THE BEHAVIORAL APPROACH

to

SYSTEMS and CONTROL

Jan C. Willems
ESAT-SCD (SISTA)
University of Leuven, Belgium

Problematique:

Develop a suitable mathematical framework for discussing dynamical systems
aimed at modeling, analysis, and synthesis.
\sim control, signal processing, system identification, . . .
$~$ engineering systems, economics, physics, . . .

Motivational examples

Electrical circuit

!! Model the relation between the voltage V and the current I

Electromechanical system

force, position, torque, angle

force, position, torque, angle

!! between the positions, forces, torque, angle, voltages, currents

Distillation column

Features: Systems are typically

dynamical

open, they interact with their environment
interconnected, with many subsystems
modular, consisting of standard components

We are looking for a mathematical framework that is adapted to these features, and hence to computer assisted modeling.

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory
\leadsto impedances, admittances, scattering matrices, etc.
1930's: control embraces transfer functions
(Nyquist, Bode, …) \leadsto plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

$~$ input/state/output systems, and the ubiquitous

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

or its nonlinear counterpart

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB ${ }^{\text {© }}$).

All these theories: input/output; cause \Rightarrow effect.

Beyond input/output

What's wrong with input/output thinking?

Let's look at examples:

Our electrical circuit.

Is V the input? Or I ? Or both, or are they both outputs?

An automobile:

External terminals: wind, tires, steering wheel, gas/brake pedal.

What are the inputs?
at the wind terminal: the force, at the tire terminals: the forces, or, more likely, the positions? at the steering wheel: the torque or the angle? at the gas-pedal, or the brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired) interconnection variables

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

Reasonable input choices: the pressures, output choices: the flows.
Assume that we model the interconnection of two tanks.

$$
\begin{array}{cl}
\hline \text { Interconnection: } p_{1}^{\prime}=p_{2}^{\prime \prime}, & f_{1}^{\prime}+f_{2}^{\prime \prime}=0 \\
\text { input=input; output=output! } & \Rightarrow \Leftarrow \text { SIMULINK }{ }^{\circledR}
\end{array}
$$

Interconnections contradicting SIMULINK ${ }^{\circledR}$ are in fact normal, not exceptions, in mechanics, fluidics, heat transfer, etc.

Mathematical difficulties:

Is a system a map $\quad u(\cdot) \mapsto y(\cdot)$?
How to incorporate 'initial conditions'?
Is it a parametrized map $\quad(u(\cdot), \alpha) \mapsto y(\cdot)$?
All sorts of new difficulties...

Construct the state!

But from what?

From the system model! What system?

Conclusions $\quad *$ for physical systems $(\Rightarrow \Leftarrow$ signal processors) $*$

- External variables are basic, but what 'drives' what, is not.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and what can be the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.

Interconnection, variable sharing,

rather that input selection,

is the basic mechanism by which a system interacts with its environment.
\Rightarrow We need a better framework for discussing 'open' systems!
$~$ Behavioral systems.

The basic concepts

Behavioral systems

$\underline{\text { A dynamical system }}=\Sigma \Sigma(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space (= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior \quad (= the admissible trajectories).

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}$: the model allows the trajectory w, $w \notin \mathfrak{B}$: the model forbids the trajectory w.

Usually, $\mathbb{T}=\mathbb{R}$, or $[0, \infty$) (in continuous-time systems), or \mathbb{Z}, or \mathbb{N} (in discrete-time systems).

Usually, $\mathbb{W} \subseteq \mathbb{R}^{w}$ (in lumped systems), a function space
(in distributed systems, with time a distinguished variable), or a finite set (in DES).

Emphasis later today: $\quad \mathbb{T}=\mathbb{R}, \quad \mathbb{W}=\mathbb{R}^{w}$, $\mathfrak{B}=$ solutions of system of linear constant coefficient ODE's.

