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Problematique:

Develop a suitable mathematical framework to discuss
(dynamical) systems that interact with their environment,

aimed at modeling, analysis, and synthesis.

~» control, signal processing, system identification, . . .
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MOTIVATIONAL EXAMPLES I
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Consider the electrical circuit
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environment

system

!! Model the relation between the voltage V' and the current 1




/Consider the mechanical system

force, position, torque, angle

_____________

force, position
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force, position, torque, angle

force, position

!! Model the relation between the positions, forces, torque, angle
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Consider the fluidic system

!! Model the relation between the flows and the pressures




HISTORICAL REMARKS I
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arly 20-th century: emergence of the notion of a transfer function

(Rayleigh, Heaviside).

Since the 1920’s: routinely used in circuit theory

(Foster, Brune, Cederbaum, - - - )
~~ impedances, admittances, scattering matrices, etc.

Since the 1930°s: control theory embraces transfer functions

(Nyquist, Bode, - - - ) ~» plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox,

attempts nonlinear generalization (via Volterra series).
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1960’s: Kalman’s state space ideas come in vogue

~~ input/state/output systems, and the ubiquitous

d
—x = Ax + Bu, y = Cx + Du,

dt
or its nonlinear counterpart
d
aaz = f(z,u),y = h(x,u).
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Axiomatization in the book Kalman, Falb and Arbib:

~

A system = a state transition function followed by a read-out map.
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All these theories: input/output; cause = effect.

\_
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On the sidelines: sputtering

in system theory: Rosenbrock’s system matrices
in circuit theory (Newcomb, Belevitch)

in CS with formal languages, automata, grammars
in DES.




/ What’s wrong with input/output thinking?

Let’s look at examples:

Our electrical circuit.
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environment
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environmen

system

\Is V the input? Or I ? Or both, or are they both outputs?
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Consider an automobile:

wind, tires, steering wheel, gas/brake pedal.

External terminals:

What are the inputs?
at the wind terminal: the force,

at the tire terminals: the forces, or, more likely, the positions?
at the steering wheel: the torque or the angle?
at the gas-pedal, or the brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired)
interconnection variables

\_ /




Gputloutput is awkward in modeling interconnections.

Consider the two-tank example.

Assume that we model the tank as an interconnection of two tanks.

-, e

.t Po h B, 5 P,

Reasonable input choices: the pressures, output choices: the flows.

Now interconnect:

Interconnection: p}, = pl, fi+ fy =0

input=input; output=output! =<« SIMULINK®

Qery many such examples (e.g. in mechanics, heat transfer, etc.)

~

/
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Conclusions

e External variables are basic, but what ‘drives’ what, is not.

e It is impossible to make an a priori, fixed, input/output selection
for off-the-shelf modeling.

e What can be the input, and what can be the output should be
deduced from a dynamical model. Therefore, we need a more
general notion of ‘model’.

e Interconnection, rather that input selection, is the basic

mechanism by which a system interacts with its environment.

= We need a better framework for discussing ‘open’ systems!

\_ /




Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting influence! Especially in teaching.

Examples:

e Probability and the theory of stochastic processes as an
axiomatization of uncertainty.

e The development of input/output ideas in system theory and
control - often these axiomatics are implicit, but nevertheless
much very present.

e QM.

\_




‘ THE BASIC CONCEPTS I
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‘ BEHAVIORAL SYSTEMS '

A dynamical system =

> = (T, W, 9)

T C R, the time-axis (=

the relevant time instances),

W, the signal space (= where the variables take on their values),

B C W' : the behavior

(= the admissible trajectories).

\_




/ 2:(T,W,%)I \

For a trajectory w : T — W, we thus have:

w € B : the model the trajectory w,
w & B : the model forbids the trajectory w.

Usually, T = R, or [0, 00) (in continuous-time systems),
or Z, or N (in discrete-time systems).

Usually, W C RY (in lumped systems),
a function space
(in distributed systems, with time a distinguished variable),
or a finite set (in DES).

Emphasis later today: T =R, W =R",
\ 8 — solutions of system of linear constant coefficient ODE,SJ




/ EXAMPLES '

1. Planetary orbits

T =R (time),

W = R3 (position),

8 — planetary orbits = Kepler’s laws:
(period)?

@axis)s constant.

ellipses, = areas in = time,

\ Planetary orbits




/2. Heat diffusion q(z, t) \
Wy
i 7

T(x,t)

€

A heated bar

Diffusion describes the evolution of the temperature 7'(x, t)
(x € R position, t € R time) along a uniform bar (infinitely long),
and the heat q(x, T') supplied to the bar. ~» the PDE
S rig
ot Ox?
T = R (time),
W = €°°(R, R?) all (temperature, heat) distributions along a line ,
B =all T(-,t), q(-,t)-pairs that satisfy the PDE.
Qote: We view t as a distinguished variable. j
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3. Input / output systems

2

F(y(®), - y( ),dt2

= Fau(t), u(t), il

T =R (time),
W = U X Y (input X output signal spaces),
B = all input / output pairs.

