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Problematique:

Develop a suitable mathematical framework for
discussing dynamical systems

aimed at modeling, analysis, and synthesis.

control, signal processing, system identication,

engineering systems, economics, physics,



Motivational examples



Electrical circuit
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!! Model the relation between the voltage and the current



Electromechanical system

voltage, current

voltage, current

force, position, torque, angle
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force, position

!! between the positions, forces, torque, angle, voltages, currents



Distillation column



Features: Systems are typically

dynamical

open, they interact with their environment

interconnected, with many subsystems

modular, consisting of standard components

We are looking for a mathematical framework that is adapted to
these features, and hence to computer assisted modeling.



Historical remarks



Early 20-th century: emergence of the notion of a transfer function
(Rayleigh, Heaviside).

SYSTEM outputinput

Since the 1920’s: routinely used in circuit theory
impedances, admittances, scattering matrices, etc.

1930’s: control embraces transfer functions
(Nyquist, Bode, plots and diagrams, classical control.



Around 1950: Wiener sancties the notion of a blackbox,
attempts nonlinear generalization (via Volterra series).

1960’s: Kalman’s state space ideas (incl. controllability, observability,
recursive ltering, state models and representations) come in vogue



input/state/output systems, and the ubiquitous

or its nonlinear counterpart

These mathematical structures, transfer functions, + their
discrete-time analogs, are nowadays the basic models used in
control and signal processing (cfr. MATLAB c ).

All these theories: input/output; cause effect.

SYSTEM outputinput



Beyond input/output



What’s wrong with input/output thinking?

Let’s look at examples:

Our electrical circuit.
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Is the input? Or ? Or both, or are they both outputs?



An automobile:

External terminals:
wind, tires, steering wheel, gas/brake pedal.

What are the inputs?
at the wind terminal: the force,
at the tire terminals: the forces, or, more likely, the positions?
at the steering wheel: the torque or the angle?
at the gas-pedal, or the brake-pedal: the force or the position?

Difculty: at each terminal there are many (typically paired)
interconnection variables



Input/output is awkward in modeling interconnections.

Consider a two-tank example.

p1 f, 1 p f2 2,, 22 f"p’1 f’, 1 p"

Reasonable input choices: the pressures, output choices: the ows.

Assume that we model the interconnection of two tanks.

, 22 fp1 f, 1 p

Interconnection:

input=input; output=output! SIMULINK c

Interconnections contradicting SIMULINK c are in fact
normal, not exceptions, in mechanics, uidics, heat transfer, etc.



Mathematical difculties:

Is a system a map ?

How to incorporate ’initial conditions’?

Is it a parametrized map ?

All sorts of new difculties...

Construct the state!
But from what?

From the system model!
What system?



Conclusions for physical systems ( signal processors)

External variables are basic, but what ‘drives’ what, is not.

It is impossible to make an a priori, xed, input/output selection
for off-the-shelf modeling.

What can be the input, and what can be the output should be
deduced from a dynamical model. Therefore, we need a more
general notion of ‘system’, of ‘dynamical model’.



Interconnection, variable sharing,

rather that input selection,

is the basic mechanism by which a system interacts with its
environment.

We need a better framework for discussing ‘open’ systems!

Behavioral systems.



The basic concepts



Behavioral systems

A dynamical system =

, the time-axis (= the relevant time instances),

, the signal space (= where the variables take on their values),

: the behavior (= the admissible trajectories).



For a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

Usually, , or (in continuous-time systems),
or or (in discrete-time systems).

Usually, (in lumped systems),
a function space

(in distributed systems, with time a distinguished variable),
or a nite set (in DES).

Emphasis later today:
solutions of system of linear constant coefcient ODE’s.



Examples

1. Planetary orbits

(time),
(position),

planetary orbits Kepler’s laws:
ellipses, = areas in = time, period

axis constant.

Planet

Sun



2. Input / output systems

(time),
(input output signal spaces),

all input / output pairs.



3. Flows

all state trajectories.

... Of very marginal value as a paradigm for dynamics ...

Modeling closed systems by tearing and zooming
open systems.

4. Observed flows

all possible output trajectories.

5. Convolutional codes

6. Formal languages



Latent variable systems



Consider our electrical RLC - circuit:
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How does this modeling proceed?
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System equations

Introduce the following additional variables:
the voltage across and the current in each branch:

Constitutive equations (CE):

Kirchhoff’s voltage laws (KVL):

Kirchhoff’s current laws (KCL):



The preceding is a complete model, but here is the

Relation between and .

Case 1: .

Case 2: .

Exact relations between and !



First principles models invariably contain auxiliary variables, in
addition to the variables the model aims at.

Manifest and latent variables.

Manifest = the variables the model aims at,

Latent = auxiliary variables.

We want to capture this in mathematical denitions.



A dynamical system with latent variables =

, the time-axis (= the set of relevant time instances).

, the signal space (= the variables that the model aims at).

, the latent variable space (= the auxiliary modeling variables).

: the full behavior

(= the pairs that the model declares
possible).



The manifest behavior

Call the elements of ‘manifest’ variables ,

those of ‘latent’ variables .

The latent variable system induces
the manifest system with manifest behavior

such that

In convenient equations for , the latent variables are ‘eliminated’.



Examples

1. The RLC - circuit before elimination.

2. Models obtained by tearing and zooming

3. Input / state / output systems

,
all that satisfy these equations,

all (input / output)-pairs.

4. Trellis diagrams

5. Automata

Latent variables = nodes

6. Grammars



Recapitulation

Central notions:

The behavior a model.

Manifest and latent variables species what the model aims at.

First principles models latent variables.

(Full) behavioral equations a specication of the (full) behavior.

Equivalent equations the manifest behavior is the same.



