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A dissipative system absorbs supply, ‘globally’ over time and space.
¿¿ Can this be expressed ‘locally’, as

rate of change in storage + spatial flux

�

supply rate

STORAGE

FLUX

SUPPLY

DISSIPATION

rate of change in storage + spatial flux
= supply rate + (non-negative) dissipation rate ??
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First principles motivating example: Heat diffusion

x

q(x,t)

T(x,t)

The PDE �
�� � � � �
��� � � �	

describes the evolution of the temperature

� 
 ��� � 


(� � �

position, � � �

time) in a medium and the heat	 
 ��� � 


supplied to / radiated away from it.



For all sol’ns

�� 	 with

� 
 ��� � 
 � constant � �

(and therefore	 � �

) outside a compact set, there holds:

First law: ��� � 	 
 ��� � 
 �� �� � ��

Second law:

��� � 	

 �� � 


� 
 �� � 
 �� �� � ���

�

max ��� � � � 
 ��� � 
� 	 
 ��� � 
 � ! 
min ��� � � � 
 ��� � 
 � 	 
 ��� � 
 � � ! �

It is impossible to transport heat from a ‘cold source’ to a ‘hot sink’.



Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

rate of change in storage + spatial flux
�

supply rate

To be invented:

an ‘extensive’ quantity for the first law: internal energy

an ‘extensive’ quantity for the second law: entropy



Define the following variables:

" � � # the stored energy density,$ � %'& 
 � 
 # the entropy density,

(*) �,+ �
��� � # the energy flux�

(.- �,+ /
�

�
�� � # the entropy flux,

0 - � 
 /
�

�
��� � 
 � # the rate of entropy production�



Local versions of the first and second law:
rate of change in storage + spatial flux

�

supply rate

Conservation of energy:

�
�� " � �
�� (1) � 	 �

Entropy production:

�
�� $ � �
��� (2- � 	 � � 0 - � Since


 0 -  � 
 �

�
�� $ � �
��� (-  	
� �

Our problem:
theory behind these ad hoc constructions of

"� (*) and

$� (.- .
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LYAPUNOV FUNCTIONS

Consider the classical dynamical system, the ‘flow’

3 # 44 � � � 5 
 � 


with � � 6 � �7

, the state space, and

5 # 6 8 6
.

Denote the set of solutions � # � 8 6

by

9

, the behavior.

: # 6 8 �
is said to be a Lyapunov function for

3
if along � � 9

44 � : 
 � 
<; 
 
 � �

Equivalent to

= : > # � ? : ; 5 � �



Plays a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).
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‘Open’ systems are a much more appropriate starting point for the
study of dynamics.

SYSTEM outputinput



Consider the ‘dynamical system’

3 # 44 � � � 5 
 �� @ 
� A � B 
 �� @ 
 �

@ � C � �D� A � E � �F� � � 6 � �7

: the input, output, state.

Behavior

9 � all sol’ns


 @� A� � 
 # � 8 CHG EG 6�

Let I # CG E 8 �

be a function, called the supply rate.



DISSIPATIVITY3

is said to be dissipative w.r.t. the supply rate I if

J

: # 6 8 ��

called the storage function such that

44 � : 
 � 
<; 
 
 � I 
 @ 
<; 
� A 
 ; 
 

along input/output/state trajectories (

K 
 @ 
 ; 
� A 
 ; 
� � 
 ; 
 
 � 9 


.

This inequality is called the dissipation inequality.

Equivalent to

= : > 
 ��� @ 
 # � ? : 
 � 
 ; 5 
 ��� @ 
 � I 
 @� B 
 ��� @ 
 


for all

 @� � 
 � CG 6

.

If equality holds: ‘conservative’ system.



I 
 @� A 
 models something like the power delivered to the system
when the input value is @ and output value is A.

supply

input

output

SYSTEM

: 
 � 


then models the internally stored energy.

Dissipativity # L

rate of increase of internal energy

�

supply rate.



Special case: ‘closed’ system: I � �

then

dissipativeness M :

is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems N Dissipativity for open systems.



THE CONSTRUCTION OF STORAGE FUNCTIONS

Basic question:

Given (a representation of )

3
, the dynamics,

and given I, the supply rate,

is the system dissipative w.r.t. I, i.e.,

does there exist a storage function

:

such that

the dissipation inequality holds?



The construction of storage f’ns is very well understood, particularly
for linear systems and quadratic supply rates.

