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Problematique:

Develop a suitable mathematical framework for
discussing dynamical / n-D systems

aimed at modeling, analysis, and synthesis.
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1. Heat diffusion

q(x,t)
7 |
: > |
T(x.,t)
The PDE
0 T — 0?2 T 4
ot~  Ox2 a

describes the evolution of the temperature 7' (x, t)
(x € R position, ¢ € R time) in a medium and the heat g(x, T)
supplied to / radiated away from it.
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'' Model the relation between the voltage V' (x, t) and
the current I (x, t) in a coaxial cable.

CID M—"

~» The PDE’s:

Coaxial cable

0

—V — —Lo—I,

ox ot
0 0
—I — —CO—V
ox 0

with Ly theinductance,and Cj, the capacitance per unit length.

o /




/With boundary conditions (cable of length L):

!! Model the relation between the voltages V;, V7 and
the currents Iy, I; at the ends of a uniform cable of length L.

L

Introduce the voltage V' (x, t) and the current flow I (x, 1)
0 < & < L in the cable.

I(x,t)
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~» The equations:

9] 0
—V = —Lo—I,
ox ot

5] 0
—1I = —CoV,
ox ot
VO(t) — V(Oat)a
Vi(t) = VI(L,t),
IO(t) — I(O’t)a
L(t) = —I(L,t).




/3. Maxwell’s eqn’s \

V-E = — P
€0
— 0 -
VXE = ——B,
ot
V-B = 0,
c’VxXxXB = —j3+4—F
€0 ot

We wish to see this as an 4-D system.

Set of independent variables = R x R3 (time and space),
dependent variables — (E . B . 5", p)
(electric field, magnetic field, current density, charge density),
€ R3 xR x R3 xR,

the behavior = set of solutions to these PDE’s.

Qote: 10 variables, 8 equations! = d free variables. /
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Early 20-th century: emergence of the notion of a transfer function

(Rayleigh, Heaviside).

input SYSTEM output

Since the 1920’s: routinely used in circuit theory

~» impedances, admittances, scattering matrices, etc.

1930’°s: control embraces transfer functions

N

(Nyquist, Bode, - - - ) ~» plots and diagrams, classical control.




/Around 1950: Wiener sanctifies the notion of a blackbox, \
attempts nonlinear generalization (via Volterra series).

1960’s: Kalman’s state space ideas (incl. controllability, observability,
recursive filtering, state models and representations) come in vogue




K» input/state/output systems, and the ubiquitous

%mzAm—l—Bu, y = Cx + Du,

or its nonlinear counterpart

d

am = f(z,u), y = h(z,u).

These are the basic models used nowadays in control and signal
processing (cfr. MATLAB®©).

Parallel development: Mathematically rich generalization to
oo dimensions with A the generator of a semigroup, etc.




All these theories: input/output; cause = effect.

input —__ | SYSTEM output




/The input/state/output framework was instrumental for the energetic\
development of systems theory since the 1960’s.

Unfortunately, for all its merits, it is simply not a good framework for
modeling physical systems.

e A physical system is not a signal processor.

e The idea of input-to-output (series, parallel, feedback) connection
(SIMULINK®) provides a very poor, limited framework for
modeling by tearing and zooming, and modularity.

e The structure of first pinciples models is a far distance from
input/(state)/output structure.

e When applied to PDE’s, the semi-group framework ignores the
‘local’ structure for the independent variables other than time.

o y
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/1. Heat diffusion

q(x,t)

il

2.

The PDE

fits the

input/output framework, with

u(t) = q(-,t);

Qerfectly.

ot

0
T =

82

ox2

T'+q

d
—x = Ax+ Bu, y=Cx

dt

y(t) = =(t) =T(- 1)
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Now interconnect two such systems

TT’(X,t)

7

)




7. 40

T" (x.t)

Interconnection:

T (x,t) =T"(z,t), q'(z,t)+q"(x,t) =0

' input’=input’’; output’=output” ! =<« SIMULINK®

Interconnections contradicting SIMULINK® are in fact
normal, not exceptions,
in mechanics, fluidics, heat transfer, electrical circuits, etc.
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The standard system theoretic / SIMULINK® input-to-output idea of
interconnection is totally inappropriate as a paradigm for

interconnecting physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection
between subsystems. Input/output representations of systems allow us to
build models of very complex systems by linking component behaviors ...

