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MESSAGE

There is a deterministic interpretation of

the Kalman filter

that is as convincing as the stochastic one.
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FILTERING

Two (vector-valued) time-signals: an observed signal,

y : [0,∞)→ Ry,

and a to-be-estimated signal,

z : [0,∞)→ Rz.

Problem: Find a map
F : y 7→ ẑ

so that
ẑ : [0,∞)→ Rz

is a ‘good estimate’ of z.

Requirement: ẑ(T ) at time T is allowed to depend only on the
past of y: the filter map F should be non-anticipating.



'

&

$

%

FILTER
   signal
estimated

zGENERATOR
SIGNAL

y

observation

z

to−be−estimated signal

ẑ
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In order to turn this problem into a mathematical one, we will:

1. Model the relation between the to-be-estimated signal z and
the observed signal y mathematically

2. Formulate an estimation principle

3. Obtain an algorithm that computes y 7→ ẑ,
i.e., an algorithm that implements the filter map F

The most natural setting is in terms of behaviors
(see F. Fagnani & JCW, (System & Control Letters),
but ...
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SIGNAL GENERATION MODEL
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driving signal
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Postulate the following behavioral equation relating the
to-be-estimated signal z : [0,∞)→ Rz

to an ideal observed signal ȳ : [0,∞)→ Ry

d

dt
x = Ax+Gd, z = Hx, ȳ = Cx.

Note
x(0), d(·) 7→ z(·)

x(0), d(·) 7→ ȳ(·)
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In order to fix the ideas, keep in mind the following example:

• Observations y: the position of a moving vehicle, from a sensor
that samples, quantizes, averages, ...

• To-be-estimated signal z: the velocity of the center of gravity of
the vehicle.

• Driving input d: the accelaration (from an unknown force)

• Ideal observations ȳ: the actual position of the center of gravity.
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ESTIMATION PRINCIPLE

What is a rational way

of obtaining an estimate ẑ(T ) of z(T )

from y(t) for 0 ≤ t ≤ T ?
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Our deterministic approach is based on the following idea.
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There are two undesirable elements in this model as an explanation
for the observation y:

1. The ‘latency’ (x(0), d) explaining the output ȳ

2. The ‘misfit’ y − ȳ
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This leads to

the latency measure = ||x(0)||2Γ +

∫ T

0

||d(t)||2 dt

the misfit measure =

∫ T

0

||y(t)− ȳ(t)||2 dt.

Γ = Γ> Â 0 a given weighting matrix.

Filtering, prediction, etc. ; Minimize their (weighted) sum!

⇒ Compute the d, x(0) that minimizes the uncertainty measure

||x(0)||2Γ +

∫ T

0

||d(t)||2 dt+

∫ T

0

||y(t)− ȳ(t)||2 dt.

uncertainty = latency + misfit
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Minimizing over d, x(0) ; d∗, x(0)∗.

Substitute in eq’n for z; resulting output: z∗.

Define the desired estimate of z(T ) by ẑ(T ) := z∗(T ). Hence

ẑ(T ) = HeATx(0)∗ +
∫ T

0
HeA(T−τ)Gd∗(τ ) dτ.

Note that ẑ(T ) depends only on y(t) for 0 ≤ t ≤ T :
⇒ non-anticipation.
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A graphical interpretation of this estimation principle:
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FILTERING ALGORITHM

(d∗, x(0)∗) depends not only on y, but also on T .

So, in order to compute z∗ we need to solve,
at each time T ∈ [0,∞),

a dynamic optimization problem:
minimize the uncertainty measure,
subject to the dynamic eq’ns

and with (y(t), 0 ≤ t ≤ T fixed).

It is possible to obtain, using a nice and very effective‘completion of
the squares’ argument, a recursive solution, yielding ẑ(T ) in a very
efficient way,

and for all T at once!
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Indeed, whenever d, x(0) leads to ȳ, there holds

||x(0)||2Γ +

∫ T

0

||d(t)||2 dt+

∫ T

0

||(y − ȳ(t)||2 dt

= ||x(T )− x̂(T )||2Σ(T )−1 +

∫ T

0

||(d−G>Σ−1(x− x̂))(t)||2 dt

+

∫ T

0

||(y − Cx̂)(t)||2 dt

≥

∫ T

0

||(y − Cx̂)(t)||2 dt.

with
d

dt
x̂ = Ax̂+ΣC>(y − Cx̂), x̂(0) = 0.

d

dt
Σ = GG> +AΣ+ ΣA> − ΣC>CΣ, Σ(0) = Γ−1.
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Therefore

||x(0)||2Γ +

∫ T

0

||d(t)||2 dt+

∫ T

0

||(y − ȳ)(t)d(t)||2 dt

is minimized if we can choose d, x(0) such that

1. x(T ) = x̂(T ), and

2. d(t) = G>Σ(t)−1(x(t)− x̂(t)) for 0 ≤ t ≤ T .

