To Anders Lindquist

on the occasion of his 60-th birthday.

THEME

!! Given a representation of a dynamical system, find a representation of a reduced model !!

THEME

!! Given a representation of a dynamical system, find a representation of a reduced model !!

Algorithm: parameters of model \mapsto parameters of reduced model

THEME

!! Given a representation of a dynamical system, find a representation of a reduced model !!

Algorithm: parameters of model \mapsto parameters of reduced model
For example, model: discrete-time impulse response
reduced model: balanced reduced model
Algorithm: SVD of Hankel matrix.

THEME

!! Given a representation of a dynamical system, find a representation of a reduced model !!

Algorithm: parameters of model \mapsto parameters of reduced model
For example, model: discrete-time impulse response reduced model: balanced reduced model

Algorithm: SVD of Hankel matrix.
For example, model: transfer function
reduced model: balanced reduced model
Algorithm: ???

THE SYSTEM

For simplicity, (today) only: SISO systems \& classical I/O balancing

THE SYSTEM

For simplicity, (today) only: SISO systems \& classical I/O balancing
$\operatorname{System} \cong p, q \in \mathbb{R}[\xi], \operatorname{degree}(q) \leq \operatorname{degree}(p)=: \mathrm{n} \leadsto$

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

relating the input $u: \mathbb{R} \rightarrow \mathbb{R}$ to the output $y: \mathbb{R} \rightarrow \mathbb{R}$.

Behavior:

$$
\mathfrak{B}_{(p, q)}:=\left\{(u, y) \in \mathcal{L}_{2}^{\text {loc }}\left(\mathbb{R}, \mathbb{R}^{2}\right) \times \mathfrak{L}_{2}^{\text {loc }}(\mathbb{R}, \mathbb{R}) \mid \quad \text { diff. eq'n holds }\right\}
$$

CONTROLLABILITY \& OBSERVABILITY

Well-known: $\mathfrak{B}_{(p, q)}$ is controllable if and only if p and q are co-prime.

CONTROLLABILITY \& OBSERVABILITY

Well-known: $\mathfrak{B}_{(p, q)}$ is controllable if and only if p and q are co-prime.

Controllability $\Leftrightarrow \exists$ image representation for $\mathfrak{B}_{(p, q)}$:

$$
\begin{gathered}
u=p\left(\frac{d}{d t}\right) \ell, y=q\left(\frac{d}{d t}\right) \ell, \\
\mathfrak{I m}_{(p, q)}:=\left\{(u, y) \in \mathcal{L}_{2}^{\text {loc }}\left(\mathbb{R}, \mathbb{R}^{2}\right) \mid \exists \ell: \mathbb{R} \rightarrow \mathbb{R}: \text { diff. eq'n holds }\right\}
\end{gathered}
$$

is exactly equal to $\mathfrak{B}_{(p, q)}$.

CONTROLLABILITY \& OBSERVABILITY

Well-known: $\mathfrak{B}_{(p, q)}$ is controllable if and only if p and q are co-prime.

Controllability $\Leftrightarrow \exists$ image representation for $\mathfrak{B}_{(p, q)}$:

$$
u=p\left(\frac{d}{d t}\right) \ell, \quad y=q\left(\frac{d}{d t}\right) \ell
$$

$$
\mathfrak{I n}_{(p, q)}:=\left\{(u, y) \in \mathcal{L}_{2}^{\text {loc }}\left(\mathbb{R}, \mathbb{R}^{2}\right) \mid \exists \ell: \mathbb{R} \rightarrow \mathbb{R}: \text { diff. eq'n holds }\right\}
$$

is exactly equal to $\mathfrak{B}_{(p, q)}$.

Co-primeness of p and $q \Rightarrow$

$$
\text { controllability of } \mathfrak{B}_{(p, q)} \boldsymbol{\&} \text { observability of } \mathfrak{I m}_{(p, q)}
$$

observability means: for every $(u, y) \in \mathfrak{I m}_{(p, q)}=\mathfrak{B}_{(p, q)}, \exists(!) \ell$.