\_

y(t),...

, 1)

u(t), ...
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4. Flows
d
am(t) = f(z(t)),

8 — all state trajectories.

4. Observed flows

%w(t) = f(z(t); y(t) = h(z(t)),

83 — all possible output trajectories.

Note: It may be impossible to express 83 as the solutions

\_

of a differential equation involving only y.




(5. Coes N

A = the code alphabet, say, A = F ", [ a finite field,
I = an index set, say,

[ =(1,---,n)in block codes,

I = N or Z in convolutional codes,
¢ C A! = the code; yields the system ¥ = (I, A, €).

Redundancy structure, error correction possibilities, etc., are visible
in the code behavior €. It is the central object of study. The encoder
and decoder can be put (temporarily) into the background.

Example: The following error detecting code:
Il=7Z,A=TF=4{0,1},
8 — all compact support sequences w : Z — [ such that

w(t) = pol(t) + p1l(t — 1) + - + puf(t — n)

\for some ¢ : 7. — I, with pg, p1,...,ps € [F design parameters. j
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6. Formal languages

A = a (finite) alphabet,

yields the system > = (N, A, £).
A* = all finite strings with symbols from A.

Examples: All words appearing in the van Dale
All ISTEX documents

-

£ C A* = the language = all ‘legal’ ‘words’ ajaz-:--ax-:--




LATENT VARIABLE SYSTEMS I
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Consider our electrical RLC - circuit:

environment

! Model the relation between V and I !!

How does this modeling proceed?

\_




The circuit graph




SYSTEM EQUATIONS I

Introduce the following additional variables:

the voltage across and the current in each branch:
VRca IRca VCa ICa VRL ’ IRL ’ VLa IL-
Constitutive equations (CE):

d d
VrRo= Rclr., Vr,= RrIR,, Cavc = Ic, LEIL =VL

Kirchhoff’s voltage laws (KVL):

V:VRc'I'VCa V:VL_l_VRL? VRC+VC:VL+VRL
Kirchhoff’s current laws (KCL):
I =Ir.+ 1, IR, =1c, Ir =Igr,, Ic +Ir, =1

\_ /




/ RELATION BETWEEN V and I ' \

After some calculations, we obtain the port equations:

L
Casel: CR¢c # —

Rp’
( —|—(1—|—R )CR d +CR L 2)V
RL Cd CRLdt2
L
= (14+ CR-— —_ .
=(1+ c )( -I-RLd) cl

L
Case2: CRgc = —.
Ry,

(— + CRC—)V = (1+ CRc—)RcI
Ry,

Qhese are the exact relations between V and 7 ! j




-

All models of interconnected systems will have such interconnection
variables.

First principles models invariably contain auxiliary variables, in

addition to the variables the model aims at.

~» Manifest and latent variables.

We want to capture this is definitions.

\_

~
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A dynamical system with latent variables = || X1, = (T, W, L, Bean)

T C R, the time-axis (= the set of relevant time instances).

W, the signal space (= the variables that the model aims at).

IL, the latent variable space (= the auxiliary modeling variables).

Beau C (W x L)" : the full behavior

(= the pairs (w, £) : T — W X L that the model declares
possible).

\_ /
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‘ THE MANIFEST BEHAVIOR .

Call the elements of W [‘mam’fest’ variables] .

those of L [‘latent’ variables] .

The latent variable system >; = (T, W, L, B¢,1;) induces
the manifest system 3 = (T, W, B), with manifest behavior

B={w:T—W|3 £:T — Lsuch that (w,£) € Bea}

In convenient equations for *3, the latent variables are ‘eliminated’.

\_
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EXAMPLES '

1. The RLC - circuit

T = R,
W = R? - manifest variables: the port voltage and current,

L = R® - latent variables: the branch voltages and currents,
Bean = all functions (V, I, Vi, Ir., Vo, Icy Ve, s Ir, s Vi, IL)
that satisfy the CE’s, KCL, and KVL,
B = the functions (V, I) that satisfy the ‘eliminated’ port
equations.

\_

/




/2. Coaxial cable

!! Model the relation between the voltages Vy, V7 and the currents

Iy, I, at the ends of a uniform coaxial cable of length L.

Introduce the voltage V (x, t) and the current flow I(x,t)
0 < x < L in the cable.

