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Problematique:

Develop a suitable mathematical framework for
discussing dynamical / �-D systems

aimed at modeling, analysis, and synthesis.
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1. Heat diffusion

x

q(x,t)

T(x,t)

The PDE ��� � � � ���� � � 	

describes the evolution of the temperature

� � �� � �

(� � �

position, � � �
time) in a medium and the heat
 � �� � �

supplied to / radiated away from it.



2. Coaxial cable

!! Model the relation between the voltage

� � �� � �

and
the current

� � �� � �

in a coaxial cable.
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x

I(x,t)

+

−

� The PDE’s: ���� � � � ��� ��� ������ � � � �� ��� ��

with

��� the inductance, and

�� the capacitance per unit length.



With boundary conditions (cable of length

�

):

!! Model the relation between the voltages

��� ��� and
the currents

��� � � at the ends of a uniform cable of length
��
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Introduce the voltage

� � �� � �

and the current flow

� � �� � �� � � � �

in the cable.
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� The equations: ��� � � � ��� ��� ������ � � � �� ��� ��

�� � � � � � � �� � ��� � � � � � � � �� � ���� � � � � � � �� � ��� � � � � � � � � �� � � �



3. Maxwell’s eqn’s

� � !#" � $%� &�

�(' !#" � � ��� !*)�� � ! ) � ��

+ � �(' ! ) � $%� !-, 	 ��� !"�

We wish to see this as an

.

-D system.

Set of independent variables � �' � /
(time and space),

dependent variables � � !"� !)� !#,� & �
(electric field, magnetic field, current density, charge density),� � / ' � / ' � / ' �

,
the behavior = set of solutions to these PDE’s.

Note: 10 variables, 8 equations! 0 1

free variables.
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Early 20-th century: emergence of the notion of a transfer function
(Rayleigh, Heaviside).

SYSTEM outputinput

Since the 1920’s: routinely used in circuit theory� impedances, admittances, scattering matrices, etc.

1930’s: control embraces transfer functions
(Nyquist, Bode,� � � � � plots and diagrams, classical control.



Around 1950: Wiener sanctifies the notion of a blackbox,
attempts nonlinear generalization (via Volterra series).

1960’s: Kalman’s state space ideas (incl. controllability, observability,
recursive filtering, state models and representations) come in vogue



� input/state/output systems, and the ubiquitous223 � � 4 � 	 )5 � 6 � �7� 	 8 5 �

or its nonlinear counterpart99� � � : � �� 5 �� 6 � ; � �� 5 � �
These are the basic models used nowadays in control and signal
processing (cfr. MATLAB c

<

).

Parallel development: Mathematically rich generalization to= dimensions with

4

the generator of a semigroup, etc.



All these theories: input/output; cause 0 effect.

SYSTEM outputinput



The input/state/output framework was instrumental for the energetic
development of systems theory since the 1960’s.

Unfortunately, for all its merits, it is simply not a good framework for
modeling physical systems.> A physical system is not a signal processor.> The idea of input-to-output (series, parallel, feedback) connection

(SIMULINK c

<

) provides a very poor, limited framework for
modeling by tearing and zooming, and modularity.> The structure of first pinciples models is a far distance from
input/(state)/output structure.> When applied to PDE’s, the semi-group framework ignores the
‘local’ structure for the independent variables other than time.> ...
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1. Heat diffusion

x

q(x,t)

T(x,t)

The PDE ��� � � � ���� � � 	

fits the 99� � � 4 � 	 )5 � 6 � �7�

input/output framework, with5 � � � � 
 ��� � �@? 6 � � � � � � � � � � ��� � �

perfectly.



Now interconnect two such systems

x

q"(x,t)

T"(x,t)

q’(x,t)

T’(x,t)



x
T"(x,t)

q’(x,t)

q"(x,t)T’(x,t)

Interconnection:� A � �� � � � � A A � �� � �� 
 A � �� � � 	 
 A A � �� � � � �

!! input’=input”; output’=output” ! 0B SIMULINK c

<

Interconnections contradicting SIMULINK c

<

are in fact
normal, not exceptions,

in mechanics, fluidics, heat transfer, electrical circuits, etc.



