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/A dissipative system absorbs supply, ‘globally’ over time and space.\
& Can this be expressed ‘locally’, as

rate of change in storage + spatial flux < supply rate

SUPPLY
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DISSIPATION

rate of change in storage + spatial flux
\ = supply rate + (non-negative) dissipation rate ??/
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1. Motivating example

® N H ¢ A WD

OUTLINE '




-~

First principles motivating example: Heat diffusion

q(x,t)
7 |
: > |
T(x.t)
The PDE
0 T 0? T+
ot  Ox2 a

describes the evolution of the temperature 7'(x, t)
(x € R position, ¢ € R time) in a medium and the heat g(x, T)
supplied to / radiated away from it.

\_

/




~

For all sol’ns T', g with T'(x,t) = constant > O (and therefore
g = 0) outside a compact set, there holds:

First law:

Jre a(x,t) dx dt = 0,
Second law:
.t
L, 2@b) g < o
T(x,t)
=

max, {71 (x,t) | g(z,t) > 0} > min, {T(x,¢t) | g(x,t) < 0}.

It is impossible to transport heat from a ‘cold source’ to a ‘hot sink’.
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Can these ‘global’ versions be expressed as ‘local’ laws?

SUPPLY

Wiy
FLUX :j //// W/ ‘ //3;:» FLUX

STORAGE

rate of change in storage + spatial flux < supply rate

To be invented:
an ‘extensive’ quantity for the first law: internal energy

an ‘extensive’ quantity for the second law: entropy

N /
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Define the following variables:

E =T

S = In(T)

F 3T

B ox

7 1 0

5 T Ox
1 0 0

S_(T% )

: the stored energy density,

: the entropy density,

the energy flux,

the entropy flux,

the rate of entropy production.




/Local versions of the first and second law: \
rate of change in storage + spatial flux < supply rate

Conservation of energy:

9 E + 9 Fgp =
ot oz ° P
Entropy production:
0, 0, q :
—S + — + Dg. Since (Ds>0) =

at” "oz °T T

Our problem:
\ theory behind these ad hoc constructions of £/, Fp and S, F's /
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1. Motivating example
2. Lyapunov theory
3.
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LYAPUNOV FUNCTIONS

Consider the classical dynamical system, the ‘flow’

3 —:Iz—f(a:)

with x € X = R"®, the state space, and f : X — X,

Denote the set of solutions x : R — X by 8,

V:iX—=R

the behavior.

is said to be a Lyapunov function for X if along x € B

5 V() <0

Equivalent to v3i=VvV. f<o0

\_
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Plays a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).

- /
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1. Motivating example
2. Lyapunov theory
3. Dissipative dynamical systems

4.
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Open’ systems are a much more appropriate starting point for the

~

study of dynamics.

input —__ | SYSTEM output




-~

Consider the ‘dynamical system’

DI —a:_f(a: u),

y = h(x,u).

ueEU=R",yeY =R,z € X =

Behavior 28 = all sol’ns (u, y, x)

R": the input, output, state.

:R—->UXxY x X.

Let |s:U XY — R| beafunction, called the supply rate.
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DISSIPATIVITY

3. is said to be dissipative w.r.t. the supply rate s if

V:X = R,

called the storage function such that

2 y(z(-) < s(u(-),y(-))

along input/output/state trajectories (V (u(-),y(-),z(-)) € B).

This inequality is called the dissipation inequality.

Equivalent to ‘;E(m,u) = VV(x): f(z,u) < s(u,h(x,u))
for all (u,x) € U x X.

If equality holds: ‘conservative’ system.

N /
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s(u, y) models something like the power delivered to the system
when the input value is © and output value is y.

SYSTEM

V () then models the internally stored energy.

Dissipativity :&

N

rate of increase of internal energy < supply rate.
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Special case: ‘closed’ system: s = 0 then

dissipativeness <> V is a Lyapunov function.

Dissipativity is the natural generalization to open systems of
Lyapunov theory.

Stability for closed systems ~ Dissipativity for open systems.
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THE CONSTRUCTION OF STORAGE FUNCTIONS

Basic question:

Given (a representation of ) 3., the dynamics,
and given s, the supply rate,
is the system dissipative w.r.t. s, i.e.,
does there exist a storage function V such that

the dissipation inequality holds?
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The construction of storage f’ns is very well understood, particularly
for linear systems and quadratic supply rates.