I(x,t)
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Leads to the equations:

0 0
—V = —Log—1,
ox ot
0 0
ox ot

Vo(t) =V (0,t), Vi(t) =V (1,t),
Io(t) = 1(0,t), Iy(t) =—I(1,t).

with Ly theinductance,and Cj, the capacitance per unit length.

\_ /
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This is a latent variable model with

T =R (time),

W = R* manifest variables: (voltage, current) at both ends,

L = €°°(R, R?) voltage and current distribution along the bar,
Beann = the solutions of the above PDE’s and boundary conditions,
B = the (Vp, 1o, V1, I1)-trajectories declared possible:

B = {(Vo,Io,Vi, ;) :R—=R* |3 (V,I):[0,L] — R?:

the above PDE’s and boundary conditions are satisfied }

Note: we still view ¢ as a distinguished variable.

\_
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3. Input /state / output systems

%m(t) — F(z(t),u®); y(t) = h(z(t),u(t)),

T=RW=0UxY,L=ZX,
Bean = all (u,y,x) : R — U X Y X X that satisfy these equations,
8 — all (input / output)-pairs.

Also,
d
f(ail?(t), x(t),w(t)) =0

called ‘implicit’ systems.

\_ /
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4. Trellis diagrams

5. Automata

Latent variables = nodes

6. Grammars

Another way to specify a formal language whose essence is captured
by latent variables.

\_ /




GENERAL PROPERTIES I

of

DYNAMICAL SYSTEMS I
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‘ LINEARITY '

The dynamical system 3 = (T, W, ) is said to be

linear

if W is a vector space (over a field ),

and B is a linear subspace of W'

(viewed as a vector space over [ with respect to pointwise addition
and pointwise multiplication).

Hence linearity :< the superposition principle holds:
(w1, w2 € B)A (a0, B €TF)) = (awy + w2 € B).

-
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TIME-INVARIANCE '

The dynamical system 3 = (T, W, 23) (assume T = R or 7Z)
is said to be

[ time-invariant ]

if
(w € B)A(tET) = (ctw € B)),

where ot denotes the backwards t—shift, defined by

otw(t') ;= w(t +t').
N\




time

time

Time-invariance




DIFFERENTIAL SYSTEMS '

The dynamical system 3 = (T, W, 23) (assume T = R and W a
differentiable manifold) is said to be a

[differential system ]

if its behavior 3 consists of the solutions of a system of differential
equations,

P (), w(t), Sw(t), .., o w(t), 1) = 0.

These properties extend in an obvious way to latent variable systems.

\_ /




CONTROLLABILITY and OBSERVABILITY I
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CONTROLLABILITY '

The time-invariant system 3 = (T, W, 283) is said to be

[ controllable ]

if for all w1, w2 € B there exists w € B and T' > 0 such that

w(t) = w1 (t) t<o0

Controllability <
legal trajectories must be ‘patch-able’, ‘concatenable’.

/
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Controllability




/ ‘ OBSERVABILITY ' \

Consider the system 3 = (T, W; X W, 9B).

Each element of the behavior 25 hence consists of
a pair of trajectories (wq, ws).

w1y : observed; wo : to-be-deduced.

Definition: w- is said to be

[observable from wlj

if ((w1,w)) € B, and (wq,w]) € B) = (w;, = wl),
i.e., if on B, there exists a map w; — ws.

Very often manifest = observed, latent = to-be-deduced.

\We then speak of an observable latent variable system. /




SYSTEM

1 °

observed to—be—deduced
variables variables

Observability
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Special case: Kalman definitions:

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of control?
Or bad choice of state?

observed = (input, output), to-be-deduced = state.

Kalman definitions address rather special situations.

\_




‘ MODELING by TEARING and ZOOMING I
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?? How do we model such an interconnected system ??

It is not feasible to recognize the signal flow graph before we have a
model (Ex.: electrical circuit).

The signal flow graph should be deduced from a model ...

Input-to-output connections, combining series, parallel, and feedback
(= SIMULINK® ) of little use.

\_ /
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More suitable approach ~~» Bondgraphs:

e Recognize flow and effort variables, energy ‘bonds’
e Obtain model for components

Excellent physical motivation, much more suitable than input/output.

But
e Does not provide a language for modeling the ‘atoms’

e There is much more to interconnections than energy exchange
via ports

e Does not incorporate synthesis (control, etc.) algorithms

\_ /
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‘ Behavioral ideas in modeling interconnected systems I

The ingredients of the language and methodology that we propose:

1. [Modules ]: the subsystems

2. [Terminals ] : the physical links between subsystems

3. The [interconnection architecture ]:

the layout of the modules and their interconnection

4. The [mam’fest variable assignment ] :

which variables does the model aim at?

