BEHAVIORAL n-D SYSTEMS

Motivation\& General Concepts

Jan C. Willems

Mathematics Department, University of Groningen, NL \&

ESAT-SCD (SISTA), University of Leuven, Belgium

Problematique:

> Develop a suitable mathematical framework for discussing dynamical / n-D systems
aimed at modeling, analysis, and synthesis.

OUTLINE

1. Examples
2. Historical remarks
3. Examples, revisited
4. Behavioral systems
5. Linear distributed differential systems
6. Controllability \& Observability
7. 3 theorems
8. Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

describes the evolution of the temperature $T(x, t)$ ($x \in \mathbb{R}$ position, $t \in \mathbb{R}$ time) in a medium and the heat $q(x, T)$ supplied to / radiated away from it.

2. Coaxial cable

!! Model the relation between the voltage $V(x, t)$ and the current $I(x, t)$ in a coaxial cable.

\sim The PDE's:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V .
\end{aligned}
$$

with L_{0} the inductance, and C_{0} the capacitance per unit length.

With boundary conditions (cable of length L):
!! Model the relation between the voltages V_{0}, V_{1} and the currents I_{0}, I_{1} at the ends of a uniform cable of length L.

Introduce the voltage $V(x, t)$ and the current flow $I(x, t)$ $0 \leq x \leq L$ in the cable.

\sim The equations:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I, \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V
\end{aligned}
$$

$$
\begin{aligned}
V_{0}(t) & =V(0, t), \\
V_{\mathbf{1}}(t) & =V(L, t), \\
\boldsymbol{I}_{\mathbf{0}}(t) & =I(0, t), \\
\boldsymbol{I}_{\mathbf{1}}(t) & =-I(L, t) .
\end{aligned}
$$

3. Maxwell's eqn's

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

We wish to see this as an 4-D system.
Set of independent variables $=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space), dependent variables $=(\vec{E}, \vec{B}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density),

$$
\in \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}
$$

the behavior $=$ set of solutions to these PDE's.
Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

OUTLINE

1. Examples
2. Historical remarks
3.
4.
5.
6.
7.

Early 20-th century: emergence of the notion of a transfer function
(Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory
\sim impedances, admittances, scattering matrices, etc.
1930's: control embraces transfer functions
(Nyquist, Bode, $\cdot \cdots$) \leadsto plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

$~$ input/state/output systems, and the ubiquitous

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

or its nonlinear counterpart

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

These are the basic models used nowadays in control and signal processing (cfr. MATLAB ${ }^{\circledR}$).

Parallel development: Mathematically rich generalization to ∞ dimensions with \boldsymbol{A} the generator of a semigroup, etc.

All these theories: input/output; cause \Rightarrow effect.

The input/state/output framework was instrumental for the energetic development of systems theory since the 1960's.

Unfortunately, for all its merits, it is simply not a good framework for modeling physical systems.

- A physical system is not a signal processor.
- The idea of input-to-output (series, parallel, feedback) connection (SIMULINK ${ }^{\circledR}$) provides a very poor, limited framework for modeling by tearing and zooming, and modularity.
- The structure of first pinciples models is a far distance from input/(state)/output structure.
- When applied to PDE's, the semi-group framework ignores the 'local' structure for the independent variables other than time.

OUTLINE

1. Examples
2. Historical remarks
3. Examples: Revisited
4.
5.
6.
7.
8. Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

fits the

$$
\frac{d}{d t} x=A x+B u, \quad y=C x
$$

input/output framework, with

$$
u(t)=q(\cdot, t) ; \quad y(t)=x(t)=T(\cdot, t)
$$

perfectly.

Now interconnect two such systems

Interconnection:

$$
\begin{aligned}
& T^{\prime}(x, t)=T^{\prime \prime}(x, t), \quad q^{\prime}(x, t)+q^{\prime \prime}(x, t)=0 \\
& !!\text { input'=input"; output'=output" }!\Rightarrow \Leftarrow \text { SIMULINK }{ }^{\circledR}
\end{aligned}
$$

Interconnections contradicting SIMULINK ${ }^{\circledR}$ are in fact normal, not exceptions, in mechanics, fluidics, heat transfer, electrical circuits, etc.

The standard system theoretic / SIMULINK ${ }^{\circledR}$ input-to-output idea of interconnection is totally inappropriate as a paradigm for interconnecting physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection between subsystems. Input/output representations of systems allow us to build models of very complex systems by linking component behaviors ...
[Panel on Future Directions in Control, Dynamics, and Systems Report, 26 April 2002, page 11]

2. Coaxial cable

Relation between the voltage $V(x, t)$ and the current $I(x, t)$:

$$
\begin{align*}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I \tag{VI}\\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V \tag{IV}
\end{align*}
$$

These imply

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V \tag{V}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I \tag{I}
\end{equation*}
$$

Wave eqn's.