Leads to the KYP-lemma, LMI’s, ARIneq, ARE, semi-definite
programming, spectral factorization, Lyapunov functions, robust
control, electrical circuit synthesis, stochastic realization theory.

:

is in general far from unique. There are two ‘canonical’ storage
functions: the available storage and the required supply.
For conservative systems,

:

is unique.

Plays a remarkably central role in the field.



supply

input

output

SYSTEM

Assume I ‘power’, known dynamics, what is the internal energy?

This is the question which we shall now study

for systems described by PDE’s.
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Polynomial matrix notation for PDE’s:

PDE:

OQP 
 � P� � � 
 � � �
��� �R� OQP 
 � P� � � 
 � �
��� P O � 
 � P� � � 
 � �

O � 
 � P� � � 
 � � S
��� S� OTP 
 � P� � � 
 � � U
��� UP O � 
 � P� � � 
 � �

V

Notation: WP M �
��� P W � M �
��� �

O �
X

Y OP
O �

Z
[� \ 
 WP� W � 
 �

X
Y / � W �� WP

W S� / � W UP
Z

[ �

\ 
 �
��� P�

�
��� � 
 O � �



] � �7� the set of independent variables,^ � �_� the set of dependent variables,9 � the solutions of a linear constant coefficient system of PDE’s.

Let

\ � � = ` _ a WP� ; ; ; � W 7 b� and consider

\ 
 cc �d� ; ; ; � cc ��e 
 O � ��� 
gf 

Define the associated behavior

9 � � O � hi 
 �7� �_ 
� 
gf 

holds

! �

hi 
 �7� �_ 


mainly for convenience.

Notation for n-D linear differential systems:
 �7� �_� 9 
 � j _k7� or

9 � j _k7 �

Cfr. the work of Oberst, Pillai, Shankar, Wood, Zerz, ...



Examples: Maxwell’s eq’ns, diffusion eq’n, wave eq’n, � � �

Maxwell’s equations

? ; l" � /
mon p�

? G l" � + �
�� lrq�

? ; l q � ��

s � ? G l q � /
mHn

lrt � �
�� l"�

] � �G � S

(time and space),O � 
 l"� l q� lrt� p 


(electric field, magnetic field, current density, charge density),^ � � S G � S G � S G �
,9 � set of solutions to these PDE’s.

Note: 10 variables, 8 equations! � J

free variables.



\ 
 cc � d� ; ; ; � cc � e 
 O � �

is called a kernel representation of the associated

9 � j _k7 .

Another representation: image representation

O � u 
 cc � d� ; ; ; � cc � e 
v �

‘Elimination’ thm � wyx 
 u 
 cc � d� ; ; ; � cc �ze 
 
 � j _k7 {

9 � j _|7 admits an image representation iff it is ‘controllable’.



Controllability in pictures:
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� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

�

��

���

��� �

��

�T�Q� �T� � �

.



O � 9

‘patches’ OTP� O � � 9

.

� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � ��

�

��

Controllability : L ‘patch-ability’.



ARE MAXWELL’S EQUATIONS CONTROLLABLE ?

The following well-known equations in the scalar potential� # �G � S 8 �

and the vector potential

l�� # �HG � S 8 � S
,

generate exactly the solutions to Maxwell’s equations:

l" � + �
�� l�+ ? ��

l q � ? G l��

lt � mHn � �
�� � l��+ mHn s � ? � l � � mHn s � ? 
 ? ; l� 
 � mHn �
�� ? ��

p � + mHn �
�� ? ; l�+ mHn ? � ��

Proves controllability. Illustrates the interesting connection

controllability L J

a potential!



Not all controllable systems admit an observable image
representation. For � � /

, they do. For � � /

, exceptionally so.

Observability means:

u 
 cc � d� ; ; ; � cc � e 


is injective:v

can be deduced from O.

The latent variable in an image representation
v

may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation that is observable.



Multi-index notation:

� � 
 � P� � � �� � 7 
�

� � 
 �P� � � �� � 7 
� v � 
v P� � � �� v 7 
�

W � 
 WP� ; ; ; � W 7 
� � � 
 �P� � � �� ��7 
� � � 
 �P� � � �� � 7 
�44 � � 
 cc �d� � � �� cc � e 
� 4 �4 � � � 
 c �odc � �Hdd � � � �� c � ec � �¡ee 
�

�� � �� P �� � � � � �� 7�

\ 
 44 � 
 O � �

for

\ 
 cc � d� ; ; ; � cc � e 
 O � ��

O � u 
 44 � 
v for O � u 
 cc � d� ; ; ; � cc � e 
v�

etc.
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QDF’s

The quadratic map in O and its derivatives, defined by

O¢ 8 £� ¤ 

� £

�� £ O 
 ¥§¦ £� ¤ 
 � ¤
�� ¤ O 


is called quadratic differential form (QDF) on

h i 
 �7� �_ 

.

