

DISSIPATIVE SYSTEMS

Part II: Distributed Systems

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium &

Mathematics Department, University of Groningen, NL

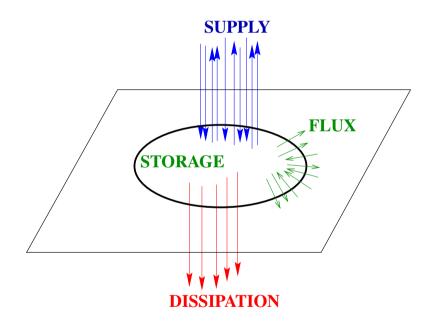
Seminar, Un. of Aveiro, Portugal

September 11, 2002

Joint work with Harish Pillai (IIT-Bombay)

A dissipative system absorbs supply, 'globally' over time and space. ¿¿ Can this be expressed 'locally', as

rate of change in storage + spatial flux \leq supply rate



rate of change in storage + spatial flux

= supply rate + (non-negative) dissipation rate ??

OUTLINE

1. Motivating example

2.

3.

4.

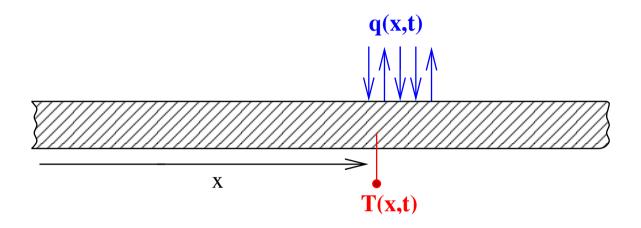
5.

6.

7.

8.

First principles motivating example: *Heat diffusion*



The PDE

$$\frac{\partial}{\partial t} \mathbf{T} = \frac{\partial^2}{\partial x^2} \mathbf{T} + \mathbf{q}$$

describes the evolution of the temperature T(x,t) $(x \in \mathbb{R} \text{ position}, t \in \mathbb{R} \text{ time})$ in a medium and the heat q(x,T) supplied to / radiated away from it.

For all sol'ns T, q with T(x, t) = constant > 0 (and therefore q = 0) outside a compact set, there holds:

First law:

$$\int_{\mathbb{R}^2} q(x,t) dx dt = 0,$$

Second law:

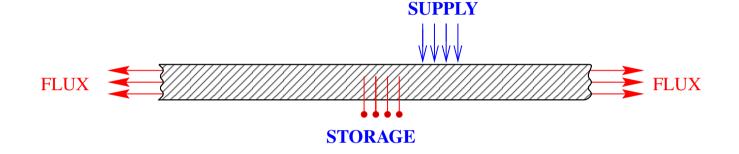
$$\int_{\mathbb{R}^2} \frac{q(x,t)}{T(x,t)} dx dt \leq 0.$$

 \Rightarrow

$$\max_{x,t} \{ T(x,t) \mid q(x,t) \geq 0 \} \geq \min_{x,t} \{ T(x,t) \mid q(x,t) \leq 0 \}.$$

It is impossible to transport heat from a 'cold source' to a 'hot sink'.

Can these 'global' versions be expressed as 'local' laws?



rate of change in storage + spatial flux \leq supply rate

To be invented:

an 'extensive' quantity for the first law: internal energy an 'extensive' quantity for the second law: entropy

Define the following variables:

E = T: the stored energy density,

 $S = \ln(T)$: the entropy density,

 $F_E=-rac{\partial}{\partial x}T$: the energy flux, $F_S=-rac{1}{T}rac{\partial}{\partial x}T$: the entropy flux,

 $D_S = (\frac{1}{T} \frac{\partial}{\partial x} T)^2$: the rate of entropy production.

