0} \{-\int_0^{+\infty} s(u(\cdot),y(\cdot)) dt\}$$

2. The required supply

 $V_{\text{required}}(x_0) :=$

$$\inf_{(u(\cdot),y(\cdot),x(\cdot))\in\mathfrak{B},x(-\infty)=0,x(0)=x_0} \{\int_{-\infty}^0 s(u(\cdot),y(\cdot)) dt\}$$

Storage f'ns form convex set, every storage function satisfies

 $V_{ ext{available}} \leq V \leq V_{ ext{required}}.$

LINEAR SYSTEMS with QUADRATIC SUPPLY RATES

Assume Σ linear, time-invariant, finite-dimensional:

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx,$$

and s quadratic: e.g.,

$$s:(u,y)\mapsto ||u||^2-||y||^2.$$

E.g., for circuits $u = \frac{V+I}{2}, y = \frac{V-I}{2}$, etc.

Assume (A, B) controllable, (A, C) observable. $G(s) := D + C(Is - A)^{-1}B$, the transfer function of Σ .

Theorem: The following are equivalent:

1. Σ is dissipative w.r.t. *s* (i.e., there exists a storage function *V*),

2.
$$\forall (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B} \cap \mathcal{L}_2,$$

$$||u(\cdot)||_{\mathcal{L}_2} \leq ||y(\cdot)||_{\mathcal{L}_2},$$

- 3. $||G(i\omega)|| \leq 1$ for all $\omega \in \mathbb{R}$,
- 4. \exists a quadratic storage f'n, $V(x) = x^{\top}Kx, K = K^{\top}$,

5. there exists a solution $K = K^{\top}$ to the

Linear Matrix Inequality (LMI)

$$\begin{bmatrix} A^\top K + KA + C^\top C & KB \\ B^\top K & -I \end{bmatrix} \leq 0,$$

6. there exists a solution $K = K^{\top}$ to the Algebraic Riccati Inequality (ARIneq)

$$A^{\top}K + KA + KBB^{\top}K + C^{\top}C \leq 0,$$

7. there exists a solution $K = K^{\top}$ to the <u>Algebraic Riccati Equation</u> (ARE)

 $A^{\top}K + KA + KBB^{\top}K + C^{\top}C = 0.$

Solution set (of LMI, ARineq) is convex, compact, and attains its infimum and its supremum:

 $K^- \leq K \leq K^+$

These extreme sol'ns K^- and K^+ themselves satisfy the ARE.

Extensive theory, relation with other system representations, many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming.

Important refinement:

Existence of a $V \ge 0$ (i.e., bounded from below) (energy?)

$$\sim \int_{-\infty}^{0} s(u(\cdot), y(\cdot)) \, dt \geq 0.$$

In LQ case \Leftrightarrow

- $\int_{-\infty}^{0} ||u(\cdot)||^2 dt \ge \int_{-\infty}^{0} ||y(\cdot)||^2 dt$,
- $\sup_{\{s \in \mathbb{C} | \operatorname{Re}(s) > 0\}} ||G(s)|| =: ||G||_{\mathcal{H}_{\infty}} \leq 1$, Note def. of \mathcal{H}_{∞} -norm !
- \exists sol'n $K = K^{\top} \ge 0$ to LMI, ARineq, ARE.

\sim KYP-lemma.

- Synthesis of RLC-circuits
- \Rightarrow Robust stability and stabilization
- \Rightarrow Norm estimation
- • •

Interconnected system: $\Sigma_1 \wedge \Sigma_2$.

Assume

- (Σ_1, s_1) dissipative, storage f'n V_1 ,
- (Σ_2, s_2) dissipative, storage f'n V_2 ,
- $s_1(u_1, y_1) + s_2(y_2, u_2) = 0.$ For example,

$$s_1: u_1, y_1 \mapsto ||u_1||^2 -
ho^2 ||y_1||^2, \ s_2: u_2, y_2 \mapsto
ho^2 ||u_2||^2 - ||y_2||^2; \ ext{or } s_1: u_1, y_1 \mapsto u_1^ op y_1, s_2: u_2, y_2 \mapsto -u_2^ op y_2.$$

Then $V_1 + V_2$ is a Lyapunov function for the interconnected system $\Sigma_1 \wedge \Sigma_2$.