Leads to the KYP-lemma, LMI’s, ARIneq, ARE, semi-definite
programming, spectral factorization, Lyapunov functions, robust
control, electrical circuit synthesis, stochastic realization theory.

V is in general far from unique. There are two ‘canonical’ storage
functions: the available storage and the required supply.
For conservative systems, V' is unique.

Plays a remarkably central role in the field.

o /




input

—

supply

SYSTEM

output

Assume s ‘power’, known dynamics, what is the internal energy?

This is the question which we shall now study

for systems described by PDE’s.
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1. Motivating example
2. Lyapunov theory
3. Dissipative dynamical systems

4. Linear differential systems

3.

*® N &

\_




-~

Polynomial matrix notation for PDE’s:

PDE:

82

wi(x1, T2) + 2 wy(T1,T2) +

2

83

o0
8331
34

’wz(wla 332)

wz (T, T2) + @wl(ml, r2) + @’uh(mla T2)

2

Notation:

7

1

§1 < 0 §2 < 0
! 8.’131 2 8.’132
w 14 €2
w=| - , R(&1,&2) = 362 G Ak
_w2_ i 52 1+£1_
0 0
R( ’ Jw =0
8&31 3.’B2

~




T = R", the set of independent variables, \
W = RRY, the set of dependent variables,
'8 — the solutions of a linear constant coefficient system of PDE’s.

Let R € R**¥[&1,- - , &u], and consider

R(Z, 52 )w=0. (x)

> Oz,

Define the associated behavior

B = {w € €°(R*,R") | (%) holds }.

¢°°(R*, R") mainly for convenience.

Notation for n-D linear differential systems:
(R*,R",B) € £, orB c L.

kar. the work of Oberst, Pillai, Shankar, Wood, Zerz, ... /




/Examples: Maxwell’s eq’ns, diffusion eq’n, wave eq’n, . .. \

Maxwell’s equations

- 1
V-E = —p,
€0
- 0 -
VXE = ——B,
ot
V-B = 0,
c°VxB = —j3+4+ —F
€0 ot

T = R X R3 (time and space),
w = (E ’ B ’ .; ’ P)
(electric field, magnetic field, current density, charge density),
W=R3 x R x R? xR,
8 — set of solutions to these PDE’s.
\Note: 10 variables, 8 equations! = 3 free variables. /
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R(aiwla 9%)“’20

is called a kernel representation of the associated 5 € £7.

Another representation: image representation

w=M(z2 -, 5.

) Ox,

‘Elimination’ thm = im(M(aiwl, ce a%)) c Ll

B € £7 admits an image representation iff it is ‘controllable’.

N
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Controllability in pictures:

O,

O,

Wi, W2 - 8.




patches’ wq, wo € 8.

w € ‘B

Controllability : < ‘patch-ability’.




/ ARE MAXWELL’S EQUATIONS CONTROLLABLE ? \

The following well-known equations in the scalar potential
® :R x R3 — R and the vector potential A : R x R3 — R3,
generate exactly the solutions to Maxwell’s equations:

= -2i vy
ot
B = VXA,
2 0% - 2v72 A 2 g 0
] = €O@A—€06VA—|—€06 V(VA)-F&'OEqu,
p = —eOEV-A’—eovch.
ot

Proves controllability. Illustrates the interesting connection

controllability < 3 a potential!

N /
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Not all controllable systems admit an observable image
representation. For n = 1, they do. For n > 1, exceptionally so.

Observability means: M (6%:1, cee 6%) is injective:

£ can be deduced from w.

The latent variable in an image representation £ may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential

representation that is observable.

\_
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Multi-index notation:

L = (wla-“amn)a
k= (kpy.. k), €= (£y,-. b0),
62(519"'9€n) C:(Cla 9Cn)77:("717"'777n)7

d o 8 ak’n
o = (garr+ -2 5o )’da:"’_( PRIRRR ©s k)

dxr = dxidxs...dx,,

R(d%:)w:O for R(aiml,--- O Yw =

w:M(%)E for w:M(aiwl,--- 9 )y,

etc.