Leads to the questions

- Are (V), (I) 'consequences' of (VI) + (IV)?
- $(V)+(I) \Leftrightarrow(V I)+(I V)$?
- $(V)+(I)+(V I) \Leftrightarrow(V I)+(I V) ?$
- Does (V) express all the constraints on V implied by $(V I)+$ (IV)?
- Develop a calculus to obtain all consequences, to compute this elimination, to decide equivalence.

With boundary conditions:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V
\end{aligned}
$$

$$
V_{0}(t)=V(0, t)
$$

$$
V_{1}(t)=V(L, t)
$$

$$
I_{0}(t)=I(0, t)
$$

$$
I_{1}(t)=-I(L, t)
$$

Viewed as a black box

Relation between V_{0}, V_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V, \quad V_{0}(\cdot)=V(0, \cdot), V_{1}(\cdot)=V(L, \cdot)
$$

and between I_{0}, I_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I, \quad I_{0}(\cdot)=I(0, \cdot), I_{1}(\cdot)=I(L, \cdot)
$$

- Two terminal variables are 'free', the other two are 'bound', (free $=$ one voltage, one current, bound $=$ one voltage, one current), but

there is no reasonable choice of inputs and outputs!

- What is the role of $V(x, t)$ and $I(x, t), \quad 0 \leq x \leq L$, in modeling the relation between $V_{0}, I_{0}, V_{1}, I_{1}$?

If terminated by an impedance \leadsto undesirable reflections.
characteristic impedance $\quad R=\sqrt{\frac{L_{0}}{C_{0}}} \Rightarrow$ no reflections!

PLANT CONTROLLER

We view this termination as a behavioral controller. In this ex., the classical sensor-to-actuator feedback interpretation is an illusion. \exists very many such examples of controllers.
3. Maxwell's eqn's

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

Set of independent variables $=\mathbb{R} \times \mathbb{R}^{\mathbf{3}}$ (time and space), dependent variables $=(\vec{E}, \vec{B}, \vec{j}, \rho)$ (electric field, magnetic field, current density, charge density), $\in \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}$, the behavior $=$ set of solutions to these PDE's.

Eliminate \vec{B} from Maxwell's equations \sim

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Potential functions

The following equations in the

$$
\text { scalar potential } \phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

and the

$$
\text { vector potential } \vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi, \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi, \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi .
\end{aligned}
$$

Leads to the following questions:

- Is there a fundamental reason why the behavior of (ρ, \vec{E}, \vec{j}) is also described by a PDE? 'Elimination' issue.
- When and why is a representation in terms of a potential possible? 'Image representation' issue.
- Derive algorithms for elimination, image representation.

OUTLINE

1. Examples
2. Historical remarks
3. Examples: Revisited
4. Behavioral systems
5.
6.
7.

The basic concepts

Behavioral systems

$\underline{\text { A } \text { system }}=\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
\mathbb{T}, the set of independent variables,
\mathbb{W}, the set of dependent variables,
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior \quad (= the admissible trajectories).

$$
\boldsymbol{\Sigma}=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}$: the model allows the trajectory \boldsymbol{w}, $w \notin \mathfrak{B}$: the model forbids the trajectory \boldsymbol{w}.
$\mathbb{T}=\mathbb{R}$ (in continuous-time systems), $\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ (in n-D systems),
$\mathbb{W} \subseteq \mathbb{R}^{w}$ (in lumped systems), or a finite set (in DES).

Emphasis today: $\quad \mathbb{T}=\mathbb{R}^{n}, \quad \mathbb{W}=\mathbb{R}^{\mathrm{w}}$,
$\mathfrak{B}=$ solutions of system of linear constant coefficient PDE's.

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
$~$ Manifest and latent variables.

Manifest = the variables the model aims at,
Latent $=$ auxiliary variables.

We want to capture this in a mathematical definition.

A system with latent variables $=\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$
\mathbb{T}, the set of independent variables.
\mathbb{W}, the set of manifest dependent variables
(= the variables that the model aims at).
\mathbb{L}, the set of latent dependent variables
(= the auxiliary modeling variables).
$\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}:$ the full behavior
(= the pairs $(w, \ell): \mathbb{T} \rightarrow \mathbb{W} \times \mathbb{L}$ that the model declares possible).

The manifest behavior

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

In convenient equations for \mathfrak{B}, the latent variables are 'eliminated'.