STATE

Any set of polynomials $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ that form a basis for $\mathbb{R}_{n-1}[\xi]$

$$
\Rightarrow \text { a minimal state representation of } \mathfrak{B}_{(p, q)} \text { with state }
$$

$$
x=\left(x_{1}\left(\frac{d}{d t}\right) \ell, x_{2}\left(\frac{d}{d t}\right) \ell, \ldots, x_{\mathrm{n}-1}\left(\frac{d}{d t}\right) \ell\right)
$$

The associated system matrices are the (unique) solution matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ of the following system of linear equations in $\mathbb{R}^{\mathrm{n}}[\xi]$:

$$
\left[\begin{array}{c}
\xi x_{1}(\xi) \\
\xi x_{2}(\xi) \\
\vdots \\
\xi x_{n}(\xi) \\
q(\xi)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
x_{1}(\xi) \\
x_{2}(\xi) \\
\vdots \\
x_{n}(\xi) \\
p(\xi)
\end{array}\right]
$$

BALANCING

In the context of the state construction through an image representation, being balanced becomes a property of the polynomials $x_{1}, x_{2}, \ldots, x_{n}$.

The central problem of this paper is:

Choose the polynomials $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ so that this

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

is balanced.

QDF's

The real two-variable polynomial

$$
\Phi(\zeta, \eta)=\Sigma_{\mathrm{k}, \mathrm{k}^{\prime}} \Phi_{\mathrm{k}, \mathrm{k}^{\prime}} \zeta^{\mathrm{k}} \eta^{\mathrm{k}^{\prime}}
$$

induces the map

$$
w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \quad \mapsto \quad \Sigma_{\mathrm{k}, \mathrm{k}^{\prime}}\left(\frac{d^{\mathrm{k}}}{d t^{\mathrm{k}}} w\right) \Phi_{\mathrm{k}, \mathrm{k}^{\prime}}\left(\frac{d^{\mathrm{k}^{\prime}}}{\boldsymbol{d t ^ { k ^ { k ^ { \prime } } }}} w\right) \quad \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})
$$

called a a quadratic differential form (QDF), denoted as Q_{Φ}.

THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as QDF's acting on the latent variable ℓ of the image representation.

THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as QDF's acting on the latent variable ℓ of the image representation.

The controllability gramian Q_{K} is defined as:

THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as QDF's acting on the latent variable ℓ of the image representation.

The controllability gramian Q_{K} is defined as:

Let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ and define $Q_{K}(\ell)$ by

$$
Q_{K}(\ell)(0):=\operatorname{infimum} \int_{-\infty}^{0}\left|p\left(\frac{d}{d t}\right) \ell^{\prime}(t)\right|^{2} d t
$$

infimum over all $\ell^{\prime} \in \mathfrak{E}^{+}(\mathbb{R}, \mathbb{R})$ that join the 'fixed' future ℓ at $t=0$, i.e., such that $\ell(t)=\ell^{\prime}(t)$ for $t \geq 0$.

THE OBSERVABILITY GRAMIAN

The observability gramian Q_{W} is defined as:

THE OBSERVABILITY GRAMIAN

The observability gramian Q_{W} is defined as:
Let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ and define $Q_{W}(\ell)$ by

$$
Q_{W}(\ell)(0):=\int_{0}^{\infty}\left|q\left(\frac{d}{d t}\right) \ell^{\prime}(t)\right|^{2} d t
$$

where $\ell^{\prime} \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ is such that
(i) $\left.\quad \ell\right|_{(-\infty, 0)}=\left.\ell^{\prime}\right|_{-\infty, 0)}$,
(ii) $\quad\left(p\left(\frac{d}{d t}\right) \ell^{\prime}, q\left(\frac{d}{d t}\right) \ell^{\prime}\right) \in \mathfrak{B}_{(p, q)}$,
(iii)