¦ £� ¤ � �_ ` _©¨ WLOG:

¦ £� ¤ � ¦ ¥¤� £ .
Introduce the

ª �-variable polynomial matrix
¦

¦ 
 �� � 
 � £� ¤
¦ £� ¤ � £ � ¤ �

Denote the QDF as

«­¬ .



DISSIPATIVE DISTRIBUTED SYSTEMS

We consider only controllable linear differential systems and QDF’s.

Definition:

9 � j _k7 , controllable, is said to be dissipative
with respect to the supply rate

«­¬ (a QDF) if

� � e «­¬ 
 O 
 ��  �

for all O � 9

of compact support, i.e., for all O � 9® ¯

.



Assume � � °

: independent variables ��� A� ±¨ � # space and time.

Idea:

«­¬ 
 O 
 
 ��� A� ±¨ � 
 �� � A � ± �� #

rate of ‘energy’ delivered to the system.

Dissipativity # L

� 
 � ² «­¬ 
 O 
 �� � A � ± 
 ��  �
for all O � 9® ¯ �

A dissipative system absorbs net energy.



Example: Maxwell’s eq’ns:
dissipative (in fact, conservative) w.r.t. the QDF + l" ; l³t

.

In other words, if

l"� lrt

is of compact support and satisfies

m n �
�� ? ; l" � ? ; lt � ��

mHn � �
�� � l" � mHn s � ? G ? G l" � �
�� lt � ��

then

� 
 � ² 
+ l" ; lrt 
 �� � A � ± 
 �� � ���

Can this be reinterpreted as: As the system evolves,
energy is locally stored, and redistributed over time and space?
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Assume that a system is ‘globally’ dissipative.
¿¿ Can this dissipativity be expressed through a ‘local’ law??

Such that in every spatial domain there holds:

44 � Storage + Spatial flux

�

Supply.

STORAGE

FLUX

SUPPLY

DISSIPATION

Supply = Stored + radiated + dissipated.



Main Theorem:9 � j _k7 , controllable, is dissipative w.r.t. the supply rate

«´¬

iffJ

an image representation O � u 
 44 � 
 v of

9

,
an �+ vector of QDF’s

«­µ � 
 «­µ d� � � �� «­µ e 

on

hi 
 �7� � ¶ ·¹¸ º ¤ » 


, called the flux,

such that the local dissipation law

? ; «´µ 
v 
 � «´¬ 
 O 

holds for all


 O� v 


that satisfy O � u 
 44 � 
 v �

As usual

? ; « µ # � cc � d «´µ d � ; ; ; � cc � e «´µ e �

Note: the local law involves
(possibly unobservable, - i.e., hidden!) latent variables (the

v

’s).



Assume � � °

: independent variables ��� A� ±¨ � # space and time.
Let

9 � j _ U be controllable. Then

� 
 � ² «­¬ 
 O 
 �� � A � ± 
 ��  �

for all O � 9® ¯ �
if and only ifJ

an image representation O � u 
 cc �� cc½¼� cc½¾� cc � 
v of

9
,

and QDF’s

$

, the storage, and( �� (¼� (¾� the spatial flux,

such that the local dissipation law

cc � $ 
v 
 � cc � ( � 
v 
 � cc½¼ (¼ 
v 
 � cc¾ (¾ 
v 
 � «¿¬ 
 O 


holds for all


 O� v 


that satisfy O � u 
 cc �� cc½¼� cc½¾� cc � 
 v �



EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell’s equations are dissipative (in fact, conservative) with
respect to + l" ; lt� the rate of energy supplied.
Introduce the stored energy density,

$

, and
the energy flux density (the Poynting vector),

l(
,

$ 
 l"� l q 
 # � mHn ª l" ; l" � mHn s �
ª lrq ; l q�

l( 
 l"� l³q 
 # � m n s � l" G lq�
The following is a local conservation law for Maxwell’s equations:

cc � $ 
 l"� l³q 
 � ? ; l( 
 l"� l q 
 � + l" ; lt�

Local version involves

lq� unobservable from

l"

and

l³t

,
the variables in the rate of energy supplied.
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8.