Let us look at an example...

~




force, position, torque, angle

ffffffffffffff

force, position

voltage, current

voltage, current

!! Model the relation between the positions, forces, torque, angle

\_

/




Tearing

Y“ @z

4 Servo




Z.ooming

Obtain models of the subsystems

Required modules in our example: Solid bars, servo’s.

-




Solid bar

.
.
’
F s
1Ly L,
.

Terminals: 2 mechanical 2-D terminals.

Variables: T15Y1,01,T2,Yy2,02, Fy , Fy 11, Fy,, Fy,, Ts.

Parameters: L € Ry (length),
m € Ry (mass per unit length).

\_ /
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ehavioral equations:

d? _

de—2yc = Fy, + F,, — mLg,

dt?
mi‘—; ;—;Hc =T, + Tz — £ F,, sin(61)

4 %Fyl cos(01) — %sz sin(62) + %F’yz cos(62),
01 = Oca
02 = 01 + m,

Tr1 = T. + %cos(@c),
Lo = T, — %cos(@c),
Y1 = Yc + %Sin(gc)a
Yz = Yo — %sin(@c).

Note: Contains latent variables ., y., 0..

o
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This defines a system with

T=R
W= (R? x ST x R? x T*S!) x (R? x S x R? x T*S1)

S8 = solutions (ml, Y1, 01, L2 Y2, 02, le, Fy1 . Tl, sz, F’y27 Tz)
of the ODE’s, suitably interpreted.

-




Hinge with servo

2

R

Terminals: 2 mechanical 2-D terminals, 2 electrical.

Variables: (z1,v1,01, Fy,, Fy,,T1,
L24Y2, 023 sza Fyza T27 V39 I39 V4a I4)-

Parameters: the rotor mass m,., the stator mass mg,

the rotor inertia .J,., the stator inertia J,
the inductance L, the resistance R of the motor circuit,

the motor torque constant K.

-
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Behavioral equations:

(m'r +ms)%m1 = Fp, + Fy,
(m'r +ms)%y1 — Facl +Fm2

ertz 6. =T + 7T,

Jsdt202 =13 — T

Vs —V, = LEI;; + RIz + K2(6, — 6-)
KIs =T,

L1 = I

Yi = Y2

Iz = —1,4

Note: The motor torque 77, is a latent variable.

\_
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This defines a system with

T=R
W= (R? x ST x R? x T*S1)? x (R?)?
B = solutions

(mlﬁylvolaquFylaTlawZa Y2, 929Fw29Fy29T29 V39I37 V49 I4)
of the ODE’s, suitably interpreted.

-

/
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The list of the modules and the associated terminals:

Module | Type | Terminals Parameters

Link 1 bar (7,8) L1, mq

Link 2 bar (1,2) Lo, mo
Cart bar (13,14) L3, mg

Servo 1 | servo | (9,10,11,12) | m,.,, mgs,, Jpr, sy Jpr, s L1, R1, K4
Servo 2 | servo (3,4,5,6 ) My s Mg,y Jpyy Jpyy Loy Roy Ko

\_ /




The interconnection architecture:

Pairing
{2,3}
{4,7}

{8,9}
{10,13}

Manifest variable assignment:

the variables on the external terminals {1, 5, 6, 11, 12, 14}.

Equations for the full behavior:

\_ /
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quations of the modules:

2
mlLljﬁwcl = le +Fw2a
mlLé;?ycl = Fy]_ + Fyz - mlng’
m1 i; ;:2 9 =T -|— T>
L . L L
— St F w, Sin(01) + L Fy, cos(61) — St F.

ma Lo dezwcz = Fgp, + Fag,
mng 3¢2 Yeo = Fy, + Fyg — maL2g,
ma 12 ;fze = T7 + Ts

22 F.. sin(67) + Lz—sz,T cos(07) — L2—2F
07 = 0.,,08 = 07 + m,
T7 = Tey, + % cos(0c,), T8 = Tc, % cos(0.,),
Yr = Yoy + 5= Sin(0ey)s Ys = Yo, — 2 sin(be,),

-

o Sin(62) + %Fyz cos(62),

6, = 9c1a92 =0, + m,
L
T1 = Teq + 21 cos(0cq ), T2 = Ty — —5- cos(6Oc, ),
Ly _.
Y1 = Yoy + 2L sin(Bcy), Y2 = Yo; — o sin(be, ),

zg Sin(0s) + 2 Fyg cos(6s),

~

/




2
d —
mgLg 2.2 Leg = Frpig + Faqys

mgzL3 ;?ycg, = Fy,53 + Fy,;4, — m3Lsg,

L3 2
ms3 73 ;?9% = Ti3 + T4
L . L L .
— 2 Fp,,8in(013) + 52 Fy 5 cos(013) — 2 Fy,, sin(014) +
013 = 0c5,014 = Oy + T,

