

MTNS 2002 Minicourse

Notre Dame, August 14, 2002

#### **Problematique:**

Develop a suitable *mathematical* framework for discussing dynamical / n-D systems

aimed at modeling, analysis, and synthesis.



- 1. Examples
- 2. Historical remarks
- 3. Examples, revisited
- 4. Behavioral systems
- 5. Linear distributed differential systems
- 6. Controllability & Observability
- 7. 3 theorems



## 2. Coaxial cable

!! Model the relation between the voltage V(x, t) and the current I(x, t) in a coaxial cable.





## $\rightsquigarrow$ The equations:

$$egin{array}{rcl} \displaystyle rac{\partial}{\partial x}V&=&-L_0rac{\partial}{\partial t}I,\ \displaystyle rac{\partial}{\partial x}I&=&-C_0rac{\partial}{\partial t}V,\ \displaystyle rac{\partial}{\partial x}I&=&-C_0rac{\partial}{\partial t}V,\ \displaystyle V_0(t)&=&V(0,t),\ \displaystyle V_1(t)&=&V(L,t),\ \displaystyle I_0(t)&=&I(0,t),\ \displaystyle I_1(t)&=&-I(L,t). \end{array}$$

# 3. Maxwell's eqn's



$$egin{aligned} 
abla \cdot ec{E} &=& rac{1}{arepsilon_0} 
ho \ , \ 
abla imes ec{E} &=& -rac{\partial}{\partial t} ec{B}, \ 
abla imes ec{B} &=& 0 \ , \ c^2 
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E}. \end{aligned}$$

We wish to see this as an 4-D system.

Set of independent variables =  $\mathbb{R} \times \mathbb{R}^3$  (time and space), dependent variables =  $(\vec{E}, \vec{B}, \vec{j}, \rho)$ (electric field, magnetic field, current density, charge density),  $\in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ ,

the **behavior** = set of solutions to these PDE's.

<u>Note</u>: 10 variables, 8 equations!  $\Rightarrow \exists$  free variables.



## 1. Examples

- 2. Historical remarks
- 3.
- 4.
- 5.
- 6.
- 7.

**Early 20-th century: emergence of the notion of a transfer function** (Rayleigh, Heaviside).





Since the 1920's: routinely used in circuit theory

→ impedances, admittances, scattering matrices, etc.

**<u>1930's</u>: control** embraces transfer functions

(Nyquist, Bode,  $\cdots$ )  $\rightsquigarrow$  plots and diagrams, classical control.

<u>Around 1950</u>: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).



**<u>1960's</u>**: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue



→ input/state/output systems, and the ubiquitous

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx + Du,$$

or its nonlinear counterpart

$$\frac{d}{dt}x = f(x, \mathbf{u}), \quad \mathbf{y} = h(x, \mathbf{u}).$$

These are the basic models used nowadays in **control and signal processing** (cfr. MATLAB<sup>©</sup>).

Parallel development: Mathematically rich generalization to  $\infty$  dimensions with A the generator of a semigroup, etc.





The input/state/output framework was instrumental for the energetic development of systems theory since the 1960's.

Unfortunately, for all its merits, it is simply not a good framework for modeling physical systems.

- A physical system is not a signal processor.
- The idea of input-to-output (series, parallel, feedback) connection (SIMULINK<sup>©</sup>) provides a very poor, limited framework for modeling by tearing and zooming, and modularity.
- The structure of first pinciples models is a far distance from input/(state)/output structure.
- When applied to PDE's, the semi-group framework ignores the **'local' structure** for the independent variables other than time.
- ••••



- 1. Examples
- 2. Historical remarks
- 3. Examples: Revisited
- 4.
- 5.
- 6.
- 7.







The standard system theoretic / SIMULINK<sup>©</sup> input-to-output idea of interconnection is <u>totally</u> inappropriate as a paradigm for interconnecting physical systems!

#### **Contrast this with the claim**

... A third concept in control theory is the role of interconnection between subsystems. Input/output representations of systems allow us to build models of very complex systems by linking component behaviors ...

