
STATE CONSTRUCTION

in DISCRETE EVENT and CONTINUOUS SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

CDC 2002 Las Vegas, December 10, 2002

THEME

Defining a system in terms of its behavior

provides a common framework

for discrete event and continuous systems alike

A discrete event system

��� a formal language� � a (finite) alphabet;�� � � all finite strings with symbols from

�

� � � � � � the language
= all ‘legal’ ‘words’ �
	 �
� � � � ��
 � � ���

Examples: All words appearing in the Webster
All LATEX documents

Pad the words with blanks (�’s) so as to make then 2-sided infinite.

All such words � a time-invariant system

� � ���� �� � �

A continuous system = ????

An I/O map ?? Does not cope with initial conditions

A parametrized family of I/O maps ??

How is this parametrization constructed?
Does not cope with initial conditions either...

Difficulties:

� Why should there be an I/O partition in continuous systems,
contrary to DES?

� How do we cope with initial conditions in I/O systems before the
state space has been constructed?

� Why this difference between DES and continuous systems

� !!! Behavioral systems !!!

Definition: Dynamical system =

� � � ��� �� � �

� � �

, the time-axis (= the relevant time instances),

�

, the signal space (= where the variables take on their values),

� � � �

: the behavior (= the admissible trajectories).

Today:

� � ����

time-invariant :=

 "! # � $ % '& � ! � # � $� & � � shift.

Examples = formal languages, DES, I/O maps, diff. eq’ns, codes,...

Definition: Latent variable system:=

�)(� � �� �� *� �,+�- . . �

� � �

, the time-axis (= the set of relevant time instances)

�

, the signal space (= the variables that the model aims at)

*

, the latent variable space (= the auxiliary modeling variables)

�,+�- . . � � �0/ * � �

: the full behavior

(= the pairs

� ! � 1 � � � 2 � / *
which the model declares

possible)

Examples: models with auxiliary variables, interconnected systems,
first principle models, grammars, switched systems,...

THE MANIFEST BEHAVIOR

Call the elements of

� 34 56‘manifest’ variables ,

those of

* 78 9:‘latent’ variables .

The latent variable system

�); � � �� �� *� �,+�- . . � induces
the manifest system

� � ���� �� � �� with manifest behavior

� � < ! � � 2 � => 1 � � 2 *
such that

� ! � 1 � # � +�- . . ?

In convenient equations for
�

, the latent variables are ‘eliminated’.

A state system = A latent variable system with a special property.

Definition: The latent variable system

�)@ � ���� �� A� �,+ - . . �
is said to be a state system if

� ! 	� B 	 �� � ! �� B � � # �,+�- . .� CED # �� and B 	 � CD � � B � � CD �

imply � ! 	� B 	 �GFHJI � ! �� B � � # �K+ - . .�

LNMI denotes concatenation at OQP , defined as

RTS L MI RTU V O WYXZ
[]\

^
R_S V O W for O` OPRTU V O W for O a OP

In pictures:

bdce f ge h

i
time

j

b ck f gk h

� ! 	� B 	 �� � ! �� B � � # �,+ - . .

l

m

time

State := concatenation also # � +�- . . n

This definition is the implementation of the idea:

The state at time C, B � C � , contains all the information
(about

� ! � B � !) that is relevant for the future behavior.

The state = the memory.

The past and the future are ‘independent’,
conditioned on (given) the present state.

�E� Markovianity!

Examples of state systems:

Discrete-time systems.

A latent variable system described by a difference equation that is
first order in the latent variable B, and
zero-th order in the manifest variable ! :

o � B � Cp q �� B � C �� ! � C � � � r�
Automata

�� A

finite sets, possibly initial + terminal conditions

Trellis diagrams

QM

Definition:

�(� ���� �� *� � �

is complete if

 � ! � 1 � =ts HuIv Huw x # �,+ - . . =ts HuIv Hw x y CD� C	 $ z � ! � 1 � # �,+�- . . $�
Theorem: The ‘complete’ latent variable system

�@ � � �� �� A� �,+�- . . �
is a state system if and only if

� + - . . admits a representation as
a difference equation that is

first order in the latent variable B, and
zero-th order in the manifest variable ! :

o � B � Cp q �� B � C �� ! � C � � � r�

Otherwise (if not complete, as languages)
‘initial’ and/or ‘terminal’ conditions ...