L
T13 = Tcg + 5= €0s(Ocg),
L L .
L14 — Lcg — 21 COS(063)’ Y13 = Yeg + 21 Sln(OC3)7

Ly _.
=t sin(0c5),

<
[
I

|
S
0
w

|

2
(m'r'l +msl);?m3 = Fm3 +Faz4a

(m’r’lz_l_ msl);?y3 Fy3 _I_ Fy47
Jry 5503 = T3 + Tm,

2
Jsy £504 = Ta — T,
Vs — Ve = L1215+ R1Is + K2Z (65 — 64),

Kils = Ty, 3 = ®4,Y3s = Ya, Is = —Ie,

-

Lg
5 Fy

14

~

cos(614),




/ 2

(mr, +m32);?w9 = Fpg + Fz,4,
(Mry + May) Loy = Fyg + Fypy,
Jry 2500 = To + T,

J ﬁelo = Tho — T'm,

82 42
Vii — Viz = Lo %111 + R2I11 + K £ (69 — 610),
Kal11 = Ty 10 = 115 Y10 = Y11, {11 = — 112,

Interconnection equations:

Fp, + Fpy, =0, Fy, + Fy, =0, @

Fw4 +Fw7 = 0, Fy4+Fy7 =0, &g = ®7, Ya

Fws +Fw9 = 0, Fys +Fy9 = 0, ®g = ®g, Ys

leo + Fa:13 — 07 leo + Fa:13 = 0, m10 = w137 le - y13’
010 = 013 + ™, T1o + T13 = 0.

-

T3, Y2 = Yz, 02 = 03 + 7w, T + T3 = O,

Y7y, 02 = 07 + w, T4 + T7 = O,

Yo, 08 = 09 + w, Tg + Tg = O,

/




Features:

Reality — ‘physics’ — based
Mathematically precise; uses behavioral systems concepts
Recognizes prevalence of latent variables

More akin to bond-graphs and across/through variables,
than to input/output thinking and feedback connections

Not restricted to energy bonds, or ports

Modular: starts from ‘standard’ building blocks
Hierarchical: allows new systems to be build from old
Models are reusable, generalizable & extend-able

Assumes that accurate and detailed modeling is the aim

/




‘ RECAP .

A behavioral system = a family of trajectories
First principle models contain latent variables

Allows properties, as controllability, to be introduced at the
system level

Well adapted to modeling interconnected systems

Input/output: OK for signal processing, but not for modeling
physical systems
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‘ OUTLINE '

Part 11

. Linear differential systems

Algebraization

Elimination of latent variables
Controllability

Observability

Other issues: Distributed systems

Control in a behavioral setting




LINEAR DIFFERENTIAL SYSTEMS '
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We now discuss the fundamentals of the theory of systems

> = (R, R¥, 5B)

that are

1. [ linear ], meaning
(w1, w2 € B) A (a, 8 € R)) = (aw1 + Bwz € B);

2. [time-invariant ], meaning
(w € B)A(t €R)) = (ctw € B)),
where ot denotes the backwards t—shift;

3. [diﬁ”erentialj , meaning
B consists of the solutions of a system of differential equations.




/LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQ’NS. \

Variables: wy, w2, ... w,, up to n-times differentiated, g equations.

d d®
Ejleg,jwj T Ejlei,jawj + -+ 2':1R1,j —dtn'wj = 0
W 0 W 1 d W n d”
Hj=1 Bz ;05 2:J=1Rz,j£wj Tt X Ry g i = 0
> RY W OR! d W Qo d® — 0
j=1tg, Wy T oy fg Wy e 2 fg o nwy =

Coefficients R];, it 3 indices!

i=1,..

i=1,...

\ k=1,..

. , g : for the i-th differential equation,

, w : for the variable w; involved,
dk

. ,n : for the order - of differentiation.

dtx
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In vector/matrix notation:

Yields

with Rg, Ry, -+ , R, € R&XV,

-




Combined with the polynomial matrix

R(&) = Ro + R1&+ -+ + R,E,

we obtain the mercifully short notation

Including latent variables ~»

d d
R(a)’w = M(a)e

with R, M € R*X*[¢].