> [Panel on Future Directions in Control, Dynamics, and Systems Report, 26 April 2002, page 11]

# 2. Coaxial cable

Relation between the voltage V(x, t) and the current I(x, t):

$$\begin{aligned} \frac{\partial}{\partial x} V &= -L_0 \frac{\partial}{\partial t} I, \qquad (VI) \\ \frac{\partial}{\partial x} I &= -C_0 \frac{\partial}{\partial t} V. \qquad (IV) \end{aligned}$$

$$\boxed{\frac{\partial^2}{\partial x^2} \mathbf{V} = L_0 C_0 \frac{\partial^2}{\partial t^2} \mathbf{V},} \tag{V}$$

and

$$rac{\partial^2}{\partial x^2} I = L_0 C_0 rac{\partial^2}{\partial t^2} I.$$

(I)

Wave eqn's.

#### Leads to the questions

- Are (V), (I) 'consequences' of (VI) + (IV)?
- $(V) + (I) \Leftrightarrow (VI) + (IV)$ ?
- $(V) + (I) + (VI) \Leftrightarrow (VI) + (IV)$ ?
- Does (V) express <u>all</u> the constraints on V implied by (VI) + (IV)?
- Develop a calculus to obtain all consequences, to compute this elimination, to decide equivalence.





Relation between  $V_0, V_1$ :

$$\frac{\partial^2}{\partial x^2} V = L_0 C_0 \frac{\partial^2}{\partial t^2} V, \ V_0(\cdot) = V(0, \cdot), \ V_1(\cdot) = V(L, \cdot),$$

and between  $I_0, I_1$ :

$$\frac{\partial^2}{\partial x^2} I = L_0 C_0 \frac{\partial^2}{\partial t^2} I, \ I_0(\cdot) = I(0, \cdot), \ I_1(\cdot) = I(L, \cdot).$$

• Two terminal variables are 'free', the other two are 'bound', (free = one voltage, one current, bound = one voltage, one current), but

there is no reasonable choice of inputs and outputs!

• What is the role of V(x,t) and I(x,t),  $0 \le x \le L$ , in modeling the relation between  $V_0, I_0, V_1, I_1$ ?



 $\exists$  very many such examples of controllers.

#### 3. Maxwell's eqn's



$$egin{aligned} 
abla \cdot ec{B} &=& rac{1}{arepsilon_0} 
ho \,, \ 
abla & imes ec{B} &=& -rac{\partial}{\partial t} ec{B}, \ 
abla & imes ec{B} &=& 0 \,, \ c^2 
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E}. \end{aligned}$$

Set of independent variables  $= \mathbb{R} \times \mathbb{R}^3$  (time and space), dependent variables  $= (\vec{E}, \vec{B}, \vec{j}, \rho)$ 

(electric field, magnetic field, current density, charge density),  $\in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ ,

the **behavior** = set of solutions to these PDE's.

Which PDE's describe  $(\rho, \vec{E}, \vec{j})$  in Maxwell's equations ?

Eliminate  $\vec{B}$  from Maxwell's equations  $\rightsquigarrow$ 

$$egin{array}{rcl} 
abla\cdotec E &=& rac{1}{arepsilon_0}
ho\,, \ &arepsilon_0rac{\partial}{\partial t}
abla\cdotec E \,+\,
abla\cdotec j &=& 0, \ &arepsilon_0rac{\partial^2}{\partial t^2}ec E \,+\,arepsilon_0c^2
abla imes
abla imes ec E \,+\,rac{\partial}{\partial t}ec j &=& 0. \end{array}$$

**Potential functions** 

The following equations in the

scalar potential  $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ 

and the

vector potential 
$$\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$$
,

generate exactly the solutions to Maxwell's equations:

$$\begin{split} \vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi, \\ \vec{B} &= \nabla \times \vec{A}, \\ \vec{j} &= \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi, \\ \rho &= -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi. \end{split}$$

Leads to the following questions:

- Is there a fundamental reason why the behavior of  $(\rho, \vec{E}, \vec{j})$  is also described by a PDE? **'Elimination' issue.**
- When and why is a representation in terms of a potential possible? **'Image representation' issue.**
- Derive algorithms for elimination, image representation.



- 1. Examples
- 2. Historical remarks
- 3. Examples: Revisited
- 4. Behavioral systems
- 5.
- 6.
- 7.