Such a choice clearly exists!

This implies that the optimal d∗, x(0)∗ yields

x(T ) = x̂(T ), and hence ẑ(T ) = Hx̂(T ).

The optimal d∗, x(0)∗ is not needed.
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Summarizing
The least squares filter

Let y be the observed output.
Let Σ : [0,∞)→ Rn×n be the (unique) solution of the RDE

d

dt
Σ = GG> +AΣ+ ΣA> − ΣC>CΣ, Σ(0) = Γ−1.

The least squares filter is given by

d

dt
x̂ = Ax̂+ΣC>(y − Cx̂), x̂(0) = 0, ẑ = Hx̂.

Input: y; output: ẑ; Σ: filter parameters computed ‘off-line’.
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THE STOCHASTIC FILTER

The stochastic model that leads to this (classical Kalman) filter is:

d

dt
x = Ax+Gd, y = Cx+ n, z +Hx, x(0) = x0,

d, n gaussian white noises, x0 gaussian, independent, and

E{





d(t)

n(t)









d(t+ t′)

n(t+ t′)





>

} = Iδ(t′), L(x0) = N(0,Γ−1).

The conditional mean (ẑ(T ) = E{z(T ) | y(t), 0 ≤ t ≤ T})
∼= maximum likelihood∼= stochastic least squares filter is also

d

dt
x̂ = Ax̂+ΣC>(y − Cx̂), x̂(0) = 0, ẑ = Hx̂.

One can write model + filter also in Itô notation.
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Which interpretation is to be preferred, the probabilistic

conditional mean/maximum likelihood interpretation,

or the deterministic least squares one?

This has been a matter of debate at least since Gauss justified
Legendre’s least squares as a method of computing the most
probable, maximum likelihood, outcome.

Legendre (least squares)
; Gauss (probability)

; Wiener & Kolmogorov (time-series, probability)
; Kalman (probabilistic, state, recursive filter)
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The uncertainty in models is very often due to such things as model
approximation and simplification, neglected dynamics of sensors,
quantization in time and space, unknown deterministic inputs, etc.

It is hard to conceive situations in which
precise stochastic knowledge about real uncertainty

can be justified, as a description of reality.
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What does probability mean anyway, in the present context

• Relative frequency?

• Degree of belief?

• Plausibility?

Cloudy and fuzzy ...,
and, in filtering, as we have shown, needlessly so.

Isn’t simple deterministic least squares more satisfactory?
It is more pragmatic, and lays its strengths and weaknesses bare.
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But, there is more

Well-known: deterministic static least squares ∼= max. likelihood.

This equivalence of deterministic least squares and a stochastic (cond.
mean / max. likelihood) interpretation persists in discrete-time
dynamical systems over a finite horizon...

But not for continuous-time dynamic systems, (or estimation over an
infinite horizon). Indeed, if d is white noise, then

E{

∫ t1

t0

|d|2 dt} =∞ w.p. 1

Hence d’s with small L2-norm are now not ‘more likely’ than d’s
with large L2-norm.

The stochastic Kalman filter does not have an interpretation in terms
of the ‘most likely∼= least squares driving signal’ ...
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The MORALE of the story

Don’t explain
the latency x(0), d

and the misfit y − ȳ

stochastically, as driving and sensor ‘noise’.

There is no need for it.
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RECAPITULATION

• Filtering: estimate a signal from the past of an observed one.

• Deterministic least squares: explain the observations by the
variables of least uncertainty measure that generate them;
substitute in equations of to-be-estimated signal.

• This leads to the deterministic Kalman filter with the RDE.

• Generalizable in many directions, including least squares control.

• Strictly speaking, this result is not of the type:
deterministic least squares

∼= stochastic maximum likelihood driving signal.

• Pedagogical advantages of the deterministic derivation are
beyond debate.
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CONCLUSION

There is a deterministic interpretation of

the Kalman filter

that is as convincing as the stochastic one.
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Reference:

JCW, Deterministic Kalman filtering,
to appear in the Journal of Econometrics.

This ms., and copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/∼jwillems
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Thank you!