-
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Examples:

L

1. RLC-circuit: Casel: CR¢ # e
L
Then the relation between V and I is

-

Rc Rc d L d?
- 1+ —)CRc— +CRc——)V
(RL+( +RL) C’dt_l_ C’RLdtz
L
1+CR—)(1 + — —
1+ c )( +RLd) C
v
Wehavew = 2; g=1; w = ;
I
R(€) = o
[ 7S | —1]+ 145 | ~CRo—#4 16+ [CRo; | ~CRo#; 1€

/
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2. Linear systems:

e The ubiquitous

P(H)y = Q(g)u, w= (u,y)

with P, Q € R***[¢], det(P) # 0 and, perhaps, P~—1Q proper.

e The ubiquitous

%m:Am-I—Bu; y = Cz + Du, w = (u,y).

e The descriptor systems (also called DAE’s, or implicit systems)

d
—F F Gw = 0.
7t r+ rx+ Gw

representations later.

\_ /
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3. Linearization: Consider the system described by the systems of

nonlinear differential equations

n

(w(t)a w(t)a ) w(t)) =0
dt?
with f : (wg, wy1,...,w,) — R®. Assume that € R" is an
equilibrium:
f(w ,0,...,0) =0.
Define R, = 6zkf( ,0,...,0). The system
d n
R0w+R1aw—|—' —I—Rn ’ll)_O
is called the linearized system around . Under reasonable

conditions it describes the behavior in the neighborhood of

" ),
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When shall we define w : R — R¥ to be a solution of R(-%)w = 0?

at)

We will be ‘pragmatic’, and take the easy way out: ~» | € soln’s!

Transmits main ideas, easier to handle, easy theory,
sometimes (too) restrictive (step-response, etc.).

Whence, R(2)w = 0 defines the system ¥ = (R, R¥, 3B) with

B ={w € €°(R, ]RW)|R( -)Jw = 0}.

Proposition: This system is linear and time-invariant.

\_ /
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‘ NOTATION '

£ : all such systems (with any - finite - number of variables)
£¥ : with w variables

B = ker(R(2))
B € £¥ (no ambiguity regarding T, W)

‘ NOMENCLATURE .

Elements of £® : linear differential systems

R(%)fw = 0 : a kernel representation of the corresponding
e LorB e L°

R(%)w = 0 ‘has’ behavior B

3. or B: the system induced by R € R®*®[£]

/




ALGEBRAIZATION of £° I
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Note that

d
R(—)w =0
()w

and

d d
U(E)R(a)’w =0

have the same behavior if the polynomial matrix U is uni-modular
(i.e., when det (U) is a non-zero constant).

= R defines B = ker(R( %)), but not vice-versa!

\_
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& 3 ‘intrinsic’ characterization of 23 € £¥ 77

Define the [annihilators] of B € £ by

Moy 1= {n € B'[e] | n(7)B = 0}.

Iy is clearly an R[&] sub-module of R¥ [£].

Let < R > denote the sub-module of R”[£] spanned by the
transposes of the rows of R. Obviously < R >C 9tga. But, indeed:

Note: Depends on €°°; (<=) false for compact support soln’s.

Conclusion: v &1y sub-modules of R¥ (€]

\_




‘ ELIMINATION I




First principle models

d
dt

-

/ LATENT VARIABLE SYSTEMS '

~~» latent variables. In the case of systems
described by linear constant coefficient differential equations:

n

Row+---+Rn%w=M0£+-..+

In polynomial matrix notation ~»

d
M,—F~.

d d
R(—)w = M(_)L.

—x = Ax + Bu,

This is the natural model class to start a study of finite dimensional
linear time-invariant systems! Much more so than

y = Cx + Du.

~

/




-

But is it(s manifest behavior) really a differential system ??

The full behavior of R(2)w = M(%)¢, ie.,
oo w+£ d d
B = {(w,4) € (R, R"™) | R(—)w = M(;)C.}
dt dt
belongs to £71%, by definition. Its manifest behavior equals

d d
B ={w € €°(R,R") | I £ such that R(a)fw = M(a)ﬁ}

Does *B belong to £ ?

Theorem: It does!

Proof: The ‘fundamental principle’.

\_
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Example: Consider the RLC circuit.

First principles modeling (= CE’s, KVL, & KCL)
~» 15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear constant coefficient
differential equations.
2. The elimination theorem.

Why is there exactly one equation? Passivity!

\_
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Remarks:

e Number of equations (for constant coefficient linear ODE’s)
< number of variables.
Elimination => fewer, higher order equations.

e Implications for DAE’s

e There exist effective computer algebra/Grobner bases algorithms

for elimination
(R,M) — R’

e Completely generalizable to constant coefficient linear PDE’s
(using the fundamental principle)

e Not generalizable to smooth nonlinear systems.
Why are differential equations so prevalent?
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It follows from all this that £°® has very nice properties. It is closed

under:

Intersection: (2B1,B. € £) = (2B1 NV, € L£¥).