Local versions of the first and second law: rate of change in storage + spatial flux < supply rate

Conservation of energy:

$$oxed{rac{\partial}{\partial t}E+rac{\partial}{\partial x}F_E=q,}$$

Entropy production:

$$rac{\partial}{\partial t}S + rac{\partial}{\partial x}F_S = rac{q}{T} + D_S. \hspace{1cm} ext{Since} \hspace{0.2cm} (D_S \geq 0 \hspace{0.1cm}) \hspace{0.2cm} \Rightarrow$$

$$igg|rac{\partial}{\partial t}S + rac{\partial}{\partial x} \, F_S \geq rac{q}{T}.$$

Our problem:

theory behind these ad hoc constructions of E, F_E and S, F_S .

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory

3.

4.

5.

6.

7.

8.

LYAPUNOV FUNCTIONS

Consider the classical dynamical system, the 'flow'

$$\Sigma: \frac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the state space, and $f : \mathbb{X} \to \mathbb{X}$.

Denote the set of solutions $x:\mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the behavior.

$$V: \mathbb{X}
ightarrow \mathbb{R}$$

is said to be a Lyapunov function for Σ if along $x \in \mathfrak{B}$

$$\left|rac{d}{dt} \, V(x(\cdot)) \leq 0
ight|$$

Equivalent to
$$\stackrel{ullet}{V}^\Sigma :=
abla V \cdot f \leq 0$$

Plays a remarkably central role in the field.

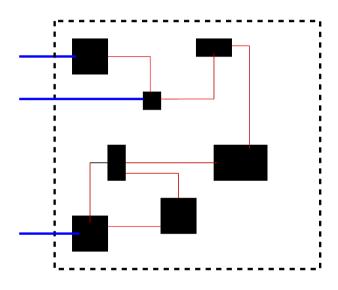
Aleksandr Mikhailovich Lyapunov (1857-1918)

Introduced Lyapunov's 'second method' in his Ph.D. thesis (1899).

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4.
- **5.**
- **6.**
- 7.
- 8.

'Open' systems are a much more appropriate starting point for the study of dynamics.



Consider the 'dynamical system'

$$\Sigma: \quad \frac{d}{dt} x = f(x,u), \quad y = h(x,u).$$

 $u\in\mathbb{U}=\mathbb{R}^{\mathtt{m}},y\in\mathbb{Y}=\mathbb{R}^{\mathtt{p}},x\in\mathbb{X}=\mathbb{R}^{\mathtt{n}}$: the input, output, state.

Behavior $\mathfrak{B}=\ \ ext{all sol'ns}\ (u,y,x):\mathbb{R} \to \mathbb{U} imes \mathbb{X}$.

Let $s: \mathbb{U} \times \mathbb{Y} \to \mathbb{R}$ be a function, called the *supply rate*.

DISSIPATIVITY

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow \mathbb{R},$$

called the *storage function* such that

$$\frac{d}{dt} V(x(\cdot)) \leq s(u(\cdot), y(\cdot))$$

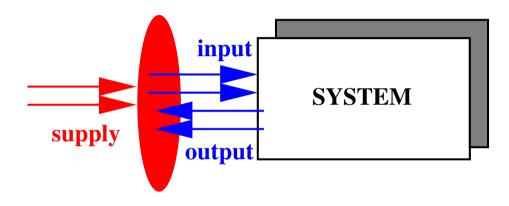
along input/output/state trajectories $(\forall (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B})$.

This inequality is called the *dissipation inequality*.

Equivalent to
$$V^{\Sigma}(x,u) := \nabla V(x) \cdot f(x,u) \leq s(u,h(x,u))$$
 for all $(u,x) \in \mathbb{U} \times \mathbb{X}$.

If equality holds: 'conservative' system.

s(u, y) models something like the power delivered to the system when the input value is u and output value is y.



V(x) then models the internally stored energy.

Dissipativity :⇔

rate of increase of internal energy \leq supply rate.

Special case: 'closed' system: s = 0 then

dissipativeness $\leftrightarrow V$ is a Lyapunov function.

Dissipativity is the natural generalization to open systems of Lyapunov theory.