\_




® NH U R W N

OUTLINE '

. Motivating example

Lyapunov theory
Dissipative dynamical systems
Linear differential systems

Dissipative distributed systems




/ QDF’s

The quadratic map in w and its derivatives, defined by

dk - d£
w — Zk,e(@w) ‘I’k,ﬂ(@’w)

is called quadratic differential form (QDF) on €°°(R*, R¥).

Pp,e € R WLOG: @40 = @ .

Introduce the 2n-variable polynomial matrix &

®(¢,m) =) Preltn.
k€

Qenote the QDF as Q5.
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DISSIPATIVE DISTRIBUTED SYSTEMS

We consider only controllable linear differential systems and QDE’s.

Definition: 5 € £7, controllable, is said to be  dissipative
with respect to the supply rate Qs (a QDF) if

J Qa(w) dx > 0

for all w € *B of compact support, i.e., for all w € B8 N 2.

N /
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Assume n — 4: independent variables x, y, z;1 : space and time.

Idea: Qo (w)(x,y,2;t) dedydz dt :
rate of ‘energy’ delivered to the system.

Dissipativity : &>

/( Qs (w) dxdydz) dt > 0 forallw € B ND.
R JR3

A dissipative system absorbs net energy.

N /




/Example: Maxwell’s eq’ns: \

dissipative (in fact, conservative) w.r.t. the QDF — E . ; .

In other words, if E . 3 is of compact support and satisfies

a_ - -
EOEV.E_I_V.] = 0,

2 — 2 — a—»
——F VXV XE —7 = 0
é:Oat2 + €ocC + at] ’

then
/( (—E - ) daxdydz) dt = 0.
R JRS

Can this be reinterpreted as: As the system evolves,

energy is locally stored, and redistributed over time and space?

N /
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. Motivating example

Lyapunov theory

Dissipative dynamical systems
Linear differential systems
Dissipative distributed systems

Local dissipation law
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Assume that a system is ‘globally’ dissipative.
.¢ Can this dissipativity be expressed through a ‘local’ law??

Such that in every spatial domain there holds:

% Storage + Spatial flux < Supply.

SUPPLY

A ﬁ
|1y

STORAGE =Y.

Y
# Yy !
DISSIPATION

Supply = Stored + radiated + dissipated.

~

/




/Main Theorem: \

B € L7, controllable, is dissipative w.r.t. the supply rate Q4
iff
3  animage representation w = M (d%)ﬁ of B,

an n—vector of QDF’s Q¢ = (Qw,,...,Qw. )
on € (R*, R4m(£)) called the fTux,

such that the local dissipation law

V-Qu(f) < Qs (w)

holds for all (w, £) that satisfy w = M (d%)ﬁ.

Asusual V - Qg := 3%1@\111 + -4 %Q\Pn-

Note: the local law involves
\ (possibly unobservable, - i.e., hidden!) latent variables (the £’s). /




/Assume n — 4: independent variables x, vy, z;t : space and time\
Let 2B € £ be controllable. Then

/( Qs (w) dxdydz) dt > 0 forallw € B ND.
R

R3
if and only if
. . . O O o8 I
3 an image representation w = M (5, By’ 92’ B )L of B,
and QDF’s S, the storage, and

F,, F,, F,, the spatial flux,

such that the local dissipation law

550 + 52 Fa(0) + 5, Fy(0) + ZF2(8) < Qa(w)

holds for all (w, £) that satisfy w = M ( Baa:’ (,;’y, ;’z, (,‘;’t)ﬁ.

N /
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Maxwell’s equations are dissipative (in fact, conservative) with

EXAMPLE: ENERGY STORED IN EM FIELDS

respect to — E . _7, the rate of energy supplied.
Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), ﬁ,

— — eO Cz — —

S(E, B) := EE B4: BB,

F(E,B) := eoc®E x B.