Examples

1. Heat diffusion

$\mathbb{T}=\mathbb{R}^{2}$ (time and space);
$\mathbb{W}=\mathbb{R}_{+} \times \mathbb{R}$ (temperature and heat);
$\mathfrak{B}=$ sol'ns to the $P D E$, the diffusion eq'n.
2. Coaxial cable

Consider the voltage as the variable the model aims at.
$\mathbb{T}=\mathbb{R}^{2}$ (time and space);
$\mathbb{W}=\mathbb{R}$ (voltage);
$\mathbb{L}=\mathbb{R}$ (current);
$\mathfrak{B}_{\text {full }}=$ sol'ns to the PDE's;
$\mathfrak{B}=$ sol'ns to $\quad \frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V ?$
3. Coaxial cable of length L.

Consider the terminal variables as the variables the model aims at. $\mathbb{T}=\mathbb{R}$ (time);
$\mathbb{W}=\mathbb{R}^{4}$ (2 voltages, 2 currents), latent variables $=V(x, \cdot), I(x, \cdot) ; 0 \leq x \leq L$ (voltage and current in the coax) $\mathfrak{B}_{\text {full }}=$ sol'ns to the PDE's + boundary conditions. $\mathfrak{B}=$ sol'ns to ... ?
4. Maxwell's eqn'ns

$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{10}, \mathfrak{B}=$ solutions to $\mathbf{M E}$.

If we view the electrical variables as manifest, and \vec{B} as latent $\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{7}, \mathbb{L}=\mathbb{R}^{3}$,
$\mathfrak{B}_{\text {full }}=$ solutions to $\mathrm{ME}, \mathfrak{B}=$ solutions to eliminated eq'ns?

If we consider the representation in terms of the potentials ϕ, \vec{A} $\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{10}, \mathbb{L}=\mathbb{R}^{4}$, $\mathfrak{B}_{\text {full }}=$ solutions to potential eqn's, $\mathfrak{B}=$ solutions to ME?

OUTLINE

1. Examples
2. Historical remarks
3. Examples: Revisited
4. Behavioral systems
5. Linear distributed differential systems
6.
7.

Linear differential systems

We now discuss the fundamentals of the theory of $n-D$ systems

$$
\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning $\left[\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right] \Rightarrow\left[\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right] ;$
2. shift-invariant, meaning
$\left[(\boldsymbol{w} \in \mathfrak{B}) \wedge\left(\boldsymbol{x} \in \mathbb{R}^{\mathrm{n}}\right)\right] \Rightarrow\left[\sigma^{\boldsymbol{x}} \boldsymbol{w} \in \mathfrak{B}\right]$,
where σ^{x} denotes the x-shift;
3. differential, meaning
\mathfrak{B} consists of the solutions of a system of PDE's.

n-D systems

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient system of PDE's.
Let $R \in \mathbb{R}^{\bullet \times{ }^{w}}\left[\xi_{1}, \cdots, \xi_{n}\right]$, and consider

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0 \quad(*)
$$

Define its behavior

$$
\mathfrak{B}=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

$\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$ mainly for convenience, but important for some results. Identical theory for $\mathfrak{D}^{\prime}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{w}\right)$.

Examples: Diffusion eq'n, Wave eq'n

Example: Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{3}$ (time and space),
$w=(\vec{E}, \vec{B}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density),
$\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$,
$\mathfrak{B}=$ set of solutions to these PDE's.

NOMENCLATURE

$\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$: the set of such systems with n in-, w dependent variables
\mathfrak{L}^{\bullet} : with any - finite - number of (in)dependent variables
Elements of \mathfrak{L}^{\bullet} : linear differential systems
$R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0:$ a kernel representation of the corresponding $\quad \Sigma \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

First principles models \sim latent variables. In the case of systems described by linear constant coefficient PDE's: ~

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
For 1-D systems, the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

OUTLINE

1. Examples
2. Historical remarks
3. Examples: Revisited
4. Behavioral systems
5. Linear distributed differential systems
6. Controllability \& Observability
7.

Controllability

Controllability : \Leftrightarrow
system trajectories must be 'patch-able', 'concatenable'.
Case $\mathrm{n}=1, \mathbb{T}=\mathbb{R}$, any $w_{1}, w_{2} \in \mathfrak{B}$ concatenable:

General $\mathrm{n}, \mathbb{T}=\mathbb{R}^{\mathrm{n}}$.
Consider any two elements w_{1}, w_{2} of the behavior and any two open non-overlapping $O_{1}, O_{2} \subset \mathbb{R}^{\mathrm{n}}$:

Controllability = patchability:

There is a sol'n that 'patches' w_{1} on S_{1} with w_{2} on S_{2}.