Addition: (%1, Bo € SW) = (%1 + B, € £W).

Projection: (2B € £"17%2) = (1L, B € £").

Action of a linear differential operator:

(B € £, P € R2X"[¢]) = (P(L)B € £%2).

Inverse image of a linear differential operator:

(B € £%2,P € R=2X"[¢]) = (P(S))"1B € £2).

~




CONTROLLABILITY I
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Controllability <
system trajectories must be ‘patch-able’, ‘concatenable’.

W

.
------

0 time

.
------
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Is the system defined by

n

d
R()w—'—Rle—l—"’—l—Rn%w:O,

with w = (w1, wa, - ,wy) and Rg, Ry,:-- , R, € R&8X¥,

i.e., R(%)fw = 0, controllable?

We are looking for conditions on the polynomial matrix R
and algorithms in the coefficient matrices Rqg, R1,--- , R,.

\_
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R( %)w — 0 defines a controllable system if and only if

rank(R(\)) is independent of \ for A € C.

Example: ri(—)wy = ro( — )w w1, Wo scalar
P l(dt) 1 z(dt) 2 ( 1, W2 )

is controllable if and only if 7, and 7 have no common factor.

Example: The electrical circuit is controllable unless

L
CRC — — and RC = RL
Ry,

\_




‘ Image representations I

Representations of £

R(GHw=0 (%)

called a ‘kernel’ representation of 8 = ker(R( %));

R(Hw = M(F)E (**)

called a ‘latent variable’ representation of the manifest behavior
= (R(3)) "M (5)€>(R,R%).

Missing link: w = M( )L (% * %)

called an ‘image’ representation of 8 = im(M ( % ).

/
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Elimination theorem => every image is also a kernel.

¢ Which kernels are also images ??

Theorem: The following are equivalent for 25 € £° :

1. B is controllable,

2. | B admits an image representation,

3. for any a € R"[£],
a' [2]B equals 0 or all of € (R, R),

4. |R7[£] /Dty is torsion free,

\_
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Remarks:

e Algorithm: R + syzygies + Grobner basis

=> numerical test for on coefficients of R.
e - complete generalization to PDE’s
e d partial results for nonlinear systems

e Kalman controllability is a straightforward special case

-




OBSERVABILITY I
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Consider the system 3 = (T, W; x W, 9B).

Each element of the behavior 25 hence consists of
a pair of trajectories (wq, ws).

w1y : observed; wo : to-be-deduced.

Recall: w- is said to be [observable] from w1

if ((w1,w5) € B, and (w1, wy) € B) = (w) = wl),
i.e., if on B, there exists a map w,; — ws.

\_




SYSTEM

observed to—be—deduced
variables variables




When is in
d d
Ry (— = Ro(—
1(gp)wn 2( )2
wo observable from wq?
If and only if rank(R3(\)) = coldim(R3) for all A € C.

i.e., if and only if there exists ‘consequences’ (i.e. elements of i) of
the form wy, = F(%)wl.

The RLC circuit is observable (branch variables observable from

L
external port variables) iff C R # B
L

d a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

Observability is analogous (but not ‘dual’) to controllability.

\_ /




FURTHER RESULTS I
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Many additional problem areas have been studied from the
behavioral point of view.

System representations: input/output representations, state
representations, model reduction, symmetries

System identification = the most powerful unfalsified model
(MPUM), approximate system ID

Observers
Control
Quadratic differential forms, dissipative systems, 7 ..-control

Distributed parameter systems




Linear differential systems (PDE’s) I




/ n-D systems) I \

T = R%,n independent variables,

W = R¥, w dependent variables,
5 = the solutions of a linear constant coefficient system of PDE’s.

Let R € R**"[&1,-+- ,&,], and consider

R(aiwla vaiwn)w:() (*)

Define its behavior

B = {w € € (R*,R") | (%) holds } =ker(R(aiwl,- .- ,aiwn))

¢ (R*, R") mainly for convenience, but important for some results.

\_ /
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xample: Maxwell’s equations

— ]_
A% - — P,
€0
~ 0 -
VxXE = ——B,
ot
V-B = 0,
c’VxB = —j3+4+—F
€0 ot

T = R x R3 (time and space),
w = (E,B,J,p)
(electric field, magnetic field, current density, charge density),
W=R3 x R3 x R® xR,
'8 — set of solutions to these PDE’s.
Note: 10 variables, 8 equations! => d free variables.

/
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Results:
1. Ny =< R >

2. Elimination theorem: The manifest behavior of

o0 o0 o0 o0
. e o o ’ )w p— M( ’ s o o ’
O0x ox, O0x ox,

R(

Y

belongs to £7.