$$
\left.p\left(\frac{d}{d t}\right) \ell^{\prime}(t)\right|_{(0, \infty)}=0
$$

THE OBSERVABILITY GRAMIAN

The observability gramian Q_{W} is defined as:
Let $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ and define $Q_{W}(\ell)$ by

$$
Q_{W}(\ell)(0):=\int_{0}^{\infty}\left|q\left(\frac{d}{d t}\right) \ell^{\prime}(t)\right|^{2} d t
$$

where $\ell^{\prime} \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ is such that
(i) $\left.\quad \ell\right|_{(-\infty, 0)}=\left.\ell^{\prime}\right|_{-\infty, 0)}$,
(ii) $\quad\left(p\left(\frac{d}{d t}\right) \ell^{\prime}, q\left(\frac{d}{d t}\right) \ell^{\prime}\right) \in \mathfrak{B}_{(p, q)}$,
(iii)

$$
\left.p\left(\frac{d}{d t}\right) \ell^{\prime}(t)\right|_{(0, \infty)}=0
$$

ℓ^{\prime} smoothly continues ℓ at $t=0$ such that $\left.u\right|_{(0, \infty)}=\left.p\left(\frac{d}{d t}\right) \ell^{\prime}\right|_{(0, \infty)}=0$.

COMPUTATION of K and W

Given $\mathfrak{B}_{(p, q)}, p, q$ co-prime, degree $(q) \leq \operatorname{degree}(p)=: \mathrm{n}, p$ Hurwitz.

COMPUTATION of K and W

Given $\mathfrak{B}_{(p, q)}, p, q$ co-prime, degree $(q) \leq \operatorname{degree}(p)=: \mathrm{n}, p$ Hurwitz. The controllability gramian and the observability gramian are QDF's, Q_{K} and Q_{W}, with $K, W \in \mathbb{R}[\zeta, \eta]$. They can be computed as follows

COMPUTATION of K and W

Given $\mathfrak{B}_{(p, q)}, p, q$ co-prime, degree $(q) \leq \operatorname{degree}(p)=: \mathrm{n}, p$ Hurwitz. The controllability gramian and the observability gramian are QDF's, Q_{K} and Q_{W}, with $K, W \in \mathbb{R}[\zeta, \eta]$. They can be computed as follows

$$
K(\zeta, \eta)=\frac{p(\zeta) p(\eta)-p(-\zeta) p(-\eta)}{\zeta+\eta}
$$

COMPUTATION of K and W

Given $\mathfrak{B}_{(p, q)}, p, q$ co-prime, degree $(q) \leq \operatorname{degree}(p)=: \mathrm{n}, p$ Hurwitz.
The controllability gramian and the observability gramian are QDF's, Q_{K} and Q_{W}, with $K, W \in \mathbb{R}[\zeta, \eta]$. They can be computed as follows

$$
\begin{gathered}
K(\zeta, \eta)=\frac{p(\zeta) p(\eta)-p(-\zeta) p(-\eta)}{\zeta+\eta} \\
W(\zeta, \eta)=\frac{p(\zeta) f(\eta)+f(\zeta) p(\eta)-q(\zeta) q(\eta)}{\zeta+\eta}
\end{gathered}
$$

with $f \in \mathbb{R}_{\mathrm{n}-1}[\xi]$ the (unique) solution of the Bezout-type equation

$$
p(\xi) f(-\xi)+f(\xi) p(-\xi)-q(\xi) q(-\xi)=0
$$

BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is balanced if

BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is balanced if
(i) for ℓ_{k} such that $x_{\mathrm{k}^{\prime}}\left(\frac{d}{d t}\right) \ell_{\mathrm{k}}(0)=\delta_{\mathrm{kk}^{\prime}}\left(\delta_{\mathrm{kk}^{\prime}}\right.$: Kronecker delta):

$$
Q_{K}\left(\ell_{\mathrm{k}}\right)(0)=\frac{1}{Q_{W}\left(\ell_{\mathrm{k}}\right)(0)}
$$

state components that are difficult to reach are also difficult to observe.

BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is balanced if
(i) for ℓ_{k} such that $x_{\mathrm{k}^{\prime}}\left(\frac{d}{d t}\right) \ell_{\mathrm{k}}(0)=\delta_{\mathrm{kk}^{\prime}}\left(\delta_{\mathrm{kk}^{\prime}}\right.$: Kronecker delta):

$$
Q_{K}\left(\ell_{\mathrm{k}}\right)(0)=\frac{1}{Q_{W}\left(\ell_{\mathrm{k}}\right)(0)}
$$

state components that are difficult to reach are also difficult to observe.
(ii) The state components are ordered so that 'easiest to reach first':

$$
0<Q_{K}\left(\ell_{1}\right)(0) \leq Q_{K}\left(\ell_{2}\right)(0) \leq \cdots \leq Q_{K}\left(\ell_{\mathrm{n}}\right)(0)
$$

and hence 'easiest to observe' first:

$$
Q_{W}\left(\ell_{1}\right)(0) \geq Q_{W}\left(\ell_{2}\right)(0) \geq \cdots \geq Q_{W}\left(\ell_{n}\right)(0)>0
$$

It is a standard result from linear algebra (see Gantmacher, chapter 9) that there exist polynomials

$$
\left(x_{1}^{\mathrm{bal}}, x_{2}^{\mathrm{bal}}, \ldots, x_{\mathrm{n}}^{\mathrm{bal}}\right)
$$

that form a basis for $\mathbb{R}_{n-1}[\xi]$, and real numbers

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}}>0
$$

such that K and W are factored as

$$
K(\zeta, \eta)=\Sigma_{k=1}^{\mathrm{n}} \sigma_{\mathrm{k}}^{-1} x_{\mathrm{k}}^{\mathrm{bal}}(\zeta) x_{\mathrm{k}}^{\mathrm{bal}}(\eta)
$$

$$
W(\zeta, \eta)=\Sigma_{\mathrm{k}=1}^{\mathrm{n}} \sigma_{\mathrm{k}} x_{\mathrm{k}}^{\mathrm{bal}}(\zeta) x_{\mathrm{k}}^{\mathrm{bal}}(\eta)
$$

The σ_{k} 's are uniquely defined by K and W, the $x_{\mathrm{k}}^{\text {bal 'almost'. }}$

THEOREM: These σ_{k} 's are the Hankel singular values of $\mathfrak{B}_{(p, q)}$ and

$$
\begin{gathered}
u=p\left(\frac{d}{d t}\right) \ell, y=q\left(\frac{d}{d t}\right) \ell \\
x^{\mathrm{bal}}=\left(x_{1}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell, x_{2}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell, \ldots, x_{\mathrm{n}}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell\right)
\end{gathered}
$$

is a balanced state space representation of $\mathfrak{B}_{(p, q)}$.

THEOREM: These σ_{k} 's are the Hankel singular values of $\mathfrak{B}_{(p, q)}$ and

$$
\begin{gathered}
u=p\left(\frac{d}{d t}\right) \ell, y=q\left(\frac{d}{d t}\right) \ell \\
x^{\mathrm{bal}}=\left(x_{1}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell, x_{2}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell, \ldots, x_{\mathrm{n}}^{\mathrm{bal}}\left(\frac{d}{d t}\right) \ell\right)
\end{gathered}
$$

is a balanced state space representation of $\mathfrak{B}_{(p, q)}$.
The balanced system matrices: sol'n of the following linear equations in $\mathbb{R}^{n}[\xi]$:

$$
\left[\begin{array}{c}
\xi x_{1}^{\text {bal }}(\xi) \\
\xi x_{2}^{\text {bal }}(\xi) \\
\vdots \\
\xi x_{\mathrm{n}}^{\text {bal }}(\xi) \\
q(\xi)
\end{array}\right]=\left[\begin{array}{ll}
A^{\text {bal }} & B^{\text {bal }} \\
C^{\text {bal }} & D^{\text {bal }}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\text {bal }}(\xi) \\
x_{2}^{\text {bal }}(\xi) \\
\vdots \\
x_{\mathrm{n}}^{\text {bal }}(\xi) \\
p(\xi)
\end{array}\right]
$$

ALGORITHM

DATA: $p, q \in \mathbb{R}[\xi]$, co-prime, $\operatorname{degree}(q) \leq \operatorname{degree}(p):=\mathrm{n}, p$ Hurwitz.