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.

w_{1} : observed; w_{2} : to-be-deduced.
w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

We are especially interested in the case

$$
\begin{aligned}
& \text { observed = manifest } \\
& \text { to-be-deduced = latent }
\end{aligned}
$$

OUTLINE

1. Examples
2. Historical remarks
3. Examples: Revisited
4. Behavioral systems
5. Linear distributed differential systems
6. Controllability \& Observability
7. 3 theorems

Theorem 1 Algebraization:

$$
\begin{array}{||l|l|}
\hline \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} & 1: 1 \\
\longleftrightarrow & \text { sub-modules of } \mathbb{R}^{w}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \\
\hline
\end{array}
$$

Theorem 2 Elimination:

$$
\left(\mathfrak{B}_{\text {full }} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right) \Rightarrow\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right)
$$

Theorem 3 Image representation:

$$
\text { Controllabilility } \Leftrightarrow \text { (} \exists \text { Image representation) }
$$

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

and

$$
U\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

have the same behavior if the polynomial matrix \boldsymbol{U} is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).
$\Rightarrow R$ defines $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$, but not vice-versa!

ii \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$??

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$.
Let $<\boldsymbol{R}>$ denote the sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

Note: Depends on $\mathfrak{C}^{\infty} ;(\Leftarrow)$ false for compact support soln's: for any $p \neq 0, \quad p\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ has $w=0$ as its only compact support sol'n.

Theorem 1 (Algebraic structure of $\mathfrak{L}_{\mathrm{n}}^{\text {w }}$):

1. $\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>$!

In particular $f\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0$ is a consequence of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ if and only if $f \in<R>$.
2. $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$
3.

$$
R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 \text { and } R_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

define the same system iff

$$
<\boldsymbol{R}_{1}>=<\boldsymbol{R}_{2}>
$$

Elimination

The full behavior of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$, $\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}\right) \mid\right.$

$$
\left.\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\}
$$

belongs to $\mathfrak{L}_{n}^{w+\ell}$, by definition.

Its manifest behavior equals

$$
\begin{aligned}
\mathfrak{B}= & \left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid\right. \\
& \left.\exists \ell \text { such that } R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\} .
\end{aligned}
$$

Does \mathfrak{B} belong to $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$?

Theorem 2 (Elimination): It does!

Proof: The theorem is a straightforward consequence of the 'fundamental principle': the equation

$$
A\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) f=y
$$

$A \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right], \boldsymbol{y} \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$ given, $f \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{2}}\right)$ unknown, is solvable if and only if for $n \in \mathbb{R}^{\mathrm{n}_{1}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$

$$
\left(n^{\top} A=0\right) \Rightarrow\left(n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) y=0\right)
$$

Remarks:

- Number of equations for $n=1$ (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto \boldsymbol{R}^{\prime}
$$

- Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?

Examples

1.

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V,
$$

describes indeed the behavior of V in the coax.
2. Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations?

Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Elimination theorem \Rightarrow
this exercise is exact \& successful (+ gives algorithm).

It follows from all this that $\mathfrak{L}_{\mathrm{n}}^{\boldsymbol{\bullet}}$ has very nice properties. It is closed under:

- Intersection: $\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{n}^{W}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}_{n}^{W}\right)$.
- $\underline{\text { Addition: }} \quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)$.
- Action of a linear differential operator:

$$
\begin{aligned}
\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}, P\right. & \left.\in \mathbb{R}^{\mathrm{w}_{2} \times{ }_{w_{1}}}\left[\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right) \\
& \Rightarrow\left(\boldsymbol{P}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{2}}\right) .
\end{aligned}
$$

- Inverse image of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{2}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times{ }_{\mathrm{w}_{1}}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right)$

$$
\left.\Rightarrow\left(P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)
$$

Image representations

Representations of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$;

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior

$$
\mathfrak{B}=\left(R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\ell}\right)
$$

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$.

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.
¿¿ Which kernels are also images ??

Theorem 3 (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$,

$$
a^{\top}\left[\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right] \mathfrak{B} \text { equals } 0 \text { or all of } \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}\right)
$$

4. $\mathbb{R}^{w}\left[\xi_{1}, \cdots, \xi_{n}\right] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free, etc.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Remarks:

- Algorithm: $\boldsymbol{R}+$ syzygies + Gröbner basis
$\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- In the 1-D case there exists always an observable image representation \cong flatness. Not so for general n-D systems: potentials are then hidden variables.
- \exists partial results for nonlinear systems.
- Kalman controllability is a straightforward special case.

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.
Examples:

- Probability and the theory of stochastic processes as an axiomatization of uncertainty.
- The development of input/output ideas in system theory and control - often these axiomatics are implicit, but nevertheless much very present.
- QM.

Thank you for your patience \& attention

Details \& copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~jwillems

