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THEME

!! Given a representation of a dynamical system,

find a representation of a reduced model !!

Algorithm: parameters of model � parameters of reduced model

For example, model: discrete-time impulse response

reduced model: balanced reduced model

Algorithm: SVD of Hankel matrix.

For example, model: transfer function

reduced model: balanced reduced model

Algorithm: ???
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THE SYSTEM

For simplicity, (today) only: SISO systems & classical I/O balancing

System

��� ��� � � 	 
� � � �� �� � � � � � � �� �� � � � � � � �� �

� � ��� ��� � � � �� � ��� �
relating the input � � 	 � 	

to the output � � 	 � 	
.

Behavior:

��� � ! " # � � $ �� � � � � % &(')+* � 	� 	 * �-, . & ')+* � 	� 	 �/

diff. eq’n holds

021
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CONTROLLABILITY & OBSERVABILITY

Well-known:

� � � ! " # is controllable if and only if � and � are co-prime.
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CONTROLLABILITY & OBSERVABILITY

Well-known:

� � � ! " # is controllable if and only if � and � are co-prime.

Controllability 3 4

image representation for

� �� ! " # :

� � � � 556 �7 � � � � � 556 �7 �

8 9 �� ! " # � � $ �� � � � � % & '):* � 	� 	 * �/ 47 � 	 � 	 � diff. eq’n holds

0

is exactly equal to

� �� ! " # .
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CONTROLLABILITY & OBSERVABILITY

Well-known:

� � � ! " # is controllable if and only if � and � are co-prime.

Controllability 3 4

image representation for

� �� ! " # :

� � � � 556 �7 � � � � � 556 �7 �

8 9 �� ! " # � � $ �� � � � � % & '):* � 	� 	 * �/ 47 � 	 � 	 � diff. eq’n holds

0

is exactly equal to

� �� ! " # .
Co-primeness of � and � ;

controllability of
� �� ! " # & observability of

8 9 �� ! " #

observability means: for every
�� � � � � 89 �� ! " # � ���� ! " # , 4 �< � 7 1
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STATE

Any set of polynomials

$�=?> � = * � 1 1 1 � =�@ 0

that form a basis for

	@ A> 
� �

; a minimal state representation of

� � � ! " # with state

= � �=> � 556 �7 � = * � 556 �7 � 1 1 1 � =�@ A> � 556 �7 � 1
The associated system matrices are the (unique) solution matrix

BC D EF G
HI of the

following system of linear equations in

	@ 
� �
:BJKJLJKJKJLJKJMJMJKC

NPOQ R N SNPOT R N S
...N O U R N SV R N S

HWKWLWKWKWLWKWMWMWKI
X BC D EF G

HI
BJKJLJKJKJLJKJMJMJKC

O Q R N SO T R N S

...O U R N SYR N S
HWKWLWKWKWLWKWMWMWKI

Z
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BALANCING

In the context of the state construction through an image representation, being

balanced becomes a property of the polynomials = > � = * � 1 1 1 � =@ .

The central problem of this paper is:

Choose the polynomials =?> � = * � 1 1 1 � =@ so that this

BC D EF G
HI

is balanced.

Model reduction using polynomial algebra State representaions



QDF’s

The real two-variable polynomial

[ �\ � ] � � ^`_! _ a [_! _ a \ _ ]_ a
induces the map

b � c d � 	� 	 ��e � ^_! _ a � 5_56 _ b � [f_! _ a � 5_ a
56 _ a b � � c d � 	� 	 � �

called a a quadratic differential form (QDF), denoted as

gih .
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THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as QDF’s

acting on the latent variable

7

of the image representation.
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acting on the latent variable
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of the image representation.

The controllability gramian
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THE CONTROLLABILITY GRAMIAN

We will consider the controllability and observability gramians as QDF’s

acting on the latent variable

7

of the image representation.