Proof:

$$egin{aligned} &rac{d}{dt}V_1(x_1(\cdot))\leq s_1(u_1(\cdot),y_1(\cdot))\ &rac{d}{dt}V_2(x_2(\cdot))\leq s_2(u_2(\cdot),y_2(\cdot)) \end{aligned}$$

$$\Rightarrow rac{d}{dt}(V_1(x_1(\cdot))+V_2(x_2(\cdot))\leq 0.$$

→ Small gain theorem, Positive operator theorem, Robust stability.

ROBUST STABILITY

 Σ_1 : linear, time-invariant, transfer f'n G,

 Σ_2 : uncertain system,

e.g. memoryless: $u_2\mapsto y_2=f(u_2,t)$ with $rac{||f(u_2,t)||}{||u_2||}\leq
ho \ \ orall u_2,t.$

Then

$$||G||_{\mathcal{H}_{\infty}} < \frac{1}{\rho} \Rightarrow \Sigma_1 \wedge \Sigma_2$$
 stable.

Quadratic LF: $V(x) = x^{\top} K x$, K from LMI, ARIneq, or ARE.

Some beautiful results have been obtained, in particular:

Balanced reduction of linear systems:

Let $G \in \mathbb{R}^{p \times m}(s)$ be a strictly proper, \mathcal{H}_{∞} transfer function. Then *G* admits a representation

$$\Sigma: \frac{d}{dt}x = Ax + Bu, \quad y = Cx,$$

with (A, B) controllable, (A, C) observable, A Hurwitz.

Moreover, Σ can be made to be <u>balanced</u> (controllability grammian = observability grammian):

Neglect x_{k+1}, \dots, x_n (heuristic: these are the state components that are <u>both</u> most difficult to reach and most difficult to observe). With the obvious partitioning of A, B, C as

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}, B = egin{bmatrix} B_1 \ B_2 \end{bmatrix}, C = egin{bmatrix} C_1 & C_2 \end{bmatrix},$$

we obtain the k-order reduced system

 $\Sigma_{\text{reduced}}: \frac{d}{dt}x_1 = A_{11}x_1 + B_1u, \quad y_{\text{reduced}} = C_1x_1.$

Call its transfer f'n $G_{\text{reduced}}(s) = C_1(Is - A_{11})^{-1}B_1$.

Question:

How close is
$$\Sigma_{\text{reduced}}$$
 to Σ ?

 $\text{!! Estimate } ||G - G_{\text{reduced}}||_{\mathcal{H}_{\infty}} = \sup_{0 \neq u \in \mathcal{L}_2} \frac{||y - y_{\text{reduced}}||_{\mathcal{L}_2}}{||u||_{\mathcal{L}_2}}$

$$||G - G_{ ext{reduced}}||_{\mathcal{H}_{\infty}} \leq 2(\sigma_{ ext{k'}+1} + \sigma_{ ext{k'}+2} + \dots + \sigma_{ ext{n'}})$$

with k' such that $\sigma_{k'} = \sigma_k$, where $\sigma'_1 > \sigma'_2 > \cdots > \sigma'_{n'} > 0$ are the <u>distinct</u> Hankel SV's of the system.

$$\sigma_{1} = \sigma_{2} = \cdots = \sigma_{n_{1}} =: \sigma'_{1}$$

$$> \sigma_{n_{1}+1} = \sigma_{n_{1}+2} = \cdots = \sigma_{n_{1}+n_{2}} =: \sigma'_{2}$$

$$> \cdots$$

$$> \sigma_{n_{1}\cdots+n_{n'-1}+1} = \sigma_{n_{1}+\cdots+n_{n'-1}+2} = \cdots = \sigma_{n} =: \sigma'_{n'}$$

 \mathcal{H}_{∞} -bound $\leq 2*$ sum of the neglected SV's without repetition.