Stability for closed systems \simeq Dissipativity for open systems.

THE CONSTRUCTION OF STORAGE FUNCTIONS

Basic question:

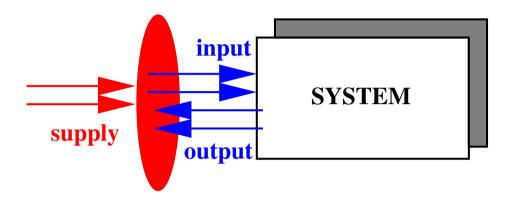
Given (a representation of) Σ , the dynamics, and given s, the supply rate, is the system dissipative w.r.t. s, i.e., does there exist a storage function V such that the dissipation inequality holds?

The construction of storage f'ns is very well understood, particularly for linear systems and quadratic supply rates.

Leads to the KYP-lemma, LMI's, ARIneq, ARE, semi-definite programming, spectral factorization, Lyapunov functions, robust control, electrical circuit synthesis, stochastic realization theory.

V is in general far from unique. There are two 'canonical' storage functions: the available storage and the required supply. For conservative systems, V is unique.

Plays a remarkably central role in the field.



Assume s 'power', known dynamics, what is the internal energy?

This is the question which we shall now study for systems described by PDE's.

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4. Linear differential systems
- **5.**
- **6.**
- 7.
- 8.

Polynomial matrix notation for PDE's:

PDE:

$$w_{1}(x_{1}, x_{2}) + \frac{\partial^{2}}{\partial x_{2}^{2}} w_{1}(x_{1}, x_{2}) + \frac{\partial}{\partial x_{1}} w_{2}(x_{1}, x_{2}) = 0$$

$$w_{2}(x_{1}, x_{2}) + \frac{\partial^{3}}{\partial x_{2}^{3}} w_{1}(x_{1}, x_{2}) + \frac{\partial^{4}}{\partial x_{1}^{4}} w_{2}(x_{1}, x_{2}) = 0$$

$$\updownarrow$$

Notation:

$$egin{aligned} egin{aligned} egin{aligned} oldsymbol{\xi}_1 & \leftrightarrow rac{\partial}{\partial x_1} & oldsymbol{\xi}_2 & \leftrightarrow rac{\partial}{\partial x_2} \ w &= egin{bmatrix} w_1 \ w_2 \end{bmatrix}, & R(oldsymbol{\xi}_1, oldsymbol{\xi}_2) &= egin{bmatrix} 1 + oldsymbol{\xi}_2^2 & oldsymbol{\xi}_1 \ oldsymbol{\xi}_2^3 & 1 + oldsymbol{\xi}_1^4 \end{bmatrix}. \ R(rac{\partial}{\partial x_1}, rac{\partial}{\partial x_2}) w &= 0 \end{aligned}$$

 $\mathbb{T} = \mathbb{R}^n$, the set of independent variables,

 $\mathbb{W} = \mathbb{R}^{\mathbb{W}}$, the set of dependent variables,

 \mathfrak{B} = the solutions of a linear constant coefficient system of PDE's.

Let $R \in \mathbb{R}^{\bullet \times w}[\xi_1, \cdots, \xi_n]$, and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0.$$
 (*)

Define the associated behavior

$$\mathfrak{B} = \{w \in \mathfrak{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{w}) \mid (*) \text{ holds } \}.$$

 $\mathfrak{C}^{\infty}(\mathbb{R}^n,\mathbb{R}^w)$ mainly for convenience.

Notation for n-D linear differential systems:

$$(\mathbb{R}^n, \mathbb{R}^w, \mathfrak{B}) \in \mathfrak{L}_n^w, \quad \text{or } \mathfrak{B} \in \mathfrak{L}_n^w.$$

Cfr. the work of Oberst, Pillai, Shankar, Wood, Zerz, ...

Examples: Maxwell's eq'ns, diffusion eq'n, wave eq'n, . . .