The controllability gramian

gkj is defined as:

Let

7 � c d � 	� 	 �

and define

gj �7 �

by

gj �7 � �l � � � mon poq rq s
A d/ � � 556 �7 t � 6 �/ * 56 �

infimum over all

7 t � u v � 	� 	 �
that join the ‘fixed’ future

7

at 6 � l

,

i.e., such that

7 � 6 � � 7 t � 6 �
for 6 w l

.
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THE OBSERVABILITY GRAMIAN

The observability gramian

gkx is defined as:
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THE OBSERVABILITY GRAMIAN

The observability gramian

gkx is defined as:

Let

7 � c d � 	� 	 �

and define

gx �7 �

by

gx �7 � �l � � � d
s / � � 556 �7 t � 6 �/ * 56 �

where

7 t � y � 	� 	 �

is such that

(i)

7/ � A d! s # � 7 t/ A d! s # �
(ii)

� � � 556 �7 t � � � 556 �7 t � � ���� ! " # �

(iii) � � 556 �7 t � 6 �/ � s! d # � l 1
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THE OBSERVABILITY GRAMIAN

The observability gramian

gkx is defined as:

Let

7 � c d � 	� 	 �

and define

gx �7 �

by

gx �7 � �l � � � d
s / � � 556 �7 t � 6 �/ * 56 �

where

7 t � y � 	� 	 �

is such that

(i)

7/ � A d! s # � 7 t/ A d! s # �
(ii)

� � � 556 �7 t � � � 556 �7 t � � ���� ! " # �

(iii) � � 556 �7 t � 6 �/ � s! d # � l 1

7 t

smoothly continues

7
at 6 � l

such that �/ � s! d # � � � �� � �7 t/ � s! d # � l

.
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COMPUTATION of

z

and

{

Given

���� ! " # , � � � co-prime,

�� �� � � � � � � �� �� � � � � � � �� , � Hurwitz.
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Given

���� ! " # , � � � co-prime,
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z� { � 	 
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Model reduction using polynomial algebra The controllability and observability gramians



COMPUTATION of

z

and

{

Given

���� ! " # , � � � co-prime,

�� �� � � � � � � �� �� � � � � � � �� , � Hurwitz.

The controllability gramian and the observability gramian are QDF’s,gj and

gx , with

z� { � 	 
\ � ] � . They can be computed as follows

z �\ � ] � � � �\ � � � ] �}| � �| \ � � �| ] �\ ~ ]
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COMPUTATION of

z

and

{

Given

���� ! " # , � � � co-prime,

�� �� � � � � � � �� �� � � � � � � �� , � Hurwitz.

The controllability gramian and the observability gramian are QDF’s,gj and

gx , with

z� { � 	 
\ � ] � . They can be computed as follows

z �\ � ] � � � �\ � � � ] �}| � �| \ � � �| ] �\ ~ ]

{ �\ � ] � � � �\ �� � ] � ~ � �\ � � � ] �| � �\ � � � ] �\ ~ ]

with

� � 	@ A> 
� �

the (unique) solution of the Bezout-type equation

� � � � � �| � � ~ � � � � � �| � �| � � � � � �| � � � l 1
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BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

�= > � = * � 1 1 1 � =�@ �

is balanced if

Model reduction using polynomial algebra Balanced state representations



BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

�= > � = * � 1 1 1 � =�@ �

is balanced if

(i) for

7 _ such that = _ a � ��� �7 _ �l � � �_ _ a (

�_ _ a : Kronecker delta):

gj �7 _ � �l � � �gx �7 _ � �l �
state components that are difficult to reach are also difficult to observe.
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BALANCED STATE REPRESENTATION

The minimal state repr. with polynomials

�= > � = * � 1 1 1 � =�@ �

is balanced if

(i) for

7 _ such that = _ a � ��� �7 _ �l � � �_ _ a (

�_ _ a : Kronecker delta):

gj �7 _ � �l � � �gx �7 _ � �l �
state components that are difficult to reach are also difficult to observe.