The standard system theoretic / SIMULINK c

<

input-to-output idea of
interconnection is totally inappropriate as a paradigm for
interconnecting physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection
between subsystems. Input/output representations of systems allow us to
build models of very complex systems by linking component behaviors ...

[Panel on Future Directions in
Control, Dynamics, and Systems

Report, 26 April 2002, page 11]



2. Coaxial cable

Relation between the voltage

� � �� � �

and the current

� � �� � �
:

���� � � � ��� ��� �� (

� �
)���� � � � �� ��� �� (

� �

)

These imply � ���� � � � �C� �� � ��� � �� (

�

)

and � ��� � � � ��� �� � ��� � �� (

�

)

Wave eqn’s.



Leads to the questions> Are (

�

), (

�

) ‘consequences’ of (

� �

) + (

� �

)?> (

�

) + (

�

) D ( � �

) + (

� �

)?> (

�

) + (

�

) + (

� �

) D ( � �

) + (

� �

)?> Does (

�

) express all the constraints on
�

implied by (

� �

) +
(

� �

)?> Develop a calculus to obtain all consequences, to compute this
elimination, to decide equivalence.



With boundary conditions:
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�� � � � � � � �� � ��� � � � � � � � �� � ���� � � � � � � �� � ��� � � � � � � � � �� � � �



Viewed as a black box
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Relation between

��� � � :� ���� � � � ��� �� � ��� � �� �� �� � � � � �� � �� ��� �� � � � � �� � ��
and between

��� � � :� ���� � � � ��� �� � ��� � �� �� �� � � � � �� � �� � � �� � � � � �� � � �

> Two terminal variables are ‘free’, the other two are ‘bound’,
(free = one voltage, one current, bound = one voltage, one
current), but

there is no reasonable choice of inputs and outputs!> What is the role of

� � �� � �
and

� � �� � �� � � � � ��

in modeling the relation between

��� ��� ���� � � ?



If terminated by an impedance � undesirable reflections.

characteristic impedance

G � H�IJ I 0 no reflections!
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We view this termination as a behavioral controller. In this ex., the
classical sensor-to-actuator feedback interpretation is an illusion.1

very many such examples of controllers.



3. Maxwell’s eqn’s

� � !#" � $%� &�

�(' !" � � ��� !#)�� � ! ) � ��

+ � �(' ! ) � $%� !-, 	 ��� !"�

Set of independent variables � �' � /
(time and space),

dependent variables � � !"� !)� !*,� & �
(electric field, magnetic field, current density, charge density),� � / ' � / ' � / ' �

,
the behavior = set of solutions to these PDE’s.



Which PDE’s describe ( &� !"� !,

) in Maxwell’s equations ?

Eliminate

!#)

from Maxwell’s equations �
� � !" � $ %� &�

%� ��� �� !" 	 �� !, � ��

%� � ��� � !" 	 %� + � �(' �(' !@" 	 ��� !, � ��



Potential functions

The following equations in the
scalar potential

OQP �' � /R �
and the

vector potential

!4 P �' � /SR � /
,

generate exactly the solutions to Maxwell’s equations:

!" � � ��� !4 � � O�!*) � �(' !4�!, � %� � ��� � !4 � %� + � � � !4 	 %� + � � � � � !4 � 	 %� ��� � O�

& � � %� ��� � � !4 � %� � � O�



Leads to the following questions:> Is there a fundamental reason why the behavior of ( &� !"� !#,
)

is also described by a PDE? ‘Elimination’ issue.> When and why is a representation in terms of a potential
possible? ‘Image representation’ issue.> Derive algorithms for elimination, image representation.
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The basic concepts

Behavioral systems

A system =

T � �U � V� W �

U

, the set of independent variables,

V

, the set of dependent variables,

W X V Y

: the behavior (= the admissible trajectories).



T � �U � V� W �

For a trajectory Z P U R V� we thus have:

Z � W

: the model allows the trajectory Z�Z [ � W

: the model forbids the trajectory Z �

U � �

(in continuous-time systems),

U � �\
(in �-D systems),V X �]

(in lumped systems), or a finite set (in DES).

Emphasis today:

U � �\� V � �]�W � solutions of system of linear constant coefficient PDE’s.