General properties:

The state system

�){ � ���� �� A� �,+�- . . � is said to be
[state irreducible]� % [(if

|

is a partial (!!) map,

| � A 2 A }

,
such that

�){ � ���� �� A }� � }+�- . . � with� }+ - . . � < � ! � |�~ B � = � B� ! � # �,+ - . . ?� is a state repr. of

�

),z (|

must be a bijective map on
�

)].

The state systems

� { � � ��� �� A� �,+ - . . � and� }{ � ��� �� A }� � }+ - . . � are said to be equivalent
if there exists a bijection

| � A 2 A }

such that � ! � B � # �,+ - . . $ % � ! � | ~ B � # � }+�- . . $.

Clearly equivalence z the same manifest behavior.

STATE CONSTRUCTION

!! Given a dynamical system
� � � �� �� � �

find a state representation

�@ � ���� �� A� �,+ - . . � for it !!

Given

� � ���� �� � �

, find a (irreducible) state space representation�@ � � ��� �� A� �,+�- . . � for it.

The crucial idea is to define the state space!

When do two trajectories bring the system in the same state?
When is stored memory by the two trajectories the same?

When the trajectories can be continued in the same way!

This idea of constructing an equivalence relation on the manifest
behavior

�

, sometimes called ‘Nerode equivalence’, leads to the past
canonical state construction.

Define the equivalence relation

��� on

�
by

 "! 	 �� ! � $ � % � ! 	 F D ! # � � % � ! � F D ! # � � $�

Our concept of state being ‘time-symmetric’z future canonical state representation.

In the future canonical state construction, define the equivalence
relation

��� by

 "! 	 �� ! � $ � % � ! F D ! 	 # � � % � ! F D ! � # � � $�

Finally, combine both to the two-sided canonical state representation.

In the two-sided canonical state construction, define the equivalence
relation

�"� by

 "! 	 �� ! � $ � % � � ! 	 F D ! # � � % � ! 	 F D ! # � � �

F � � ! F D ! 	 # � � % � ! F D ! � # � � � $�

Obviously,

 "! 	 �� ! � $ % � ! 	 �� ! � �GF � ! 	 �� ! � � $�

We now construct the associated state representations.

For the past-canonical state construction, define
the state space by

A� � � �

mod

�� �

, the full behavior by

�,+ - . .v � � < � ! � B � = � ! # � � F � & H ! # � & H B � � r � y C # � � ?�

For the future-canonical state construction, define
the state space by

A� � � �

mod

�� �

, the full behavior by

�,+ - . .v � � < � ! � B � = � ! # � � F � & H ! # � & H B � � r � y C # � � ?�

For the two-sided-canonical state construction, define
the state space by

A� � � �
mod

��� �

, the full behavior by

�,+ - . .v � � < � ! � B � = � ! # � � F � & H ! # � & H B � � r � y C # � � ?�

The canonical state representations

� � � � � �� �� A� � � � �
and� � � � � �� �� A� � � � �

have very good properties.

In particular, they are irreducible.

The question when all irreducible state representations of a given
system are equivalent has a very nice answer in terms of these
canonical representations.

Indeed, the following conditions are equivalent:

1. All irreducible state representations of a given system
���� �� � �

are equivalent.

2.

���� �� A� � �,+�- . .v � �

and

���� �� A� � �,+ - . .v � �
are equivalent.

3.

���� �� A� � ��+�- . .v � �

is irreducible.

4.

���� �� A� � �,+�- . .v � �

and

���� �� A� � �,+�- . .v � �

are equivalent.

5.

���� �� A� � �,+ - . .v � �

and

� �� �� A� � �,+ - . .v � �

are equivalent.

Important examples of systems for which all irreducible state
representations are equivalent are linear and autonomous systems.

Example:

� � < � �� � �� � � ?�

Past canonical state representation:

�� � �� �
��� ���

� �� �
��

Future canonical representation:

�� � ��� � �
��� ���

� �
��

Two-sided canonical representation:

�� � �� �
��� ���

� �
��

��
�

�
�

Not all irreducible state representations are equivalent

Manuscript & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/ �jwillems

Thank you!