(ii) The state components are ordered so that ‘easiest to reach first’:

l � gj �7> � �l � � gj �7 * � �l � ��� � � � gj �7@ � �l � �

and hence ‘easiest to observe’ first:

gx �7> � �l � w gx �7 * � �l � w�� � � w gx �7@ � �l ��� l 1
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It is a standard result from linear algebra (see Gantmacher, chapter 9) that

there exist polynomials �= �(� &> � = � � &* � 1 1 1 � = �(� &@ �

that form a basis for

	@ A> 
� �

, and real numbers

�> w � * w� � � w �@ � l
such that

z

and

{

are factored as

z �\ � ] � � ^@�� �> � A>_ = �(� &_ �\ � = � � &_ � ] �

{ �\ � ] � � ^@ _ �> �_ = �(� &_ �\ � = � � &_ � ] �

The �_ ’s are uniquely defined by

z
and

{

, the = �(� &_ ‘almost’.
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THEOREM: These �_ ’s are the Hankel singular values of

� � � ! " # and

� � � � 556 �7 � � � � � 556 �7 �

= � � & � �= �(� &> � 556 �7 � = �(� &* � 556 �7 � 1 1 1 � = � � &@ � 556 �7 �
is a balanced state space representation of

� � � ! " # .
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THEOREM: These �_ ’s are the Hankel singular values of

� � � ! " # and

� � � � 556 �7 � � � � � 556 �7 �

= � � & � �= �(� &> � 556 �7 � = �(� &* � 556 �7 � 1 1 1 � = � � &@ � 556 �7 �
is a balanced state space representation of

� � � ! " # .
The balanced system matrices: sol’n of the following linear equations in

	@ 
� �

:BJKJLJKJMJMJMJKJLJ�C
N O ��� �Q R N SN O ��� �T R N S

...N O ��� �U R N SV R N S
HWKWLWKWMWMWMWKWLW�I

X BC D ��� � E ��� �F ��� � G ��� �
HI

BJKJLJKJMJMJMJKJLJ�C
O ��� �Q R N SO ��� �T R N S

...O ��� �U R N SYR N S
HWKWLWKWMWMWMWKWLW�I

Z
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ALGORITHM

DATA: � � � � 	 
� � � co-prime,

�� �� � � � � � � �� �� � � � � � � �� , � Hurwitz.

COMPUTE:

1.

z � 	 
\ � ] � ,
2.

� � 	@ A> 
� �

and

{ � 	 
\ � ] � ,
3.

�= �(� &> � = � � &* � 1 1 1 � = �(� &@ �

and �> w � * w�� � � w �@ � l
by the expansions:z �\ � ] � � ^@�� �> � A>_ = �(� &_ �\ � = �(� &_ � ] � � { �\ � ] � �^@ _ �> �_ = �(� &_ �\ � = � � &_ � ] � �

4. the balanced system matrices
BC D ��� � E ��� �F ��� � G �� �
HI by solving the linear eq’ns

OUTPUT: a balanced state representation of

� � � ! " # .
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REMARKS

1. Model reduction by balanced truncation follows.
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REMARKS

2. These algorithms open up the possibility to involve ‘fast’ polynomial

computations in order to obtain a balanced representation.
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REMARKS

3. The reduction algorithms solve linear equations in
	@ A> 
� �

‘approximately’.

Suggests other (say, least squares) methods than simple truncation.
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REMARKS

4. Instead of computing the �_ ’s and the = �(� &_ ’s by the factorization of

z� {

,

we can also proceed by evaluating
z

and

{
at� distinct points�> � � * � � � � � �@ � �

.
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Define � X � ���� R� Q�� � T� � � �� � U S

�o� X   � R� ¡£¢� � ¢ a S ¤ ¢ a¦¥ Q�§ ¨ ¨ ¨§ U¢¥ Q�§ ¨ ¨ ¨§ U©� X   © R� ¡£¢� � ¢ a S ¤ ¢ a¦¥ Q�§ ¨ ¨ ¨§ U¢¥ Q�§ ¨ ¨ ¨§ U