[Panel on Future Directions in

Control, Dynamics, and Systems
Report, 26 April 2002, page 11]

N /




/2. Coaxial cable

Relation between the voltage V' (x, t) and the current I (x,1):

o o
—V — —Lo—I,
x ot
o0 o0
—I = —-Cy—V.
Ox ot
These imply
03 02
V = LgCy——-V,
D2 "0 i
and
02 02
——1I = LoCoy——1.
Ox? 0™ otz

@ave eqn’s.

~

(VI)

{1IV)

(V)

()
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Leads to the questions
o Are (V), (I) ‘consequences’ of (VI) + (IV)?
e V)+(I) & (VD +(IV)?
e M)+ +(VI) < (VI)+(IV)?

e Does (V') express all the constraints on V' implied by (V' I) +
IV)?

e Develop a calculus to obtain all consequences, to compute this
elimination, to decide equivalence.

o /




/W ith boundary conditions:

I//]\VO ' TV(x,t)
/.
o0 0
—V — —LO—I,
ox ot
o0 o0
— T = —Cy—V,
ox ot
VO(t) — V(Oat)a
Vl(t) — V(Lat)a
Io(t) = 1I(0,1),
= —I(L,t)
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Viewed as a black box




/Relation between Vg, V7:

2 2

0
amzv — LOCO@V, VO(') — V(Oa ')9 Vl() — V(Lv ‘)7

and between Iy, I4:

32 82
@I — LOCO@I, IO(‘) — I(Oa')a Il(') — I(La )

e Two terminal variables are ‘free’, the other two are ‘bound’,
(free = one voltage, one current, bound = one voltage, one
current), but

there is no reasonable choice of inputs and outputs!

e What is the role of V (z,%) and I (x,%), 0 < x < L,
\ in modeling the relation between V,, Ig, V7, 1:?

~

/
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f terminated by an impedance ~» undesirable reflections.

characteristic impedance R = é—‘; => no reflections!
I(x,t)
// + X + \
PLANT

CONTROLLER

+ +
v, \A

We view this termination as a behavioral controller. In this ex., the

classical sensor-to-actuator feedback interpretation is an illusion.

d very many such examples of controllers.

N
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3. Maxwell’s eqn’s

Set of independent variables = R x R3 (time and space),
dependent variables = (E . B, 7, P)

€ R x R3 xR xR,
the behavior = set of solutions to these PDE’s.

— 1
V-E = —p,
€o
— 0 -
VXE = ——B,
ot
V-B = o0,
c’VxXxXB = —j3+4—F
€0 ot

(electric field, magnetic field, current density, charge density),

/
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Which PDE’s describe (p, E . 5") in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~»

— 1
V-E = —p,
€o
0, — -
€OEV'E—|—V'] = O,
82E’+ 2V><V><E’+a*‘ 0
Eo—— EnC — = .
? 9t2 0 at’




Potential functions

The following equations in the
scalar potential ¢ : R x R3 — R
and the
vector potential A : R x R3 — R3,
generate exactly the solutions to Maxwell’s equations:

= -2i v
ot ’
B = VXA,
f = sa—zj—s AV2A 4+ e 02V(V-K)+63V¢
Oatz 0 0 Oat ’
p = —eoﬁv-,&’—eovch.
ot

/
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Leads to the following questions:

-

e Is there a fundamental reason why the behavior of (p, E v 7)
is also described by a PDE? ‘Elimination’ issue.

e When and why is a representation in terms of a potential
possible? ‘Image representation’ issue.

e Derive algorithms for elimination, image representation.