First principles models invariably contain auxiliary variables,
in addition to the variables the model aims at.

� Manifest and latent variables.

Manifest = the variables the model aims at,

Latent = auxiliary variables.

We want to capture this in a mathematical definition.



A system with latent variables =

T H � � U� V� ^� W`_ba c c �

U

, the set of independent variables.V

, the set of manifest dependent variables
(= the variables that the model aims at).^

, the set of latent dependent variables
(= the auxiliary modeling variables).

W`_ a c c X � V' ^ � Y

: the full behavior

(= the pairs

� Z� d � P U R V' ^
that the model declares

possible).



The manifest behavior

The latent variable system

T H � � U� V� ^� W`_ba c c � induces
the manifest system

T � �U � V� W �� with manifest behavior

W � e Z P U R V f 1 dP U R ^
such that

� Z� d � � Wg_ba c c h

In convenient equations for

W
, the latent variables are ‘eliminated’.



Examples

1. Heat diffusion

x

q(x,t)

T(x,t)

U � � �

(time and space);V � �ji ' �

(temperature and heat);W

= sol’ns to the PDE, the diffusion eq’n.



2. Coaxial cable

V(x,t)
x

I(x,t)

+

−

Consider the voltage as the variable the model aims at.U � � �

(time and space);V � �

(voltage);^ � �

(current);Wg_ a c c = sol’ns to the PDE’s;W

= sol’ns to

k lknm l � � ��� �� k lk 3 l � o



3. Coaxial cable of length

�

.
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−
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Consider the terminal variables as the variables the model aims at.U � �

(time);V � � p

(2 voltages, 2 currents),
latent variables =

� � �� � �� � � �� � �? � � � � �

(voltage and current in the coax)W`_ a c c = sol’ns to the PDE’s + boundary conditions.W

= sol’ns to ... ?



4. Maxwell’s eqn’ns

U � � p� V � � � �� W � solutions to ME.

If we view the electrical variables as manifest, and
! )

as latentU � � p� V � � q� ^ � � /�Wr_ a c c � solutions to ME,

W � solutions to eliminated eq’ns?

If we consider the representation in terms of the potentials

O� !4U � � p� V � � � �� ^ � � p�W`_ a c c � solutions to potential eqn’s,

W � solutions to ME?
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Linear differential systems
We now discuss the fundamentals of the theory of �-D systems

T � � �\� �]� W �

that are

1. linear, meanings � Z �� Z � � W �ut �v � w � � �x 0 sv Z � 	 w Z � � Wx

;

2. shift-invariant, meanings � Z � W � t � � � �\ �x 0 s@y m Z � Wx
,

where y m

denotes the � �shift;

3. differential, meaningW

consists of the solutions of a system of PDE’s.



�-D systems

U � �\� � independent variables,V � �]� z dependent variables,W � the solutions of a linear constant coefficient system of PDE’s.

Let

G � � { | ] s} �� � � � � } \ x� and consider

G � kknm~ � � � � � kknm�� � Z � � ��� �
Define its behavior

W � e Z � � � � �\� �] � f ��� �
holds

h
=

���� � G � kk m~ � � � � � kk m� � �

� � � �\� �] �

mainly for convenience, but important for some results.
Identical theory for

� A � �\� �] �
.



Examples: Diffusion eq’n, Wave eq’n

Example: Maxwell’s equations

� � !" � $%� &�

�(' !@" � � ��� !)�� � ! ) � ��

+ � �(' ! ) � $%� !*, 	 ��� !"�

U � �' � /

(time and space),Z � � !"� ! )� !*,� & �

(electric field, magnetic field, current density, charge density),V � � / ' � / ' � / ' �
,W � set of solutions to these PDE’s.



NOMENCLATURE

� ]�\ P the set of such systems with � in-, z dependent variables� { P with any - finite - number of (in)dependent variables

Elements of

� { P linear differential systems

G � kknm~ � � � � � kknm�� � Z � �

: a kernel representation of the
corresponding

T � � {

or

W � � {



First principles models � latent variables. In the case of systems
described by linear constant coefficient PDE’s: �

G � ���� �� � � � � ���� \ � Z � � � ���� �� � � � � ���� \ � d

with

G� � � � { | { s} x

.