Linear differential systems



We now discuss the fundamentals of the theory of systems

that are

1. linear , meaning
;

2. time-invariant , meaning
,

where denotes the backwards shift;

3. differential , meaning
consists of the solutions of a system of differential equations.

Yields



with

Combined with the polynomial matrix

we obtain the short notation

But, the theory has also been developed for PDE’s.



-D systems

independent variables,
dependent variables,

the solutions of a linear constant coefcient system of PDE’s.

Let and consider

Dene its behavior

holds =

mainly for convenience, but important for some results.



Example: Maxwell’s equations

(time and space),

(electric eld, magnetic eld, current density, charge density),
,

set of solutions to these PDE’s.

Note: 10 variables, 8 equations! free variables.



NOMENCLATURE

the set of such systems with in-, dependent variables

with any - nite - number of (in)dependent variables

Elements of linear differential systems

a kernel representation of the
corresponding or



Algebraization of



Note that

and

have the same behavior if the polynomial matrix is uni-modular
(i.e., when is a non-zero constant).

denes , but not vice-versa!



¿¿ ‘intrinsic’ characterization of

Dene the annihilators of by

is clearly an sub-module of

Let denote the sub-module of spanned by the
transposes of the rows of . Obviously . But, indeed:

Note: Depends on ; false for compact support soln’s:
for any has only
as compact support sol’n.



Conclusions:

(i) sub-modules of

(ii)

and

dene the same system iff



Elimination



First principle models latent variables. In the case of systems
described by linear constant coefcient PDE’s:

with .

This is the natural model class to start a study of nite dimensional
linear time-invariant systems! Much more so than



But is it(s manifest behavior) really a differential system ??

The full behavior of

belongs to , by denition. Its manifest behavior equals

such that

Does belong to ?

Theorem: It does!

Proof: The ‘fundamental principle’.



Example: Consider the RLC circuit.

First principles modeling ( CE’s, KVL, & KCL)
15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefcient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear constant coefcient

differential equations.
2. The elimination theorem.

Why is there exactly one equation? Passivity!



Which PDE’s describe ( ) in Maxwell’s equations ?

Eliminate from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

Elimination theorem this exercise would be exact & successful.



Remarks:

Number of equations for (constant coeff. lin. ODE’s)
number of variables.

Elimination fewer, higher order equations.

There exist effective computer algebra/Gröbner bases algorithms
for elimination

Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?



It follows from all this that has very nice properties. It is closed
under:

Intersection: .

Addition: .

Projection: .

Action of a linear differential operator:

Inverse image of a linear differential operator:



Controllability



Controllability
system trajectories must be ‘patch-able’, ‘concatenable’.

Case
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General .

Consider two solutions:
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Controllability = patchability:

W



Is the system dened by

with and

i.e., controllable?

We are looking for conditions on the polynomial matrix
and algorithms in the coefcient matrices .



Thm: denes a controllable system if and only if

is independent of for .

Example: scalar)

is controllable if and only if and have no common factor.

Example: The electrical circuit is controllable unless

and .

Non-example: constant



Image representations

Representations of :

called a ‘kernel’ representation of ;

called a ‘latent variable’ representation of the manifest behavior
.



Missing link:

called an ‘image’ representation of

Elimination theorem every image is also a kernel.

¿¿ Which kernels are also images ??



Theorem: The following are equivalent for

1. is controllable,

2. admits an image representation,

3. for any
equals or all of ,

4. is torsion free,

etc., etc.



Are Maxwell’s equations controllable ?

The following equations in the scalar potential and
the vector potential , generate exactly the solutions
to Maxwell’s equations:

Proves controllability. Illustrates the interesting connection

controllability potential!



Remarks:

Algorithm: + syzygies + Gröbner basis
numerical test for on coefcients of .

complete generalization to PDE’s

partial results for nonlinear systems

Kalman controllability is a straightforward special case



Observability



Consider the system

Each element of the behavior hence consists of
a pair of trajectories .

observed; to-be-deduced.

Recall: is said to be observable from

if , and
i.e., if on , there exists a map .



to!be!deduced
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When is in

observable from ?

If and only if for all

In general, if and only if there exists ‘consequences’ (i.e. elements of
) of the form

The RLC circuit is observable (branch variables observable from

external port variables) iff .

a complete theory (for constant coefcient ODE’s and PDE’s),
including algorithms, observer design, etc.

Observability is analogous (but not ‘dual’) to controllability.



Further results



Many additional problem areas have been studied from the
behavioral point of view.

System representations: input/output representations, state
representations and construction, model reduction, symmetries

System identication the most powerful unfalsied model
(MPUM), approximate system ID

Observers

Control

Quadratic differential forms, dissipative systems, -control

Distributed parameter systems



Thanks

to the many colleagues, postdocs, and promovendi who have over the
years contributed to this research program. In particular,

Harry Trentelman and Hans Nieuwenhuis (Groningen), Jan Willem
Polderman and Arjan van der Schaft (Twente), Paolo Rapisarda
(Maastricht), Paula Rocha (Aveiro), Fabio Fagnani (Torino),
Christiaan Heij (Rotterdam), Siep Weiland (Eindhoven), Shiva
Shankar (Chennai), Harish Pillai (Mumbai), Tommaso Cotroneo
(London), Maria Elena Valcher and Sandro Zampieri (Padova), Eva
Zerz (Kaiserslautern), Heide Glüssing-Lürssen (Oldenburg), Jeffrey
Wood (Southampton), Ulrich Oberst (Innsbruck), etc.



Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting inuence! Especially in teaching.

Examples:

Probability and the theory of stochastic processes as an
axiomatization of uncertainty.

The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.

QM.



Thank you for your attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/ jwillems