The following is a local conservation law for Maxwell’s equations:

-

9 S(E,B)+V-F(E,B)=—-E-j.

Local version involves B, unobservable from FE and 37,

k the variables in the rate of energy supplied.
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. Motivating example

Lyapunov theory

Dissipative dynamical systems
Linear differential systems
Dissipative distributed systems
Local dissipation law

Schematic of the proof
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Using controllability and image representations, we may assume
WLOG:

% — Q:OO(RII’RW)




/ Qs(w) > 0forallw € ®
Rn
{ (Parseval)

$(—iw,tw) > 0forallw € R"

$ | (Factorization equation)

I3 D: ®(—(,¢E =D"(-¢D(E)
§ (easy)
3@: (C+n)'¥(n) =2(Cn) —D'(C)D(n)
¢ (clearly)

FW¥: V:-Qu(w) <Qs(w)forallw € €°

/
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Motivating example

Lyapunov theory

Dissipative dynamical systems
Linear differential systems
Dissipative distributed systems
Local dissipation law
Schematic of the proof

The factorization equation




/Consider \

X' (—€)X (&) =Y(¢)

with Y € R***[£] given, and X the unknown. Solvable??

112

X)X =Y(¢)

with Y € R®***[£] given, and X the unknown.

Under what conditions on Y does there exist a solution X ?

Scalar case: !! write the real polynomial Y as a sum of squares

\ Y =x2+x2+- -+ z2

/




X1 ()X =Y(8)
Forn = 1and Y € R[£], solvable (for X € R?[£]!) iff

Y(a) >0 for all a € R.

Forn = 1,and Y € R***[£], it is well-known (but non-trivial) that
this factorization equation is solvable (with X € R®*®[£]!) iff

Y(a)=Y " (a) >0 for all « € R.

For n > 1, and under this obvious positivity requirement, this
equation can nevertheless in general not be solved over the
polynomial matrices, for X € R®**®[£], but it can be solved over the

\matrices of rational functions, i.e., for X € R®*®(&). /




4 N

This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Solve p = p? + pZ + -+ + p?, pgiven

A polynomial p € R[&1,: -, &, withp(aq,...,ay) > 0 forall
(a1y...,ay) € R® can in general not be expressed as a sum of
squares of polynomials, with the p;’s € R[&,--+ , &,

But a rational function (and hence a polynomial)

S IR(gla T 9€n)9 with p(ala <o 7an) 2 0, forall
(a1y...,a,) € R, can be expressed as a sum of squares of
(k = 2") rational functions, with the p;’s € R(&1,--- ,&,).

N /




=> solvability of the factorization eq’n

b (—itw,tw) > O0forallw € R”

x

(Factorization equation)

I D: &(—¢&¢) =D (—€)D(8)

over the rational functions,

i.e., with D a matrix with elements in R(&7,:-- ,&,).

The need to introduce

rational functions in this factorization

an image representation of 25 to reduce the pbm to €

are the causes of the unavoidable presence of (possibly unobservable,

i.e., ‘hidden’) latent variables in the local dissipation law.

/




/ UNIQUENESS

Non-uniqueness of the storage function stems from 3 sources

1. The non-uniqueness of the latent variable £ in various
(non-observable) image representations.

2. The non-uniqueness of D in the factorization equation

®(—¢,8) = D' (=€)D(§)

3. The non-uniqueness (in the case n > 1) of the solution W of

C+mn) " ¥EK,n) =2Cn) —D'(¢)D(n)

For conservative systems, ®(—&, &) = 0, whence D = 0,
but, when n = 1, the third source of non-uniqueness remains, even

Qhen working with a specific image representation.

/
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It seems to be a very real non-uniqueness, even for EM fields. Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for u
[the internal energy] and S [the flux] ... It is sometimes claimed that

this problem can be resolved using the theory of gravitation ... as yet
nobody has done such a delicate experiment ... So we will follow the rest
of the world - besides, we believe that it [our choice] is probably

perfectly right.

The Feynman Lectures on Physics,
Volume 11, page 27-6.

o /
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CONCLUSIONS .

global dissipation < 3 local dissipation law

Involves hidden latent variables (e.g. B in Maxwell’s eq’ns)
The proof = Hilbert’s 17-th problem

Neither controllability nor observability are good generic
assumptions
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Reference: H. Pillai and JCW, Dissipative distributed systems,
SIAM J. Control and Opt., electronically published in January 2002.

The ms. & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~Jjwillems
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Thank you! I