For 1-D systems, the natural model class to start a study of finite
dimensional linear time-invariant systems! Much more so than99� � � 4 � 	 )5 � 6 � �� 	 8 5 �
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Controllability

Controllability P D

system trajectories must be ‘patch-able’, ‘concatenable’.

Case � � $� U � �

, any Z �� Z � � W

concatenable:

w

1

w

w

w

w

2

1

0

2

T0

time

W

time

W W



General �� U � �\

.

Consider any two elements Z �� Z � of the behavior and any two open
non-overlapping

� �� � � � �\ P
1 2

2
1

O O

ww

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
W

���
���

�
���

���
�



Controllability = patchability:

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
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W

There is a sol’n that ‘patches’ Z � on

¨ � with Z � on

¨ � .



Observability

Consider the system

T � � U� V � ' V �� W � �

Each element of the behavior

W

hence consists of
a pair of trajectories

� Z �� Z � � .

to−be−deduced

2SYSTEM1 ww

variables
observed

variables

©«ª ¬ observed; ©« ¬ to-be-deduced.



Z � is said to be

®¯ °±observable from Z �

if

� � Z �� Z A � � � W

, and

� Z �� Z A A� � � W � 0 � Z A � � Z A A� ��
i.e., if on

W

, there exists a map Z � ²R Z � .
We are especially interested in the case

observed = manifest
to-be-deduced = latent
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Theorem 1 Algebraization:

� ]³\ �µ´ �·¶R sub-modules of

�] s} �� � � � � } \ x
Theorem 2 Elimination:

� W`_ba c c � � {\ � 0 � W � � {\ )

Theorem 3 Image representation:

Controllabilility D (

1
Image representation)



Algebraization of

¸ ¹

Note that

G � ���� �� � � � � ���� \ � Z � �
and º � ���� �� � � � � ���� \ � G � ���� �� � � � � ���� \ � Z � �

have the same behavior if the polynomial matrix

º

is uni-modular
(i.e., when

» � ¼ � º �

is a non-zero constant).

0 G

defines

W � � �� � G � kk m~ � � � � � kk m�� � �

, but not vice-versa!



¿¿

1

‘intrinsic’ characterization of

W � � ]�\ o o
Define the annihilators of

W � � ]�\ by

½ ¾ P � e¿ � �] s} �� � � � � } \ x f ¿ À � ���� �� � � � � ���� \ � W � � h �

½ ¾ is clearly an

� s} �� � � � � } \ x sub-module of
� ] s} �� � � � � } \ x �

Let Á GÂ denote the sub-module of

�] s} �� � � � � } \ x spanned by the
transposes of the rows of

G

. Obviously Á GÂ X ½ ¾ . But, indeed:½ ¾ � Á G Â Ã

Note: Depends on

� �
;

�B �
false for compact support soln’s:

for any Ä Å � �� Ä � kk m~ � � � � � kknm�� � Z � �

has Z � �

as its only compact support sol’n.



Theorem 1 (Algebraic structure of

� ]³\ ):

1.

½ ¾ � Á GÂ Ã

In particular

: � kknm~ � � � � � kknm�� � Z � �

is a consequence ofG � kknm~ � � � � � kknmÆ� � Z � �

if and only if

: � Á GÂ .

2.

� ]�\ �µ´ � ¶R sub-modules of

�] s} �� � � � � } \ x
3.

G � � ���� �� � � � � ���� \ � Z � �
and

G � � ���� �� � � � � ���� \ � Z � �

define the same system iffÁ G � Â � Á G � Â �



Elimination

The full behavior of

G � kk m~ � � � � � kk m�� � Z � � � kk m~ � � � � � kk m�� � d�W`_ a c c � e � Z� d � � � � � �\� �] i Ç � fG � kknm~ � � � � � kknm�� � Z � � � kknm~ � � � � � kknm�� � d h

belongs to

� ] i Ç\ , by definition.

Its manifest behavior equalsW � e Z � � � � �\� �] � f1 d

such that

G � kk m~ � � � � � kk m�� � Z � � � kk m~ � � � � � kk m�� � d h �



Does

W

belong to

� ]³\ ?

Theorem 2 (Elimination): It does!