Maxwell's equations

$$egin{array}{lll}
abla \cdot ec{E} &=& rac{1}{arepsilon_0}
ho \,, \
abla imes ec{E} &=& -rac{\partial}{\partial t}ec{B} \,, \
abla \cdot ec{B} &=& 0 \,, \
abla^2
abla imes ec{B} &=& rac{1}{arepsilon_0} ec{j} + rac{\partial}{\partial t} ec{E} \,. \end{array}$$

 $\mathbb{T} = \mathbb{R} \times \mathbb{R}^3$ (time and space),

 $w = (\vec{E}, \vec{B}, \vec{j}, \rho)$

(electric field, magnetic field, current density, charge density),

 $\mathbb{W} = \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R},$

 \mathfrak{B} = set of solutions to these PDE's.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_n^{\mathtt{W}}$.

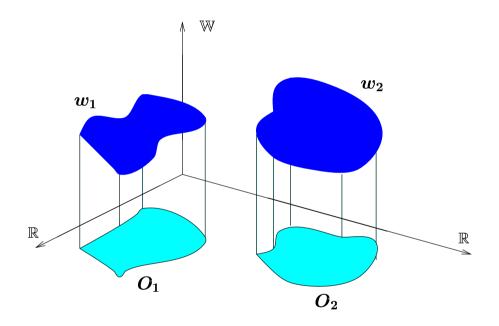
Another representation: image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})\ell.$$

'Elimination' thm \Rightarrow $\operatorname{im}(M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}))\in \mathfrak{L}_n^{\mathtt{w}}$!

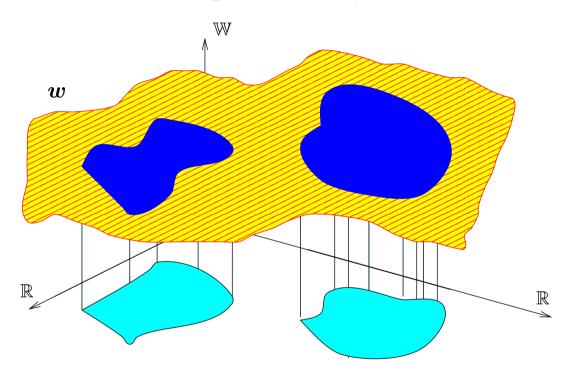
 $\mathfrak{B} \in \mathfrak{L}_n^{\mathtt{w}}$ admits an image representation iff it is 'controllable'.

Controllability in pictures:



$$w_1,w_2\in \mathfrak{B}.$$

 $w \in \mathfrak{B}$ 'patches' $w_1, w_2 \in \mathfrak{B}$.



Controllability:⇔ 'patch-ability'.

ARE MAXWELL'S EQUATIONS CONTROLLABLE?

The following well-known equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$egin{array}{lll} ec{m{E}} &=& -rac{\partial}{\partial t} ec{A} -
abla \phi, \ ec{m{B}} &=&
abla imes ec{A}, \ ec{m{j}} &=& arepsilon_0 rac{\partial^2}{\partial t^2} ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla (
abla \cdot ec{A}) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \
ho &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 \phi. \end{array}$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ a potential!

Not all controllable systems admit an observable image representation. For n = 1, they do. For n > 1, exceptionally so.

Observability means: $M(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$ is injective:

 ℓ can be deduced from w.

The latent variable in an image representation ℓ may be 'hidden'.

Example: Maxwell's equations do not allow a potential representation that is observable.