Using controllability and image representations, we may assume
WLOG:
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1. Motivating example

2. Lyapunov theory

3. Dissipative dynamical systems

4. Linear differential systems

5. Dissipative distributed systems

6. Local dissipation law

7. Schematic of the proof

8. The factorization equation



Consider Ä ¥ 
+ W 
 Ä 
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 � Å 
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with

Å � � = ` = a W b

given, and

Ä

the unknown. Solvable??

Æ �

Ä ¥ 
 W 
 Ä 
 W 
 � Å 
 W 

with

Å � � = ` = a W b

given, and

Ä

the unknown.

Under what conditions on

Å
does there exist a solution

Ä

?

Scalar case: !! write the real polynomial

Å

as a sum of squaresÅ � � �P � � �|� � ; ; ; � � �ÈÇ .
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and
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, solvable (for
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!) iff
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For � � /

, and

Å � � = ` = a W b

, it is well-known (but non-trivial) that
this factorization equation is solvable (with

Ä � � = ` = a W b

!) iff

Å 
�É 
 � Å ¥ 
 É 
 �

for all É � ��

For � � /

, and under this obvious positivity requirement, this
equation can nevertheless in general not be solved over the
polynomial matrices, for

Ä � � = ` = a W b

, but it can be solved over the
matrices of rational functions, i.e., for

Ä � � = ` = 
 W 


.



This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Solve Ê � Ê �P � Ê �k� � ; ; ; � Ê �ËÇ� Ê given

A polynomial Ê � � a WP� ; ; ; � W 7 b� with Ê 
�É P� � � �� É 7 
 �

for all
�É P� � � �� É 7 
 � �7

can in general not be expressed as a sum of
squares of polynomials, with the ÊÌ ’s � � a WP� ; ; ; � W 7 b

.

But a rational function (and hence a polynomial)Ê � � 
 WP� ; ; ; � W 7 
� with Ê 
 É P� � � �� É 7 
 �� for all
�É P� � � �� É 7 
 � �7

, can be expressed as a sum of squares of
( Í � ª 7

) rational functions, with the ÊÌ ’s � � 
 WP� ; ; ; � W 7 


.



� solvability of the factorization eq’n

¦ 
+ Á'Â � Á'Â 
 �

for all Â � �7

À

(Factorization equation)

J 0 # ¦ 
+ W� W 
 � 0 ¥ 
+ W 
 0 
 W 

over the rational functions,

i.e., with

0

a matrix with elements in
� 
 WP� ; ; ; � W 7 
 �

The need to introduce
rational functions in this factorization
an image representation of

9
to reduce the pbm to

h i

are the causes of the unavoidable presence of (possibly unobservable,
i.e., ‘hidden’) latent variables in the local dissipation law.



UNIQUENESS

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable

v

in various
(non-observable) image representations.

2. The non-uniqueness of

0

in the factorization equation

¦ 
+ W� W 
 � 0 ¥ 
+ W 
 0 
 W 

3. The non-uniqueness (in the case � � /

) of the solution

Ã

of


 � � � 
 ¥Ã 
 �� � 
 � ¦ 
 �� � 
 + 0 ¥ 
 � 
 0 
 � 


For conservative systems,

¦ 
+ W� W 
 � �

, whence

0 � �

,
but, when � � /

, the third source of non-uniqueness remains, even
when working with a specific image representation.



It seems to be a very real non-uniqueness, even for EM fields. Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for @

[the internal energy] and

$

[the flux] ... It is sometimes claimed that
this problem can be resolved using the theory of gravitation ... as yet
nobody has done such a delicate experiment ... So we will follow the rest
of the world - besides, we believe that it [our choice] is probably
perfectly right.

The Feynman Lectures on Physics,
Volume II, page 27-6.



CONCLUSIONS

Î global dissipation L J

local dissipation law

Î Involves hidden latent variables (e.g.

lrq
in Maxwell’s eq’ns)

Î The proof

Æ � Hilbert’s 17-th problem

Î Neither controllability nor observability are good generic
assumptions



Reference: H. Pillai and JCW, Dissipative distributed systems,
SIAM J. Control and Opt., electronically published in January 2002.

The ms. & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/ Æjwillems



Thank you!


