

CONJECTURE

A system with behavior described by

a linear constant coefficient PDE is

Markovian

if and only if the PDE is

first order.

n-D linear differential systems

Set of independent variables $= \mathbb{R}^n$; of dependent variables $= \mathbb{R}^w$.

Let $R \in \mathbb{R}^{\bullet \times w}[\xi_1, \cdots, \xi_n]$, and consider the system of linear constant coefficient PDE's

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$
 (*)

This defines an n-D system with behavior

 $\mathfrak{B} = \{w \in \mathfrak{D}'(\mathbb{R}^n, \mathbb{R}^{w}) \mid (*) ext{ holds } \}.$

We refer to such behaviors as 'linear differential behaviors', and to (*) as a 'kernel representation' of the behavior \mathfrak{B} .

<u>Note</u>: B has many kernel representations.

A linear differential behavior **B** is said to be

Markovian

if for all nice 3-way partitions (S_-, S_0, S_+) of \mathbb{R}^n and for all $w_1, w_2 \in \mathfrak{B} \cap \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^w)$ such that

 $w_1(x) = w_2(x)$ for $x \in S_0$,

there holds

$$w_1 \mathop{\scriptscriptstyle \wedge}\limits_{S_0} w_2 \in \mathfrak{B}_2$$

where
$$w_1 \mathop{\wedge}\limits_{S_0} w_2$$
 denotes the concatenation along $S_0,$ i.e.

$$(w_1 \mathop{\wedge}\limits_{S_0} w_2)(x) := egin{array}{cccc} & w_1(x) & ext{for} & x \in S_- \ & w_1(x) = w_2(x) & ext{for} & x \in S_0 \ & w_2(x) & ext{for} & x \in S_+ \end{array}$$

The linear differential behavior \mathfrak{B} is Markovian

if and only if

it admits a kernel representation that is

first order.

I.e. a kernel representation of the form

$$R_0w+R_1rac{\partial}{\partial x_1}w+R_2rac{\partial}{\partial x_2}w+\cdots+R_{
m n}rac{\partial}{\partial x_{
m n}}w=0$$

with $R_0, R_1, \ldots, R_n \in \mathbb{R}^{\bullet imes w}$ constant matrices

Notes: The "if"-part is easy.

The conjecture is true for n = 1, i.e. in the ODE case. The conjecture is true if there is only one PDE.

Example of a Markovian system: Maxwell's equations. **Non-examples:** Diffusion equation; Wave equation.

Situation is more involved if the set of independent variables is \mathbb{Z}^n (cfr. Rocha)

Motivation: To understand state and state construction for n-D systems.

Manuscript & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be http://www.esat.kuleuven.ac.be/~jwillems