Multi-index notation:

$$egin{aligned} x &= (x_1, \dots, x_{
m n}), \ k &= (k_1, \dots, k_{
m n}), \ell = (\ell_1, \dots, \ell_{
m n}), \ \xi &= (\xi_1, \dots, \xi_{
m n}), \zeta = (\zeta_1, \dots, \zeta_{
m n}), \eta = (\eta_1, \dots, \eta_{
m n}), \ rac{d}{dx} &= (rac{\partial}{\partial x_1}, \dots, rac{\partial}{\partial x_{
m n}}), rac{d^k}{dx^k} = (rac{\partial^{k_1}}{\partial x_1^{k_1}}, \dots, rac{\partial^{k_n}}{\partial x_{
m n}^{k_n}}), \ dx &= dx_1 dx_2 \dots dx_{
m n}, \ R(rac{d}{dx})w &= 0 \quad {
m for} \quad R(rac{\partial}{\partial x_1}, \dots, rac{\partial}{\partial x_n})w = 0, \ w &= M(rac{d}{dx})\ell \quad {
m for} \quad w &= M(rac{\partial}{\partial x_1}, \dots, rac{\partial}{\partial x_n})\ell, \ {
m etc.} \end{aligned}$$

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4. Linear differential systems
- 5. Dissipative distributed systems
- **6.**
- **7.**
- 8.

QDF's

The quadratic map in w and its derivatives, defined by

$$w \mapsto \sum_{k,\ell} (rac{d^k}{dx^k}w)^ op \Phi_{k,\ell} (rac{d^\ell}{dx^\ell}w)$$

is called *quadratic differential form* (QDF) on $\mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^w)$.

$$\Phi_{k,\ell} \in \mathbb{R}^{\scriptscriptstyle{\mathsf{W}} imes \mathsf{W}}; \mathrm{WLOG:} \ \Phi_{k,\ell} = \Phi_{\ell,k}^{ op}.$$

Introduce the 2n-variable polynomial matrix Φ

$$\Phi(\zeta,\eta) = \sum_{k,\ell} \Phi_{k,\ell} \zeta^k \eta^\ell.$$

Denote the QDF as Q_{Φ} .

DISSIPATIVE DISTRIBUTED SYSTEMS

We consider only controllable linear differential systems and QDF's.

<u>Definition</u>: $\mathfrak{B} \in \mathfrak{L}_{\rm n}^{\rm w}$, controllable, is said to be *dissipative* with respect to the supply rate Q_{Φ} (a QDF) if

$$\int_{\mathbb{R}^{ ext{n}}} Q_{\Phi}(w) \ dx \geq 0$$

for all $w \in \mathfrak{B}$ of compact support, i.e., for all $w \in \mathfrak{B} \cap \mathfrak{D}$.

Assume n = 4: independent variables x, y, z; t: space and time.

Idea: $Q_{\Phi}(w)(x,y,z;t) dxdydz dt$:

rate of 'energy' delivered to the system.

Dissipativity :⇔

$$\int_{\mathbb{R}} (\int_{\mathbb{R}^3} Q_\Phi(w) \ dx dy dz) \ dt \geq 0 \quad ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

A dissipative system absorbs net energy.

Example: Maxwell's eq'ns:

dissipative (in fact, conservative) w.r.t. the QDF $-\vec{E}\cdot\vec{j}$.

In other words, if \vec{E}, \vec{j} is of compact support and satisfies

$$egin{array}{lll} arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{m{E}} \, + \,
abla \cdot ec{m{j}} &= 0, \ &arepsilon_0 rac{\partial^2}{\partial t^2} ec{m{E}} + arepsilon_0 c^2
abla imes
abla imes
abla imes ec{m{E}} \, + \, rac{\partial}{\partial t} ec{m{j}} &= 0, \end{array}$$

then

$$\int_{\mathbb{R}} (\int_{\mathbb{R}^3} (-ec{E} \cdot ec{j}) \ dx dy dz) \ dt = 0.$$

Can this be reinterpreted as: As the system evolves,

energy is locally stored, and redistributed over time and space?

OUTLINE

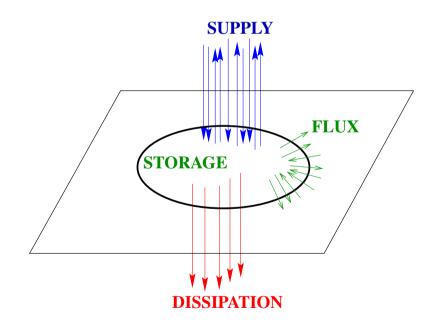
- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4. Linear differential systems
- 5. Dissipative distributed systems
- 6. Local dissipation law
- 7.
- 8.