Proof using dissipative systems:

Step 1: Neglect ONE (possibly repeated) SV:

Its dynamics:

$$egin{array}{rcl} \displaystyle rac{d}{dt} x_1 &=& A_{11} x_1 + A_{12} x_2 + B_1 u, \ \displaystyle rac{d}{dt} x_2 &=& A_{21} x_1 + A_{22} x_2 + B_2 u, \ \displaystyle y &=& C_1 x_1 + C_2 x_2, \end{array}$$

$$egin{array}{rcl} rac{d}{dt} \hat{x}_1 &=& A_{11} \hat{x}_1 + B_1 u, \ \hat{y} &=& C_1 \hat{x}_1, \end{array}$$

$$e = y - \hat{y}.$$

Relations between system parameters due to balancing:

$$\begin{array}{rcl} A_{11}\Sigma_1 + \Sigma_1 A_1^\top &=& -B_1 B_1^\top, \\ A_{11}^\top \Sigma_1 + \Sigma_1 A_1 &=& -C_1^\top C_1, \\ A_{12}\sigma + \Sigma_1 A_{21}^\top &=& -B_1 B_2^\top, \\ A_{21}^\top \sigma + \Sigma_1 A_{12} &=& -C_1^\top C_2, \\ \sigma(A_{22} + A_{22}^\top) &=& -B_2 B_2^\top = -C_2^\top C_2. \end{array}$$

Now verify (straightforward, tedious):

$$\begin{split} \frac{d}{dt} [(x_1 - \hat{x}_1)^\top \frac{\Sigma_1}{\sigma} (x_1 - \hat{x}_1) + (x_1 + \hat{x}_1)^\top (\frac{\Sigma_1}{\sigma})^{-1} (x_1 + \hat{x}_1) \\ &+ 2 x_2^\top x_2] \\ &= ||2\sqrt{\sigma}u||^2 - ||\sqrt{\sigma}^{-1}e||^2 \\ &- ||2\sqrt{\sigma}u - \sqrt{\sigma}B_1^\top \Sigma_1^{-1} (x_1 + \hat{x}_1) - \sqrt{\sigma}^{-1}B_2^\top x_2||^2. \end{split}$$
Whence
$$\frac{d}{dt} V(x) \leq (2\sigma)^2 ||u||^2 - ||e||^2.$$

Conclude, using LMI-theory, $||G - G_1||_{\mathcal{H}_{\infty}} \leq 2\sigma$.

Step 2: Triangle inequality. In the obvious notation $G - G_{\text{reduced}}$ = $(G_{n'} - G_{n'-1}) + (G_{n'-1} - G_{n'-2}) + \dots + (G_{k'+1} - G_{k'}),$

where G_{ℓ} = the balanced representation truncated at σ'_{ℓ} : neglect $\sigma'_{\ell+1}, \ldots, \sigma'$ n'; $G_{n'} = G, G_{reduced} = G_{k'}$.

Whence

$$||G - G_{\text{reduced}}||_{\mathcal{H}_{\infty}} \leq ||G_{n'} - G_{n'-1}||_{\mathcal{H}_{\infty}} + ||G_{n'-1} - G_{n'-2}||_{\mathcal{H}_{\infty}} + \dots + ||G_{k'+1} - G_{k'}||_{\mathcal{H}_{\infty}}$$

Combine step 1 and step 2:

 $||G - G_{ ext{reduced}}||_{\mathcal{H}_{\infty}} \leq 2\sigma_{ ext{n'}} + 2\sigma_{ ext{n'}-1} + \dots + 2\sigma_{ ext{k'}+1}$

Open problems: improve bound, find storage f'n for $G - G_{reduced}$ **.**

Generalizations

• <u>Drawback 1</u>: requires separation of interaction variables in inputs and outputs

 \sim Behavioral systems.

- <u>Drawback 2</u>: imposes storage function = state function. This is something one would like to prove!
- <u>Drawback 3</u>: limited to dynamical (as opposed to distributed, PDE) systems.

The notion of a dissipative system:

- Generalization of 'Lyapunov function' to open systems
- Central concept in control theory: many applications to feedback stability, robust (*H*∞-) control, adaptive control, system identification, passivation control
- Other applications: system norm estimates
- passive electrical circuit synthesis procedures
- Natural systems concept for the analysis of physical systems
- Notable special case: second law of thermodynamics
- Forms a tread through modern system theory

More info, ms, copy sheets? Surf to

http://www.math.rug.nl/~willems