Examples

1. Planetary orbits
$\mathbb{T}=\mathbb{R}$ (time),
$\mathbb{W}=\mathbb{R}^{3}$ (position),
$\mathfrak{B}=$ planetary orbits \cong Kepler's laws:

$$
\text { ellipses, }=\text { areas in }=\text { time }, \frac{(\text { period })^{2}}{(\text { axis })^{3}}=\text { constant. }
$$

2. Input / output systems

$$
\begin{aligned}
& f_{1}\left(y(t), \frac{d}{d t} y(t), \frac{d^{2}}{d t^{2}} y(t), \ldots, t\right) \\
& \quad=f_{2}\left(u(t), \frac{d}{d t} u(t), \frac{d^{2}}{d t^{2}} u(t), \ldots, t\right)
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \quad$ (time),
$\mathbb{W}=\mathbb{U} \times \mathbb{Y}$ (input \times output signal spaces),
$\mathfrak{B}=$ all input $/$ output pairs.
3. Flows

$$
\frac{d}{d t} x(t)=f(x(t))
$$

$\mathfrak{B}=$ all state trajectories.
... Of very marginal value as a paradigm for dynamics ...
Modeling closed systems by tearing and zooming
\leadsto open systems.
4. Observed flows

$$
\frac{d}{d t} x(t)=f(x(t)) ; \quad y(t)=h(x(t))
$$

$\mathfrak{B}=$ all possible output trajectories.
5. Convolutional codes
6. Formal languages

Latent variable systems

Consider our electrical RLC - circuit:

!! Model the relation between V and I !!

How does this modeling proceed?

The circuit graph

System equations

Introduce the following additional variables:
the voltage across and the current in each branch:

$$
V_{R_{C}}, I_{R_{C}}, V_{C}, I_{C}, V_{R_{L}}, I_{R_{L}}, V_{L}, I_{L}
$$

Constitutive equations (CE):

$$
V_{R_{C}}=R_{C} I_{R_{C}}, \quad V_{R_{L}}=R_{L} I_{R_{L}}, \quad C \frac{d}{d t} V_{C}=I_{C}, L \frac{d}{d t} I_{L}=V_{L}
$$

Kirchhoff's voltage laws (KVL):

$$
V=V_{R_{C}}+V_{C}, \quad V=V_{L}+V_{R_{L}}, \quad V_{R_{C}}+V_{C}=V_{L}+V_{R_{L}}
$$

Kirchhoff's current laws (KCL):

$$
I=I_{R_{C}}+I_{L}, \quad I_{R_{C}}=I_{C}, I_{L}=I_{R_{L}}, \quad I_{C}+I_{R_{L}}=I
$$

The preceding is a complete model, but here is the

Relation between V and I.

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+(1+\right. & \left.\left.\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

Exact relations between V and I !

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
$~$ Manifest and latent variables.

Manifest = the variables the model aims at,
Latent = auxiliary variables.

We want to capture this in mathematical definitions.

A dynamical system with latent variables $=\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$
$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the set of relevant time instances).
\mathbb{W}, the signal space (= the variables that the model aims at).
\mathbb{L}, the latent variable space (= the auxiliary modeling variables).
$\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}:$ the full behavior
(= the pairs $(w, \ell): \mathbb{T} \rightarrow \mathbb{W} \times \mathbb{L}$ that the model declares possible).

The manifest behavior

Call the elements of \mathbb{W} 'manifest' variables,

$$
\text { those of } \mathbb{L} \quad \text { 'latent' variables. }
$$

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

In convenient equations for \mathfrak{B}, the latent variables are 'eliminated'.

Examples

1. The RLC - circuit before elimination.
2. Models obtained by tearing and zooming
3. Input / state / output systems

$$
\frac{d}{d t} x(t)=f(x(t), u(t)) ; \quad y(t)=h(x(t), u(t))
$$

$\mathbb{T}=\mathbb{R}, \mathbb{W}=\mathbb{U} \times \mathbb{Y}, \mathbb{L}=\mathbb{X}$,
$\mathfrak{B}_{\text {full }}=$ all $(u, y, x): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$ that satisfy these equations, $\mathfrak{B}=$ all (input $/$ output)-pairs.
4. Trellis diagrams
5. Automata

Latent variables $=$ nodes
6. Grammars

Recapitulation

Central notions:

The behavior \sim a model.
Manifest and latent variables \sim specifies what the model aims at.
First principles models \sim latent variables.
(Full) behavioral equations \leadsto a specification of the (full) behavior.
Equivalent equations $\quad: \Leftrightarrow$ the manifest behavior is the same.