\_
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‘ The basic concepts I

Behavioral systems

Asystem= | X = (T, W, B)

T, the set of independent variables,

W, the set of dependent variables,

B C W' : the behavior

(= the admissible trajectories).

N

/
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¥ = (T, W, 28B)

For a trajectory w : T — W, we thus have:

w € 4B : the model the trajectory w,
w & B : the model forbids the trajectory w.

T = R (in continuous-time systems), T = R" (in n-D systems),

W C R¥ (in lumped systems), or a finite set (in DES).

Emphasis today: T =R", W = R",

\_

'8 = solutions of system of linear constant coefficient PDE’s.
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First principles models invariably contain auxiliary variables,

in addition to the variables the model aims at.

~» Manifest and latent variables.

Manifest = the variables the model aims at,

Latent = auxiliary variables.

We want to capture this in a mathematical definition.
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A system with latent variables = | X7, = (T, W, L, Bg,11)

T, the set of independent variables.

W, the set of manifest dependent variables
(= the variables that the model aims at).

L, the set of latent dependent variables
(= the auxiliary modeling variables).

Bean C (W x L)' : the full behavior

(= the pairs (w, ) : T — W x L that the model declares
possible).

N




The manifest behavior

The latent variable system X = (T, W, L, B¢,;) induces
the manifest system 3 = (T, W, B), with manifest behavior

B={w:T—W|3 £:T — Lsuch that (w, £) € Beu}

In convenient equations for *3, the latent variables are ‘eliminated’.

\_
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Examples

1. Heat diffusion

q(x,t)

il

T(x,t)

T = R? (time and space);
W = R4 X R (temperature and heat);
'8 = sol’ns to the PDE, the diffusion eq’n.

\_
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2. Coaxial cable

I(x,t)

—
+
X
V(x,t)

Consider the voltage as the variable the model aims at.
T = R? (time and space);

W = R (voltage);

L = R (current);

B eun = sol’ns to the PDE’s;

B = sol’ns to 63—;V = LOCog—;V?

\_




/3. Coaxial cable of length L.

Consider the terminal variables as the variables the model aims at.
T = R (time);
W = R* (2 voltages, 2 currents),
latent variables =V (z,:), I(x,-);0 < « < L
(voltage and current in the coax)
B un1 = sol’ns to the PDE’s + boundary conditions.

©= sol’ns to ... ?
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4. Maxwell’s eqn’ns

T = R*, W = R19, 98 = solutions to ME.

If we view the electrical variables as manifest, and B as latent
T=R*W=R",L=RS,
B a1 = solutions to ME, 28 = solutions to eliminated eq’ns?

If we consider the representation in terms of the potentials ¢, A
T =R, W =R L =R4,
Beuu1 = solutions to potential eqn’s, 25 = solutions to ME?

N /
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We now discuss the fundamentals of the theory of n-D systems

Linear differential systems

¥ = (R*, R",8B)

that are

1. [linear, meaning
[(w1,ws € B) A (a, 8 € R)] = [aw; + Bws € B;

2. shift-invariant, meaning
[(w € B)A(x € RY)| = [0®%w € B,
where o denotes the o —shift;

3. differential, meaning

\_

8 consists of the solutions of a system of PDE’s.
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n-D systems

T = R",n independent variables,
W = R", w dependent variables,

Let R € R**"[&1, -+ - ,&4], and consider

R(aimla 931%)10:0 (*)

Define its behavior

B = {w € € (R*,RY) | (%) holds }

\Identical theory for ®'(R*, R¥).

= ker(R(aiwl, . e

% = the solutions of a linear constant coefficient system of PDE’s.

s Ba))

¢ (R*, R¥) mainly for convenience, but important for some results.