Proof uses ‘fundamental principle’.

\_
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Which PDE’s describe (E . ;) in Maxwell’s equations ?

Eliminate E, p from Maxwell’s equations. Straightforward
computation of the relevant left syzygy yields

) . .
E:OaV'E-l-V‘j = O,
82E+ 2VxVxE”+a"’
Eo—— EncC —_— —
2 9¢2 0 at’

Elimination theorem => this exercise would be exact & successful.

\_ /
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Controllability:

Consider two solutions:







-

Theorem: The following are equivalent for 28 € £V :

1. *B is controllable,

2. | B admits an image representation,

3. foranya € R[&q, - , &,
aT[aiwl,--- ) ai%]% equals O or all of €°°(R"*, R),

4. |RY[&q1, -+ , &) /Dy is torsion free,

etc.

Algorithm: R + syzygies + Grobner basis =

\_

numerical test on coefficients of R.
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R®> — R and
the vector potential A : R x R3 — R3, generate exactly the solutions
to Maxwell’s equations:

. o -
E = —— A-V9,
B = VXA,
j = ea—zg—e AV2A+¢ 02V(V-§)+€3V¢
— 08t2 0 0 03t 9
p = —eoﬁv-j—eovzqs.
ot

Proves controllability. Illustrates the interesting connection

\_

controllability < 3 potential!




CONTROL AS INTERCONNECTION I
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In the case of control, our point of view leads to

PLANT:

to—be—controlled . PLANT

variables

\_

control
variables

/
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The plant has two Kinds of variables
(or, often more appropriately, terminals):

e variables to be controlled: w,
e control variables: c.

The control variables are those variables through which we
interconnect the controller to the plant.

\_
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CONTROLLER:

control o
variables ¢ CONTROLLER

The controller restricts the behavior of the control variables
and, through these, that of the to-be-controlled variables.

\_
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CONTROLLED SYSTEM:

to—be—controlled y .
variables

PLANT

control
variables

Control variables = shared variables.

\_

CONTROLLER




I want to discuss two items in this context:
1. A (very low-tech) example

2. One general result
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Example of such a control mechanism:

AN e

AN wall

hinges

spring

door

AN VA v

CONTROLLER

Similar idea: A damper of a car, etc.

\_ /
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‘Linearized’ eq’ns ~~»

Equation of motion of the door (the plant):

d?0

M,ﬁ = F. + F,

0: opening angle,
F force exerted by the door closing device, F, exogenous force.

Door closing mechanism modeled as mass-spring-damper
combination (the controller):

L,d20  _de
+D— + K6 = —F..

M~
dt? dt

\_
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To be controlled variables: w = (0, F,.),

Control variables: ¢ = (0, F_).

Controlled behavior:

M+ M)l 4 p® L ko= F
(M’ +M")— > + D— + K6 = F.

Specifications on the controlled system:

Note:

\_

small overshoot, fast settling, not-to-high gain from F, — 6.

Finding a suitable controller ~» suitable values for M’, K and D.

Plant: second order;
Controller: second orders;
Controlled plant: second (not fourth) order.

/
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‘ A general implementability result I

Let B8 € £77¢ be the behavior of the plant
(with w to-be-controlled and c control variables.

Let € € £° be the behavior of the controller
(with c control variables.)

This yields the controlled behavior
R :={w |3 ¢ € €such that (w,c) € B}.

By the elimination theorem K € £V.

-




ﬁmplementability question: \

Which controlled behaviors can be obtained this way?

The answer to this question is a surprisingly simple and explicit:

Theorem: K € £" is implementable if and only if

MCRKRC’B

where
MN:={w | (w,0) € B},

is the ‘hidden’ behavior, and
P := {w | I c¢suchthat (w,c) € B},

is the ‘manifest plant’ behavior.

\Note: pole assignment follows, many refinements.,... /




Gemarks: \

e Many control mechanism in practice do not function as sensor

output to actuator input drivers

e Control = Interconnection = controlled behavior is any behavior
that is wedged in between hidden behavior and plant behavior

e Control = integrated system design; finding a suitable subsystem
behavior

e  a complete theory of controller synthesis (stabilization, H o,
...) of interconnecting controllers for linear systems

e Functionals in optimization criteria: Quadratic Differential
Forms

e Via (regular) implementability results, the usual feedback
structures are recovered

\o Controllability and observability: central ideas also here j




‘ Main points I

A system = a behavior
Importance of latent variables
Relevance in modular modeling

There is a complete theory for linear time-invariant differential
systems

Nice theory of controllability
Limitation of input/output thinking

Relevance of behaviors, even in control
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Main open area:

‘ Stochastic behaviors '
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