Linear differential systems

We now discuss the fundamentals of the theory of systems

$$
\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning $\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right) ;$
2. time-invariant, meaning $\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)$, where σ^{t} denotes the backwards t-shift;
3. differential, meaning \mathfrak{B} consists of the solutions of a system of differential equations.

[^0]$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$
with $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times{ }^{\bullet}}$.
Combined with the polynomial matrix
$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$
we obtain the short notation
$$
R\left(\frac{d}{d t}\right) w=0
$$

But, the theory has also been developed for PDE's.
n-D systems
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient system of PDE's.
Let $\boldsymbol{R} \in \mathbb{R}^{\bullet \times{ }_{\mathrm{w}}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$, and consider

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0 \quad(*)
$$

Define its behavior

$$
\mathfrak{B}=\left\{w \in \mathbb{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

$\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$ mainly for convenience, but important for some results.

Example: Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

$\mathbb{T}=\mathbb{R} \times \mathbb{R}^{3}$ (time and space),
$w=(\vec{E}, \vec{B}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density),
$\mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$,
$\mathfrak{B}=$ set of solutions to these PDE's.
Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

NOMENCLATURE

$\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$: the set of such systems with n in-, w dependent variables
\mathfrak{L}^{\bullet} : with any - finite - number of (in)dependent variables
Elements of \mathfrak{L}^{\bullet} : linear differential systems
$\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0:$ a kernel representation of the corresponding $\Sigma \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$
R\left(\frac{d}{d t}\right) w=0
$$

and

$$
U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).
$\Rightarrow \boldsymbol{R}$ defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!

$i \mathfrak{i} \exists$ 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$??

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{W}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$.
Let $<\boldsymbol{R}>$ denote the sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

Note: Depends on \mathfrak{C}^{∞}; (\Leftarrow) false for compact support soln's: for any $p \neq 0, \quad p\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ has only $w=0$ as compact support sol'n.

Conclusions:

(i) $\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$
(ii)

$$
R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 \text { and } R_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

define the same system iff

$$
<\boldsymbol{R}_{1}>=<\boldsymbol{R}_{2}>
$$

Elimination

First principle models \leadsto latent variables. In the case of systems described by linear constant coefficient PDE's: ~

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.
This is the natural model class to start a study of finite dimensional linear time-invariant systems! Much more so than

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

But is it(s manifest behavior) really a differential system ??

The full behavior of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$, $\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}\right) \mid\right.$

$$
\left.R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\}
$$

belongs to $\mathfrak{L}_{\mathrm{n}}^{\boldsymbol{w}+\ell}$, by definition. Its manifest behavior equals $\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid\right.$
$\exists \ell$ such that $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$.

$$
\text { Does } \mathfrak{B} \text { belong to } \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \text { ? }
$$

Theorem: It does!
Proof: The 'fundamental principle'.

Example: Consider the RLC circuit.
First principles modeling (\cong CE's, KVL, \& KCL)
$~ 15$ behavioral equations.
These include both the port and the branch voltages and currents.
Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem.

Why is there exactly one equation? Passivity!

Which PDE's describe (\vec{E}, \vec{j}) in Maxwell's equations?

Eliminate \vec{B}, ρ from Maxwell's equations. Straightforward computation of the relevant left syzygy yields

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0
\end{aligned}
$$

Elimination theorem \Rightarrow this exercise would be exact $\&$ successful.

Remarks:

- Number of equations for $n=1$ (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- There exist effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

- Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?