~

/




/Examples: Diffusion eq’n, Wave eq’n \

Example: Maxwell’s equations

- 1
V-E = —p,
€0
~ 0 -
VXE = ——B,
ot
V-B = 0,
C = — —
Ef().7 ot

T = R x R3 (time and space),
w = (E : B ) ; s P)
(electric field, magnetic field, current density, charge density),
W=R3 x R x R? xR,
\% = set of solutions to these PDE’s. /




NOMENCLATURE

L7 : the set of such systems with n in-, w dependent variables
£° : with any - finite - number of (in)dependent variables

Elements of £® : linear differential systems

R(ai oo, 2 )w =0: a kernel representation of the
corresponding X € £%°orB € £°
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First principles models ~-» latent variables. In the case of systems

described by linear constant coefficient PDE’s: ~»

0, 0, 0, 0,

R(——y---, Vw = M(——, -,
O0x ox, Oxq ox,

)

with R, M € R***[¢].

For 1-D systems, the natural model class to start a study of finite
dimensional linear time-invariant systems! Much more so than

d
EmzAw—I—Bu, y = Cx 4+ Du.

\_
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Controllability

Controllability :&

system trajectories must be ‘patch-able’, ‘concatenable’.

Casen = 1, T = R, any w;, wo € B concatenable:

wl W_———
/‘\N. . ““/
_______ 0 time
/\ '-.,\‘_—/wz
w A%
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Generaln, T = R".

Consider any two elements w1, w2 of the behavior and any two open
non-overlapping C R*:
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Observability

Consider the system > = (T, W; X W5, B).

Each element of the behavior 3 hence consists of
a pair of trajectories (wq, ws).

" ¢ |SYSTEMf : %

observed to—be—-deduced
variables variables

w; : observed; ws : to-be-deduced.
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w-o is said to be [observable] from w;q

if ((w1,w;) € B, and (w1,wy) € B) = (wy = wy),
i.e., if on B, there exists a map w,; — ws.

We are especially interested in the case

observed = manifest
to-be-deduced = latent
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. 3 theorems




Theorem 1

Theorem 2

Theorem 3

Algebraization:

£¥ < sub-modules of R¥[£y, - - , &]

Elimination:

(Bean € £2) = (B € £9)

Image representation:

Controllabilility < (d Image representation)

N
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Algebraization of £°

Note that
0 0
R(—,---, Jw =0
Bml 0 n
and 5 5
U =0
(8:1:1 :I:n) (Bwl 8mn)w

have the same behavior if the polynomial matrix U is uni-modular
(i.e., when det (U) is a non-zero constant).

= R defines 2B = ker(R(aiwl, vee %)), but not vice-versa!

N
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(¢ 3 ‘intrinsic’ characterization of 5 € £7 77

Define the | annihilators | of B € £7 by

0
m :_— ,l/ ]RW ’ ¢ 0 ’ n ,LT - * ’

= 0}.

Iy is clearly an R[&q, - - - , &,] sub-module of R¥[&1, - - - , &,].

My =< R >!

Note: Depends on €°°; (<) false for compact support soln’s:

for any p #£ 0, p(aiwl,--- . fmn)w =OQhasw =0
kas its only compact support sol’n.

Let < R > denote the sub-module of R"[£q, - -« , &,] spanned by the
transposes of the rows of R. Obviously < R >C 91yx. But, indeed:

/




Theorem 1 (Algebraic structure of £7):

1. My =< R >!

In particular f( 63 )w = 0 is a consequence of

.’Ba:

(aim,...,aw Jw = 0ifandonlyif f € < R >.
2. £F < sub-modules of R¥[£1, - - , &,]
3.
Ri( 0 % Jw = 0and Ra(— % yw =0
R w = an e o o pu—
! Ty ’3:cn 2 Oxq’ " Oxy v

define the same system iff

< R; > < Rs > .

\_
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Elimination

Brunl = {(w, E) € EC>® (Rn, RW_I_e) |
belongs to £"14, by definition.

Its manifest behavior equals

B = {w € C°(R*,RY) |

\_

The full behavior of R(z2—, -+ , go-)w = M (52, -

(5] [5) [5)
R(a—wl,... ’3—:1:,1)w:M(6—a:1’...