$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$$

For a trajectory  $w : \mathbb{T} \to \mathbb{W}$ , we thus have:

 $w \in \mathfrak{B}$ : the model allows the trajectory w,  $w \notin \mathfrak{B}$ : the model forbids the trajectory w.

 $\mathbb{T} = \mathbb{R}$  (in continuous-time systems),  $\mathbb{T} = \mathbb{R}^n$  (in n-D systems),  $\mathbb{W} \subset \mathbb{R}^w$  (in lumped systems), or a finite set (in DES).

Emphasis today: $\mathbb{T} = \mathbb{R}^n$  $\mathbb{W} = \mathbb{R}^w$  $\mathfrak{B}$  = solutions of system of linear constant coefficient PDE's.

**First principles models** invariably contain <u>auxiliary variables</u>, in addition to the variables the model aims at.

 $\sim$  Manifest and latent variables.

**Manifest** = the variables the model aims at,

**Latent** = auxiliary variables.

We want to capture this in a mathematical definition.

A system with latent variables =  $\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{full})$ 

 $\mathbb{T}$ , the set of *independent* variables.

W, the set of *manifest* dependent variables

(= the variables that the model aims at).

 $\mathbb{L}$ , the set of *latent* dependent variables

(= the auxiliary modeling variables).

 $\mathfrak{B}_{\mathrm{full}} \subseteq (\mathbb{W} \times \mathbb{L})^{\mathbb{T}}$ : the full behavior

(= the pairs  $(w, \ell) : \mathbb{T} \to \mathbb{W} \times \mathbb{L}$  that the model declares possible).

The manifest behavior

The latent variable system  $\Sigma_L = (\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text{full}})$  induces the *manifest system*  $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ , with *manifest behavior* 

 $\mathfrak{B} = \{ w : \mathbb{T} \to \mathbb{W} \mid \exists \ \boldsymbol{\ell} : \mathbb{T} \to \mathbb{L} \text{ such that } (w, \boldsymbol{\ell}) \in \mathfrak{B}_{\mathrm{full}} \}$ 

In convenient equations for  $\mathfrak{B}$ , the latent variables are '*eliminated*'.







Consider the terminal variables as the variables the model aims at.  $\mathbb{T} = \mathbb{R}$  (time);

 $\mathbb{W} = \mathbb{R}^4$  (2 voltages, 2 currents),

latent variables =  $V(x, \cdot), I(x, \cdot); 0 \le x \le L$ 

(voltage and current in the coax)  $\mathfrak{B}_{full} = sol'ns$  to the PDE's + boundary conditions.  $\mathfrak{B} = sol'ns$  to ... ?



4. Maxwell's eqn'ns

 $\mathbb{T} = \mathbb{R}^4, \mathbb{W} = \mathbb{R}^{10}, \mathfrak{B} =$ solutions to ME.

If we view the electrical variables as manifest, and  $\vec{B}$  as latent  $\mathbb{T} = \mathbb{R}^4, \mathbb{W} = \mathbb{R}^7, \mathbb{L} = \mathbb{R}^3,$  $\mathfrak{B}_{\text{full}} = \text{solutions to ME}, \mathfrak{B} = \text{solutions to eliminated eq'ns}?$ 

If we consider the representation in terms of the potentials  $\phi, \vec{A}$  $\mathbb{T} = \mathbb{R}^4, \mathbb{W} = \mathbb{R}^{10}, \mathbb{L} = \mathbb{R}^4,$  $\mathfrak{B}_{\text{full}} = \text{solutions to potential eqn's, } \mathfrak{B} = \text{solutions to ME}?$ 



- 1. Examples
- 2. Historical remarks
- 3. Examples: Revisited
- 4. Behavioral systems
- 5. Linear distributed differential systems
- 6.
- 7.

# **Linear differential systems**

We now discuss the fundamentals of the theory of n-D systems

$$\Sigma = (\mathbb{R}^n, \mathbb{R}^{w}, \mathfrak{B})$$

that are

- 1. *linear*, meaning  $[(w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})] \Rightarrow [\alpha w_1 + \beta w_2 \in \mathfrak{B}];$
- 2. *shift-invariant*, meaning  $[(w \in \mathfrak{B}) \land (x \in \mathbb{R}^n)] \Rightarrow [\sigma^x w \in \mathfrak{B}],$ where  $\sigma^x$  denotes the *x*-shift;
- 3. *differential*, meaning
  B consists of the solutions of a system of PDE's.