COMPUTE:

1. $K \in \mathbb{R}[\zeta, \eta]$,
2. $f \in \mathbb{R}_{\mathrm{n}-1}[\xi]$ and $W \in \mathbb{R}[\zeta, \eta]$,
3. $\left(x_{1}^{\text {bal }}, x_{2}^{\text {bal }}, \ldots, x_{\mathrm{n}}^{\text {bal }}\right)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{n}}>0$ by the expansions: $K(\zeta, \eta)=\Sigma_{k=1}^{\mathrm{n}} \sigma_{\mathrm{k}}^{-1} x_{\mathrm{k}}^{\mathrm{bal}}(\zeta) x_{\mathrm{k}}^{\mathrm{bal}}(\eta), W(\zeta, \eta)=$ $\Sigma_{\mathrm{k}=1}^{\mathrm{n}} \sigma_{\mathrm{k}} x_{\mathrm{k}}^{\mathrm{bal}}(\zeta) x_{\mathrm{k}}^{\mathrm{bal}}(\eta)$,
4. the balanced system matrices $\left[\begin{array}{ll}A^{\text {bal }} & B^{\text {bal }} \\ C^{\text {bal }} & D^{\text {bal }}\end{array}\right]$ by solving the linear eq'ns

OUTPUT: a balanced state representation of $\mathfrak{B}_{(p, q)}$.

REMARKS

1. Model reduction by balanced truncation follows.

REMARKS

2. These algorithms open up the possibility to involve 'fast' polynomial computations in order to obtain a balanced representation.

REMARKS

3. The reduction algorithms solve linear equations in $\mathbb{R}_{n-1}[\xi]$ 'approximately'. Suggests other (say, least squares) methods than simple truncation.

REMARKS

4. Instead of computing the σ_{k} 's and the $\boldsymbol{x}_{\mathrm{k}}^{\text {bal }}$'s by the factorization of K, W, we can also proceed by evaluating K and W at n distinct points $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\mathrm{n}} \in \mathbb{C}$.

Define

$$
\begin{aligned}
\Lambda & =\operatorname{diag}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \cdots, \boldsymbol{\lambda}_{\mathrm{n}}\right) \\
\boldsymbol{K}_{\boldsymbol{\Lambda}} & =\left[\boldsymbol{K}\left(\boldsymbol{\lambda}_{\mathrm{k}}^{*}, \boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{W}_{\boldsymbol{\Lambda}} & =\left[W\left(\boldsymbol{\lambda}_{\mathrm{k}}^{*}, \boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{X}_{\boldsymbol{\Lambda}} & =\left[\boldsymbol{x}_{\mathrm{k}}^{\mathrm{bal}}\left(\boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{\Sigma} & =\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)
\end{aligned}
$$

Define

$$
\begin{aligned}
\Lambda & =\operatorname{diag}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \cdots, \boldsymbol{\lambda}_{\mathrm{n}}\right) \\
\boldsymbol{K}_{\boldsymbol{\Lambda}} & =\left[\boldsymbol{K}\left(\boldsymbol{\lambda}_{\mathrm{k}}^{*}, \boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{W}_{\boldsymbol{\Lambda}} & =\left[W\left(\boldsymbol{\lambda}_{\mathrm{k}}^{*}, \boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{X}_{\boldsymbol{\Lambda}} & =\left[\boldsymbol{x}_{\mathrm{k}}^{\mathrm{bal}}\left(\boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
\boldsymbol{\Sigma} & =\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\mathrm{n}}\right)
\end{aligned}
$$

There holds

$$
K_{\Lambda}=X_{\Lambda}^{*} \Sigma^{-1} X_{\Lambda}, W_{\Lambda}=X_{\Lambda}^{*} \boldsymbol{\Sigma} X_{\Lambda}
$$

This implies that X_{Λ} and Σ can be computed directly from K_{Λ}, W_{Λ}.