= EsuchthatR(aim,-.. ,6%)10:]\/[((%1,...

» 5 )0




/ Does 5 belong to £7 ?

Theorem 2 (Elimination): It does!

Proof: The theorem is a straightforward consequence of the
‘fundamental principle’: the equation

0, 0,

, e o o ,
3$1 3$n

A(

)=y

A € R X0z [517 Tt gn]a (TS Q:OO(RnaRnl) givena
f € €°°(R"*, R*2) unknown, is solvable if and only if for
n € R (&, -+, &)]

(nTA=0) = (nT(i L9

\ Ox.’ " Oz,

)y = 0).
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Remarks:

e Number of equations for n = 1 (constant coeff. lin. ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

e There exist effective computer algebra/Grobner bases algorithms
for elimination
(R,M) — R’

e Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?

o /
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Examples

1.

2 82
V = LoCo—V,
Ox2 00 5¢2

describes indeed the behavior of V' in the coax.
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Which PDE’s describe (p, E , f) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~»

- 1
V-E = —p,

€0
8 — -

€OEV‘E+V'3 = 0,
32E+ 2V xVXE + 95

E0—— €0C 3 =

0 912 0 at’

Elimination theorem =
this exercise is exact & successful (+ gives algorithm).

/
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It follows from all this that £2 has very nice properties. It is closed
under:

o Intersection: (2B,B; € £7) = (B1 N B, € £7).

o Addition: (B1,B2 € £7) = (B, + B2 € £7).

e Projection: (2B € £"1T¥2) = (I1,,, B € £1).

e Action of a linear differential operator:

(% S gﬂlap S RWzXWl[Sla"' 7€n])
= (P(ga7" "+ 520)B € £32).

e Inverse image of a linear differential operator:

(B € £, P € R2%"1[¢y, .-+, &)
= (P(garr 1 520)) 1B € £1).

’ Ox,

\_




-~

Image representations

Representations of £:

(o) (o)
R(a_mla ’8mn)w =0

called a ‘kernel’ representation of 5 — ker(R(%));

0 0 0 0
R(a_wlﬂ'“ ,a—wn)w:M(a—wl,o-o ,a—wn)fe

called a ‘latent variable’ representation of the manifest behavior
B = (R(aiwla 7%))_1]\4( : 731%)Q:OO(RH9R£)°

\_

8 e o
8:131’
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Missing link: w = M(aiwl, e, a?: )
called an ‘image’ representation of B = im(M ( 821 st %)).

Elimination theorem =- every image is also a kernel.

¢ Which kernels are also images ??
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Theorem 3 (Controllability and image repr.):

The following are equivalent for 5 € £ :

1. B is controllable,

2. | B admits an image representation,

3. foranya € R"[£1,: -+ , &4,
a5, , 3o-|B equals 0 or all of € (R", R),

4, RV[&1, -+ & /Iy is torsion free,

etc.

N
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R®> — R and
the vector potential A : R x R3 — R3, generate exactly the solutions
to Maxwell’s equations:

E — _Eq_vqba
ot
B = VXA,
j = 603_214,_8 VA +e0c®V(V-A) +¢ Qqu
at2 0 ° Yot
p = —sOEV-A’—eOVZgb.
ot

Proves controllability. Illustrates the interesting connection

N

controllability < 3 potential!
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Remarks:

e Algorithm: R + syzygies + Grobner basis

=>  numerical test for on coefficients of E.

e In the 1-D case there exists always an observable image
representation = flatness. Not so for general n-D systems:
potentials are then hidden variables.

e 1 partial results for nonlinear systems.

e Kalman controllability is a straightforward special case.

N
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Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting influence! Especially in teaching.

Examples:

e Probability and the theory of stochastic processes as an
axiomatization of uncertainty.

e The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.

e QM.

N




Thank you for your patience & attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~Jjwillems

\_