Assume that a system is 'globally' dissipative.

¿¿ Can this dissipativity be expressed through a 'local' law??

Such that in every spatial domain there holds:

$$\frac{d}{dt}$$
 Storage + Spatial flux \leq Supply.



Supply = Stored + radiated + dissipated.

Main Theorem:

 $\mathfrak{B}\in\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}},$ controllable, is dissipative w.r.t. the supply rate Q_{Φ} iff

 \exists an image representation $w=M(rac{d}{dx})\ell$ of $\mathfrak{B},$ an n-vector of QDF's $Q_{\Psi}=(Q_{\Psi_1},\ldots,Q_{\Psi_n})$ on $\mathfrak{C}^{\infty}(\mathbb{R}^n,\mathbb{R}^{\dim(\ell)}),$ called the $\mathit{flux},$

such that the local dissipation law

$$oldsymbol{
abla} \cdot Q_{\Psi}(\ell) \leq Q_{\Phi}(oldsymbol{w})$$

holds for all (w, ℓ) that satisfy $w = M(\frac{d}{dx})\ell$.

As usual $abla \cdot Q_{\Psi} := rac{\partial}{\partial x_1} Q_{\Psi_1} + \cdots + rac{\partial}{\partial x_n} Q_{\Psi_n}.$

Note: the local law involves

(possibly unobservable, - i.e., hidden!) latent variables (the \(\ell^{\chi} \)s).

Assume n=4: independent variables x,y,z;t: space and time. Let $\mathfrak{B}\in\mathfrak{L}_4^{\mathtt{W}}$ be controllable. Then

$$\int_{\mathbb{R}} (\int_{\mathbb{R}^3} Q_\Phi(w) \; dx dy dz) \; dt \geq 0 \quad ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

if and only if

$$\exists$$
 an image representation $w=M(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z},\frac{\partial}{\partial t})$ of \mathfrak{B} , and QDF's S , the storage, and F_x,F_y,F_z , the spatial flux,

such that the *local dissipation law*

$$\left| rac{\partial}{\partial t} S(\mathbf{\ell}) + rac{\partial}{\partial x} F_x(\mathbf{\ell}) + rac{\partial}{\partial y} F_y(\mathbf{\ell}) + rac{\partial}{\partial z} F_z(\mathbf{\ell}) \le Q_{\Phi}(w)
ight|$$

holds for all (w, ℓ) that satisfy $w = M(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}) \ell$.

EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell's equations are dissipative (in fact, conservative) with respect to $-\vec{E} \cdot \vec{j}$, the rate of energy supplied.

Introduce the stored energy density, S, and

the energy flux density (the Poynting vector), \vec{F} ,

$$S(ec{E},ec{B}) := rac{arepsilon_0}{2} ec{E} \cdot ec{E} + rac{arepsilon_0 c^2}{2} ec{B} \cdot ec{B},$$

$$\vec{F}(\vec{E}, \vec{B}) := \varepsilon_0 c^2 \vec{E} \times \vec{B}.$$

The following is a local conservation law for Maxwell's equations:

$$rac{\partial}{\partial t}S(ec{E},ec{B}) +
abla \cdot ec{F}(ec{E},ec{B}) = -ec{E} \cdot ec{j}.$$

Local version involves \vec{B} , unobservable from \vec{E} and \vec{j} , the variables in the rate of energy supplied.

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4. Linear differential systems
- 5. Dissipative distributed systems
- 6. Local dissipation law
- 7. Schematic of the proof

8.