It follows from all this that $\mathfrak{L}^{\boldsymbol{\bullet}}$ has very nice properties. It is closed under:

- Intersection: $\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$.
- $\underline{\text { Addition: }} \quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)$.
- Action of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times{ }^{w_{1}}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right)$

$$
\Rightarrow\left(P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{2}}\right)
$$

- Inverse image of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{2}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times{ }_{w_{1}}}\left[\xi_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right)$

$$
\left.\Rightarrow\left(P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)
$$

Controllability

Controllability \Leftrightarrow

 system trajectories must be 'patch-able', 'concatenable'.Case $\mathrm{n}=1$

General n .
Consider two solutions:

Controllability $=$ patchability:

Is the system defined by

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $w=\left(w_{1}, w_{2}, \cdots, w_{\text {w }}\right)$ and $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}$,
i.e., $R\left(\frac{d}{d t}\right) w=0$, controllable?

We are looking for conditions on the polynomial matrix R and algorithms in the coefficient matrices $R_{0}, R_{1}, \cdots, R_{\mathrm{n}}$.

Thm: $R\left(\frac{d}{d t}\right) w=0$ defines a controllable system if and only if

```
rank(R(\lambda)) is independent of }\lambda\mathrm{ for }\lambda\in\mathbb{C}
```

Example: $\quad r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2} \quad\left(w_{1}, w_{2}\right.$ scalar $)$ is controllable if and only if r_{1} and r_{2} have no common factor.

Example: The electrical circuit is controllable unless

$$
C R_{C}=\frac{L}{R_{L}} \text { and } R_{C}=R_{L}
$$

Non-example: $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi], \quad \operatorname{det}(\boldsymbol{R}) \neq$ constant.

Image representations

Representations of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$;

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior

$$
\mathfrak{B}=\left(R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\ell}\right)
$$

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$.

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

Theorem: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$,

$$
a^{\top}\left[\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right] \mathfrak{B} \text { equals } 0 \text { or all of } \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}\right)
$$

4. $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free, etc., etc.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Remarks:

- Algorithm: $\boldsymbol{R}+$ syzygies + Gröbner basis $\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- \exists complete generalization to PDE's
- \exists partial results for nonlinear systems
- Kalman controllability is a straightforward special case

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.
w_{1} : observed; w_{2} : to-be-deduced.
Recall: w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

When is in

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?
If and only if $\operatorname{rank}\left(\boldsymbol{R}_{2}(\lambda)\right)=\operatorname{coldim}\left(\boldsymbol{R}_{2}\right)$ for all $\lambda \in \mathbb{C}$.
In general, if and only if there exists 'consequences' (i.e. elements of $\left.\mathfrak{N}_{\mathfrak{B}}\right)$ of the form $w_{2}=F\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w_{1}$.

The RLC circuit is observable (branch variables observable from external port variables) iff $C R_{C} \neq \frac{L}{R_{L}}$.
\exists a complete theory (for constant coefficient ODE's and PDE's), including algorithms, observer design, etc.

Observability is analogous (but not 'dual') to controllability.

Further results

Many additional problem areas have been studied from the behavioral point of view.

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification \Rightarrow the most powerful unfalsified model (MPUM), approximate system ID
- Observers
- Control
- Quadratic differential forms, dissipative systems, \mathcal{H}_{∞}-control
- Distributed parameter systems

Thanks

to the many colleagues, postdocs, and promovendi who have over the years contributed to this research program. In particular,

Harry Trentelman and Hans Nieuwenhuis (Groningen), Jan Willem Polderman and Arjan van der Schaft (Twente), Paolo Rapisarda (Maastricht), Paula Rocha (Aveiro), Fabio Fagnani (Torino), Christiaan Heij (Rotterdam), Siep Weiland (Eindhoven), Shiva Shankar (Chennai), Harish Pillai (Mumbai), Tommaso Cotroneo (London), Maria Elena Valcher and Sandro Zampieri (Padova), Eva Zerz (Kaiserslautern), Heide Glüssing-Lürssen (Oldenburg), Jeffrey Wood (Southampton), Ulrich Oberst (Innsbruck), etc.

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.
Examples:

- Probability and the theory of stochastic processes as an axiomatization of uncertainty.
- The development of input/output ideas in system theory and control - often these axiomatics are implicit, but nevertheless much very present.
- QM.

Thank you for your attention

Details \& copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be http://www.esat.kuleuven.ac.be/~jwillems

[^0]: Yields