#### n-D systems

 $\mathbb{T} = \mathbb{R}^n$ , n independent variables,

 $\mathbb{W} = \mathbb{R}^{w}$ , w dependent variables,

 $\mathfrak{B}$  = the solutions of a linear constant coefficient system of PDE's.

Let  $R \in \mathbb{R}^{\bullet \times w}[\xi_1, \cdots, \xi_n]$ , and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$
 (\*)

**Define its behavior** 

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{w}) \mid (*) \text{ holds } \} = \ker(R(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}))$$

 $\mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^w)$  mainly for convenience, but important for some results. Identical theory for  $\mathfrak{D}'(\mathbb{R}^n, \mathbb{R}^w)$ . Examples: *Diffusion eq'n*, *Wave eq'n* 

#### Example: *Maxwell's equations*



$$egin{aligned} 
abla \cdot ec{E} &=& rac{1}{arepsilon_0} 
ho \,, \ 
abla & imes ec{E} &=& -rac{\partial}{\partial t} ec{B} \,, \ 
abla & imes ec{B} &=& 0 \,, \ c^2 
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E} \,. \end{aligned}$$

 $\mathbb{T} = \mathbb{R} \times \mathbb{R}^3 \text{ (time and space),}$  $w = (\vec{E}, \vec{B}, \vec{j}, \rho)$ 

(electric field, magnetic field, current density, charge density),  $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ ,

 $\mathfrak{B} =$ set of solutions to these PDE's.

#### NOMENCLATURE

 $\mathfrak{L}_n^{w}$ : the set of such systems with n in-, w dependent variables  $\mathfrak{L}^{\bullet}$ : with any - finite - number of (in)dependent variables Elements of  $\mathfrak{L}^{\bullet}$ : *linear differential systems* 

$$R(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}})w = 0: \text{ a } kernel representation of the corresponding } \Sigma \in \mathfrak{L}^{\bullet} \text{ or } \mathfrak{B} \in \mathfrak{L}^{\bullet}$$

**First principles models**  $\rightarrow$  **latent variables.** In the case of systems described by linear constant coefficient PDE's:  $\rightarrow$ 

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})oldsymbol{w}=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})oldsymbol{\ell}$$

with  $R, M \in \mathbb{R}^{\bullet imes \bullet}[\xi]$ .

For 1-D systems, the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$\frac{d}{dt}\boldsymbol{x} = A\boldsymbol{x} + B\boldsymbol{u}, \quad \boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u}.$$



- 1. Examples
- 2. Historical remarks
- 3. Examples: Revisited
- 4. Behavioral systems
- 5. Linear distributed differential systems
- 6. Controllability & Observability
- 7.



General n,  $\mathbb{T} = \mathbb{R}^n$ .

Consider any two elements  $w_1, w_2$  of the behavior and any two open non-overlapping  $O_1, O_2 \subset \mathbb{R}^n$ :







 $w_2$  is said to be **observable** from  $w_1$ 

if  $((w_1, w_2') \in \mathfrak{B}, \text{ and } (w_1, w_2'') \in \mathfrak{B}) \Rightarrow (w_2' = w_2'')$ , i.e., if on  $\mathfrak{B}$ , there exists a map  $w_1 \mapsto w_2$ .

We are especially interested in the case

observed = manifest
to-be-deduced = latent



- 1. Examples
- 2. Historical remarks
- 3. Examples: Revisited
- 4. Behavioral systems
- 5. Linear distributed differential systems
- 6. Controllability & Observability
- 7. 3 theorems



# Algebraization of **L**•

Note that

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})w=0$$

and

$$U(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})w=0$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when det(U) is a non-zero constant).