Proof: The theorem is a straightforward consequence of the
‘fundamental principle’: the equation

4 � ���� �� � � � � ���� \ � : � 6

4 � �\~ | \ l s} �� � � � � } \ x� 6 � � � � �\� �\~ �
given,: � � � � �\� �\ l � unknown, is solvable if and only if for¿ � �\~ s} �� � � � � } \ x
�¿ À 4 � � � 0 �¿ À � ���� �� � � � � ��� \ � 6 � � � �



Remarks:> Number of equations for � � $

(constant coeff. lin. ODE’s)�

number of variables.
Elimination 0 fewer, higher order equations.> There exist effective computer algebra/Gröbner bases algorithms
for elimination� G� � � ²R G A

> Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?



Examples

1. � ���� � � � ��� �� � ��� � ��
describes indeed the behavior of

�
in the coax.



2. Which PDE’s describe ( &� !"� !#,

) in Maxwell’s equations ?

Eliminate

!)

from Maxwell’s equations �
� � !" � $%� &�

%� ��� �� !" 	 �� !, � ��

%� � ��� � !" 	 %� + � �(' �(' !" 	 ��� !, � ��

Elimination theorem 0
this exercise is exact & successful (+ gives algorithm).



It follows from all this that

� {\ has very nice properties. It is closed
under:> Intersection:

� W �� W � � � ]�\ � 0 � W � È W � � � ]�\ �
.> Addition:

� W �� W � � � ]É\ � 0 � W � 	 W � � � ]É\ �
.> Projection:

� W � � ]~ i ] l\ � 0 �Ê Ë~ W � � ]~ \ �
.> Action of a linear differential operator:� W � � ]~ \ � Ì � �] l | ]~ s} �� � � � � } \ x �0 � Ì � kknm~ � � � � � kk m� � W � � ] l\ � �> Inverse image of a linear differential operator:� W � � ] l\ � Ì � �] l | ]~ s} �� � � � � } \ x �0 � Ì � kknm~ � � � � � kk m� � �ÎÍ � W � � ]~ \ � �



Image representations

Representations of

� ]�\ :G � kk m~ � � � � � kk m�� � Z � �
called a ‘kernel’ representation of

W � � �� � G � 223 � �
;

G � kk m~ � � � � � kk m� � Z � � � kk m~ � � � � � kk m� � d

called a ‘latent variable’ representation of the manifest behaviorW � � G � kknm~ � � � � � kk m� � �ÏÍ � � � kknm~ � � � � � kknm�� � � � � �\� � Ç �

.



Missing link: Z � � � kk m~ � � � � � kk mÆ� � d
called an ‘image’ representation of

W � Ð7Ñ � � � kknm~ � � � � � kk m� � � �

Elimination theorem 0 every image is also a kernel.

¿¿ Which kernels are also images ??



Theorem 3 (Controllability and image repr.):

The following are equivalent for

W � � ]³\ P

1.

W

is controllable,

2.

W

admits an image representation,

3. for any Ò � �] s} �� � � � � } \ x�Ò À s kknm~ � � � � � kknm�� x W

equals
�

or all of

� � � �\� � �

,

4.

�] s} �� � � � � } \ x [ ½¾ is torsion free,

etc.



Are Maxwell’s equations controllable ?

The following equations in the scalar potential

OQP �' � /@R �
and

the vector potential

!4 P �' � / R � /

, generate exactly the solutions
to Maxwell’s equations:

!" � � ��� !4 � � O�! ) � �(' !4�!, � %� � ��� � !4 � %� + � � � !4 	 %� + � � � � � !4 � 	 %� ��� � O�

& � � %� ��� � � !4 � %� � � O�
Proves controllability. Illustrates the interesting connection

controllability D 1

potential!



Remarks:> Algorithm:

G

+ syzygies + Gröbner basis0 numerical test for on coefficients of
G

.> In the 1-D case there exists always an observable image
representation

Ó � flatness. Not so for general �-D systems:
potentials are then hidden variables.> 1

partial results for nonlinear systems.> Kalman controllability is a straightforward special case.



Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting influence! Especially in teaching.

Examples:> Probability and the theory of stochastic processes as an
axiomatization of uncertainty.> The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.> QM.



Thank you for your patience & attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/ Ójwillems