ª � X  O ��� �¢ R� ¢ a S ¤ ¢ a¦¥ Q § ¨ ¨ ¨§ U¢¥ Q § ¨ ¨ ¨§ U« X � ���� R¬ Q� ¬ T� Z Z Z� ¬ U S
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Define � X � ���� R� Q�� � T� � � �� � U S

�o� X   � R� ¡£¢� � ¢ a S ¤ ¢ a¦¥ Q�§ ¨ ¨ ¨§ U¢¥ Q�§ ¨ ¨ ¨§ U©� X   © R� ¡£¢� � ¢ a S ¤ ¢ a¦¥ Q�§ ¨ ¨ ¨§ U¢¥ Q�§ ¨ ¨ ¨§ U

ª � X  O ��� �¢ R� ¢ a S ¤ ¢ a¦¥ Q § ¨ ¨ ¨§ U¢¥ Q § ¨ ¨ ¨§ U« X � ���� R¬ Q� ¬ T� Z Z Z� ¬ U S

There holds z¯® � ° ±® ^ A> ° ® � {® � ° ±® ^ ° ® 1
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This implies that

° ® and

^

can be computed directly from
z ® � {® 1
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This implies that

° ® and

^

can be computed directly from
z ® � {® 1

Once

° ® is known, the matrices of the balanced state representationBC D ��� � E ��� �F ��� � G ��� �
HI

is readily computed.
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z® follows immediately from evaluation of � at the

�_ ’s.
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z® follows immediately from evaluation of � at the

�_ ’s.

Unfortunately, in order to compute

{® we have to solve for

�
.
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z® follows immediately from evaluation of � at the

�_ ’s.

Unfortunately, in order to compute

{® we have to solve for

�
.

However, if we take for the

�_ ’s the roots of �, assumed distinct,

then

�

is not needed,

and a very explicit expression for both

z

and

{
is obtained.
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z® follows immediately from evaluation of � at the

�_ ’s.

Unfortunately, in order to compute

{® we have to solve for

�
.

However, if we take for the

�_ ’s the roots of �, assumed distinct,

then

�

is not needed,

and a very explicit expression for both

z

and

{
is obtained.

In this case

�²� X ³ ´ YR ³ � ¡£¢ S YR ³ � ¢ a S� ¡µ¢ ¶ � ¢ a · ¢ a ¥ Q�§ ¨ ¨ ¨§ U
¢¥ Q�§ ¨ ¨ ¨§ U

©� X ³ ´ V R� ¡µ¢ S V R� ¢ a S� ¡µ¢ ¶ � ¢ a · ¢ a ¥ Q�§ ¨ ¨ ¨§ U
¢¥ Q § ¨ ¨ ¨§ U
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Balancing and model reduction: � the pencil

¸ � �| � ±_ � � �| �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @ » ¸ � � � ±_ � � � �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @
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Balancing and model reduction: � the pencil

¸ � �| � ±_ � � �| �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @ » ¸ � � � ±_ � � � �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @

5. Heuristic: evaluate

z� {

at less than� points, obtain reduced model.
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Balancing and model reduction: � the pencil

¸ � �| � ±_ � � �| �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @ » ¸ � � � ±_ � � � �_ a �� ±_ ~ �_ a
¹ _ a �> !º º º ! @

_ �> !º º º ! @

5. Heuristic: evaluate

z� {

at less than� points, obtain reduced model.

6. Suggests algorithms to fit the reduced order transfer function with the

original transfer function at privileged points of the complex plane.
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� � � � �e | � � �½¼ ¾ ¿�À ) ¾ ¿ � �¼ ¾ ¿À ) ¾ ¿ �Á Á
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More info, copy sheets? Surf to

http://www.esat.kuleuven.ac.be/ �jwillems
or write to me at Jan.Willems@esat.kuleuven.ac.be

Thank you!