This implies that X_{Λ} and Σ can be computed directly from K_{Λ}, W_{Λ}.
Once X_{Λ} is known, the matrices of the balanced state representation

$$
\left[\begin{array}{ll}
A^{\text {bal }} & B^{\text {bal }} \\
C^{\text {bal }} & D^{\text {bal }}
\end{array}\right]
$$

is readily computed.
K_{Λ} follows immediately from evaluation of p at the λ_{k} 's.
K_{Λ} follows immediately from evaluation of p at the λ_{k} 's.
Unfortunately, in order to compute W_{Λ} we have to solve for f.
K_{Λ} follows immediately from evaluation of p at the $\lambda_{k}{ }^{\prime}$'s.
Unfortunately, in order to compute W_{Λ} we have to solve for f.

However, if we take for the λ_{k} 's the roots of p, assumed distinct, then f is not needed, and a very explicit expression for both K and W is obtained.
K_{Λ} follows immediately from evaluation of p at the $\lambda_{k}{ }^{\prime}$'s.
Unfortunately, in order to compute W_{Λ} we have to solve for f.

However, if we take for the λ_{k} 's the roots of p, assumed distinct,

$$
\text { then } f \text { is not needed, }
$$

and a very explicit expression for both K and W is obtained.
In this case

$$
\begin{aligned}
& \boldsymbol{K}_{\Lambda}=-\left[\frac{p\left(-\lambda_{\mathrm{k}}^{*}\right) p\left(-\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} \\
& W_{\Lambda}=-\left[\frac{q\left(\lambda_{\mathrm{k}}^{*}\right) q\left(\boldsymbol{\lambda}_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\boldsymbol{\lambda}_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}}
\end{aligned}
$$

Balancing and model reduction: \leadsto the pencil

$$
\left[\frac{p\left(-\lambda_{\mathrm{k}}^{*}\right) p\left(-\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} ;\left[\frac{q\left(\lambda_{\mathrm{k}}^{*}\right) \boldsymbol{q}\left(\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}}
$$

Balancing and model reduction: \sim the pencil

$$
\left[\frac{p\left(-\lambda_{\mathrm{k}}^{*}\right) p\left(-\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} ;\left[\frac{q\left(\lambda_{\mathrm{k}}^{*}\right) q\left(\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}}
$$

5. Heuristic: evaluate K, W at less than n points, obtain reduced model.

Balancing and model reduction: \sim the pencil

$$
\left[\frac{p\left(-\lambda_{\mathrm{k}}^{*}\right) p\left(-\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}} ;\left[\frac{q\left(\lambda_{\mathrm{k}}^{*}\right) q\left(\lambda_{\mathrm{k}^{\prime}}\right)}{\lambda_{\mathrm{k}}^{*}+\lambda_{\mathrm{k}^{\prime}}}\right]_{\mathrm{k}=1, \ldots, \mathrm{n}}^{\mathrm{k}^{\prime}=1, \ldots, \mathrm{n}}
$$

5. Heuristic: evaluate K, W at less than n points, obtain reduced model.
6. Suggests algorithms to fit the reduced order transfer function with the original transfer function at privileged points of the complex plane.

$(p, q) \longmapsto\left(p_{\text {reduced }}, q_{\text {reduced }}\right) ? ?$

More info, copy sheets? Surf to
http://www.esat.kuleuven.ac.be/~jwillems
or write to me at Jan.Willems@esat.kuleuven.ac.be

Thank you!

