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MESSAGE

There is a deterministic interpretation of
the Kalman lter

that is as convincing as the stochastic one.



OUTLINE

1. The ltering principle

2. Derivation of the deterministic Kalman lter

3. The stochastic lter

4. Remarks



FILTERING



Two time-signals: an observed signal,

and a to-be-estimated signal,

Problem: Find a map

so that

is a ‘good estimate’ of .

Requirement: at time is allowed to depend only on the
past of : the lter map should be non-anticipating.
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In order to turn this problem into a mathematical one, we need to:

1. Model the relation between and mathematically

2. Formulate an estimation principle

3. Obtain an algorithm that computes ,
i.e., an algorithm that implements the lter map



SIGNAL GENERATION MODEL
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In fact,

There is a ‘hidden’ vector signal
and a ‘hidden’ initial state which together generate the

observed signal , and the to-be-estimated signal .



ESTIMATION PRINCIPLE



What is a rational way
of obtaining an estimate of

from for ?
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The deterministic approach put is based on the following idea.

1. Among all the that ‘explain’ the observed ,
compute the one that minimizes the uncertainty measure

is a given matrix.

‘Explain’ means: consider only those
are compatible with the observed signal , i.e., for which



2. Minimizing .
Substitute in eq’n for ; resulting output: .

3. Dene the desired estimate of by . Hence

Note that depends only on for :
non-anticipation.

This estimation principle is reasonable and intuitively acceptable:

Among all that explain the observations, choose the
one that has ‘smallest uncertainty measure’, that is ‘most likely’, ...



FILTERING ALGORITHM



Note that depends not only on , but also on .

So, in order to compute we need to solve,
at each time ,

a dynamic optimization problem: minimize the uncertainty measure,
subject to the dynamic eq’ns and xed .

But, we will obtain a recursive solution, yielding in a very
efcient way, and for all at once!



Key lemma: Let be the unique sol’n to the
Riccati differential equation

Then for .

Consider the differential equation involving and

Dene in terms of and by



Then

Proof: Verify the following straightforward calculation

and integrate.



The optimal lter readily follows. Indeed, whenever
leads to there holds

with

Observe that is a function of , but not of the specic
that generated .



Therefore

is minimized if, among the that generate , we can
choose one such that

1. , and

2. for .

Such a choice clearly exists!

This implies that the optimal yields

, and hence .

The optimal is not needed.



Summarizing.
The least squares lter

Let be the observed output.
Let be the (unique) solution of the RDE

The least squares lter is given by

Input: ; output: ; : lter parameters computed ‘off-line’.



THE STOCHASTIC FILTER



The stochastic model that leads to the (classical Kalman) lter is:

with zero mean gaussian white noises, gaussian, all
mutually independent, and

The conditional mean (
maximum likelihood stochastic least squares lter is also

One can write model + lter also in Itô notation.



This lter, and its discrete-time counterpart, is one of the most
important algorithms in existence. Exceedingly important in
aerospace applications.

Features:

Explicit calculation of lter gains by the RDE

Recursivity

Automatic data reduction

Computational complexity

Generality and generalizability



GENERAL REMARKS



STATIC ESTIMATION

Let be a -dimensional real random vector,
!! Estimate from observing .

Well-known:

is the conditional expectation / maximum likelihood estimate.

Deterministic interpretation of this formula:
‘Explain’ the observed as generated by the

of least Euclidean norm that satises ,
denote this least squares by ,
dene the resulting estimate of by .



Which interpretation is to be preferred, the probabilistic
conditional mean/maximum likelihood interpretation,

or the deterministic least squares one?

This has been a matter of debate at least since Gauss justied
Legendre’s least squares, as a method of computing the most
probable, maximum likelihood, outcome.

Legendre (least squares)
Gauss (probability)

Wiener & Kolmogorov (time-series, probability)
Kalman (probabilistic, state, recursive lter)





The uncertainty in models is very often due to such things as model
approximation and simplication, neglected dynamics of sensors,
quantization in time and space, unknown deterministic inputs, etc.

It is hard to conceive situations in which
precise stochastic knowledge about real uncertainty

can be justied, as a description of reality.



What does probability mean anyway, in this context

Relative frequency?

Degree of belief?

Plausibility?

Cloudy and fuzzy ..., and, in ltering, needlessly so.

Isn’t simple deterministic least squares more satisfactory?
It is more pragmatic, and lays its strengths and weaknesses bare.



There is more

Deterministic static least squares max. likelihood driver.

This equivalence of deterministic least squares generation and a
stochastic (cond. mean / max. likelihood) interpretation persists in
discrete-time dynamical systems over a nite horizon...

But not for continuous-time dynamic systems, (or estimation over an
innite horizon). Indeed, if is white noise, then

w.p. 1

Hence ’s with small -norm are now not ‘more likely’ than ’s
with large -norm.

The stochastic Kalman lter does not have an interpretation in terms
of the ‘most likely least squares driving signal’ ...



MY PREFERRED POINT OF VIEW



Two undesirable elements for explaining the observation :
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1. The ‘latency’ explaining the output

2. The ‘mist’



yields the uncertainty measure

the latency measure

the mist measure

Filtering, prediction, etc. Minimize their (weighted) sum!

Don’t explain the latency and the mist
stochastically, as driving and sensor ‘noise’!
There is no need for it, and often the sensor inaccuracy, if at all
signicant, is not the dominating difculty in ltering and system ID.



A graphical interpretation of the deterministic KF:
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RECAPITULATION

Filtering: estimate a signal from the past of an observed one.

Deterministic least squares: explain the observations by the
variables of least norm that generate them; substitute in
equations of to-be-estimated signal.

This leads to the deterministic Kalman lter with the RDE.

Generalizable in many directions, including least squares control.

Strictly speaking this result is not of the type:
deterministic least squares

stochastic maximum likelihood driving signal.

Pedagogical advantages of the deterministic derivation are
beyond debate.



CONCLUSION

There is a deterministic interpretation of
the Kalman lter

that is as convincing as the stochastic one.



Reference: JCW, Deterministic Kalman ltering, accepted for
publication in the Journal of Econometrics. Available via

Jan.Willems@esat.kuleuven.ac.be
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