 $\Rightarrow R \text{ defines } \mathfrak{B} = \ker(R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})), \text{ but not vice-versa!}$ 

## ;; $\exists$ 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_n^{w}$ ??

Define the *annihilators* of  $\mathfrak{B} \in \mathfrak{L}_n^{w}$  by

 $\mathfrak{N}_{\mathfrak{B}}$  is clearly an  $\mathbb{R}[\xi_1, \cdots, \xi_n]$  sub-module of  $\mathbb{R}^{w}[\xi_1, \cdots, \xi_n]$ .

Let  $\langle R \rangle$  denote the sub-module of  $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$  spanned by the transposes of the rows of *R*. Obviously  $\langle R \rangle \subseteq \mathfrak{N}_{\mathfrak{B}}$ . But, indeed:

 $\mathfrak{N}_{\mathfrak{B}} = < R > !$ 

<u>Note</u>: Depends on  $\mathfrak{C}^{\infty}$ ; ( $\Leftarrow$ ) false for compact support soln's: for any  $p \neq 0$ ,  $p(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = 0$  has w = 0as its only compact support sol'n. **<u>Theorem 1</u>** (Algebraic structure of  $\mathfrak{L}_n^{W}$ ):

1.  $\mathfrak{N}_{\mathfrak{B}} = \langle R \rangle!$ 

In particular  $f(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})w = 0$  is a consequence of  $R(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})w = 0$  if and only if  $f \in \langle R \rangle$ . 2.  $\mathfrak{L}_n^{\mathsf{w}} \xleftarrow{1:1}$  sub-modules of  $\mathbb{R}^{\mathsf{w}}[\xi_1, \dots, \xi_n]$ 3.

$$R_1(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = 0 \text{ and } R_2(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})w = 0$$

define the same system iff

$$< R_1 > = < R_2 > .$$

# Elimination

The full behavior of 
$$R(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}) w = M(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}) \ell$$
,  
 $\mathfrak{B}_{\text{full}} = \{(w, \ell) \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{w+\ell}) \mid R(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}) w = M(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}) \ell \}$ 

belongs to  $\mathfrak{L}_n^{w+\ell}$ , by definition.

Its manifest behavior equals

$$\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{w}) \mid \\ \exists \ \boldsymbol{\ell} \text{ such that } R(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}) w = M(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}) \boldsymbol{\ell} \}.$$

**Does \mathfrak{B} belong to \mathfrak{L}\_n^{w} ?** 

**Theorem 2** (Elimination): It does!

<u>**Proof</u>: The theorem is a straightforward consequence of the 'fundamental principle': the equation**</u>

$$A(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})m{f}=y$$

 $A \in \mathbb{R}^{n_1 \times n_2}[\xi_1, \cdots, \xi_n], y \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{n_1})$  given,  $f \in \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^{n_2})$  unknown, is solvable if and only if for  $n \in \mathbb{R}^{n_1}[\xi_1, \cdots, \xi_n]$ 

$$(n^{ op}A=0) \; \Rightarrow \; (n^{ op}(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})y=0).$$

### **<u>Remarks</u>**:

- Number of equations for n = 1 (constant coeff. lin. ODE's)
   ≤ number of variables.

   Elimination ⇒ fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination

 $(R,M)\mapsto R'$ 

• Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?

## Examples

1.

$$egin{aligned} rac{\partial^2}{\partial x^2} oldsymbol{V} &= L_0 C_0 rac{\partial^2}{\partial t^2} oldsymbol{V}, \end{aligned}$$

describes indeed the behavior of V in the coax.

2. Which PDE's describe 
$$(\rho, \vec{E}, \vec{j})$$
 in Maxwell's equations ?

Eliminate  $\vec{B}$  from Maxwell's equations  $\sim$ 

$$egin{array}{rll} 
abla\cdotec E &=& rac{1}{arepsilon_0}
ho\,, \ arepsilon_0rac{\partial}{\partial t}
abla\cdotec E \,+\,
abla\cdotec j &=& 0, \ arepsilon_0rac{\partial^2}{\partial t^2}ec E \,+\,arepsilon_0c^2
abla imes
abla imesec E \,+\,rac{\partial}{\partial t}ec j &=& 0. \end{array}$$

Elimination theorem  $\Rightarrow$ 

this exercise is exact & successful (+ gives algorithm).

It follows from all this that  $\mathfrak{L}_n^{\bullet}$  has very nice properties. It is closed under:

- <u>Intersection</u>:  $(\mathfrak{B}_1, \mathfrak{B}_2 \in \mathfrak{L}_n^{\mathsf{w}}) \Rightarrow (\mathfrak{B}_1 \cap \mathfrak{B}_2 \in \mathfrak{L}_n^{\mathsf{w}}).$
- <u>Addition</u>:  $(\mathfrak{B}_1,\mathfrak{B}_2\in\mathfrak{L}_n^w)\Rightarrow(\mathfrak{B}_1+\mathfrak{B}_2\in\mathfrak{L}_n^w).$
- <u>Projection</u>:  $(\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}+w_{2}}) \Rightarrow (\Pi_{w_{1}}\mathfrak{B} \in \mathfrak{L}_{n}^{w_{1}}).$
- Action of a linear differential operator:

$$egin{aligned} (\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{1}},P\in\mathbb{R}^{\mathtt{w}_{2} imes\mathtt{w}_{1}}[\xi_{1},\cdots,\xi_{\mathrm{n}}])\ &\Rightarrow(P(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{\mathrm{n}}})\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{2}}). \end{aligned}$$

• Inverse image of a linear differential operator:

$$egin{aligned} (\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{2}},P\in\mathbb{R}^{\mathtt{w}_{2} imes\mathtt{w}_{1}}[\xi_{1},\cdots,\xi_{\mathrm{n}}])\ &\Rightarrow(P(rac{\partial}{\partial x_{1}},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}))^{-1}\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}_{1}}). \end{aligned}$$

**Image representations** 

**Representations of \mathfrak{L}\_n^{W}:** 

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0$$

called a *'kernel' representation* of  $\mathfrak{B} = \ker(R(\frac{d}{dt}));$ 

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{\ell}$$

called a *'latent variable' representation* of the manifest behavior  $\mathfrak{B} = (R(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}))^{-1} M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}) \mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^\ell).$ 

### **Missing link:**

$$oldsymbol{w} = M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ extsf{n}}})oldsymbol{\ell}$$

called an *'image' representation* of  $\mathfrak{B} = \operatorname{im}(M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})).$ 

Elimination theorem  $\Rightarrow$  every image is also a kernel.

¿¿ Which kernels are also images ??

**Theorem 3** (Controllability and image repr.):

The following are equivalent for  $\mathfrak{B}\in\mathfrak{L}_n^{\scriptscriptstyle W}$  :

- 1. B is controllable,
- 2. B admits an image representation,

3. for any 
$$a \in \mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]$$
,  
 $a^{\top}[\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}]\mathfrak{B}$  equals 0 or all of  $\mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R})$ ,

4.  $\mathbb{R}^{\mathbb{W}}[\xi_1, \cdots, \xi_n]/\mathfrak{N}_{\mathfrak{B}}$  is torsion free,

etc.

Are Maxwell's equations controllable ?

The following equations in the *scalar potential*  $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$  and the *vector potential*  $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ , generate exactly the solutions to Maxwell's equations:

$$\begin{split} \vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi, \\ \vec{B} &= \nabla \times \vec{A}, \\ \vec{j} &= \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi, \\ \rho &= -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi. \end{split}$$

**Proves controllability. Illustrates the interesting connection** 

controllability  $\Leftrightarrow \exists$  potential!

#### **<u>Remarks</u>**:

- Algorithm: R + syzygies + Gröbner basis
  - $\Rightarrow$  numerical test for on coefficients of *R*.
- In the 1-D case there exists always an observable image representation ≃ flatness. Not so for general n-D systems: potentials are then <u>hidden</u> variables.
- $\exists$  partial results for nonlinear systems.
- Kalman controllability is a straightforward special case.

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

**Examples:** 

- **Probability** and the theory of stochastic processes as an axiomatization of uncertainty.
- The development of input/output ideas in system theory and control often these axiomatics are implicit, but nevertheless much very present.

• QM.

Thank you for your patience & attention **Details & copies of the lecture frames are available from/at** Jan.Willems@esat.kuleuven.ac.be http://www.esat.kuleuven.ac.be/~jwillems