Using controllability and image representations, we may assume WLOG:

$$\mathfrak{B}=\mathfrak{C}^{\infty}(\mathbb{R}^{n},\mathbb{R}^{\mathtt{w}})$$

$$\int_{\mathbb{R}^n} Q_{\Phi}(w) \geq 0 ext{ for all } w \in \mathfrak{D}$$
 $\updownarrow \quad ext{ (Parseval)}$
 $\Phi(-i\omega, i\omega) \geq 0 ext{ for all } \omega \in \mathbb{R}^n$
 $\updownarrow \quad ext{ (Factorization equation)}$
 $\exists \ D: \quad \Phi(-\xi, \xi) = D^\top(-\xi)D(\xi)$
 $\updownarrow \quad ext{ (easy)}$
 $\exists \ \Psi: \quad (\zeta + \eta)^\top \Psi(\zeta, \eta) = \Phi(\zeta, \eta) - D^\top(\zeta)D(\eta)$
 $\updownarrow \quad ext{ (clearly)}$
 $\exists \ \Psi: \quad
abla \cdot Q_\Psi(w) \leq Q_\Phi(w) ext{ for all } w \in \mathfrak{C}^\infty$

OUTLINE

- 1. Motivating example
- 2. Lyapunov theory
- 3. Dissipative dynamical systems
- 4. Linear differential systems
- 5. Dissipative distributed systems
- 6. Local dissipation law
- 7. Schematic of the proof
- 8. The factorization equation

Consider

$$X^{ op}(-\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown. *Solvable?*?

 \cong

$$X^{ op}(\xi)X(\xi) = Y(\xi)$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown.

Under what conditions on Y does there exist a solution X?

Scalar case: !! write the real polynomial Y as a sum of squares

$$Y = x_1^2 + x_2^2 + \dots + x_k^2$$
.

$$X^{ op}(\xi)X(\xi) = Y(\xi)$$

For n = 1 and $Y \in \mathbb{R}[\xi]$, solvable (for $X \in \mathbb{R}^2[\xi]$!) iff

$$Y(\alpha) \geq 0$$
 for all $\alpha \in \mathbb{R}$.

For n = 1, and $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, it is well-known (but non-trivial) that this factorization equation is solvable (with $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$!) iff

$$Y(\alpha) = Y^{\top}(\alpha) \geq 0$$
 for all $\alpha \in \mathbb{R}$.

For n > 1, and under this obvious positivity requirement, this equation can nevertheless in general <u>not</u> be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet \times \bullet}[\xi]$, but it can be solved over the matrices of rational functions, i.e., for $X \in \mathbb{R}^{\bullet \times \bullet}(\xi)$.

This factorizability is a simple consequence of Hilbert's 17-th pbm!

Solve
$$p = p_1^2 + p_2^2 + \cdots + p_k^2$$
, p given

A polynomial $p \in \mathbb{R}[\xi_1, \dots, \xi_n]$, with $p(\alpha_1, \dots, \alpha_n) \geq 0$ for all $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ can in general <u>not</u> be expressed as a sum of squares of polynomials, with the p_i 's $\in \mathbb{R}[\xi_1, \dots, \xi_n]$.

But a rational function (and hence a polynomial)

 $p \in \mathbb{R}(\xi_1, \dots, \xi_n)$, with $p(\alpha_1, \dots, \alpha_n) \geq 0$, for all $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, can be expressed as a sum of squares of $(k = 2^n)$ rational functions, with the p_i 's $\in \mathbb{R}(\xi_1, \dots, \xi_n)$.

 \Rightarrow solvability of the factorization eq'n

$$\Phi(-i\omega,i\omega) \geq 0$$
 for all $\omega \in \mathbb{R}^{ ext{n}}$

(Factorization equation)

$$\exists \ D: \ \ \Phi(-\xi,\xi) = D^{ op}(-\xi)D(\xi)$$

over the rational functions,

i.e., with D a matrix with elements in $\mathbb{R}(\xi_1, \dots, \xi_n)$.

The need to introduce

rational functions in this factorization

an image representation of \mathfrak{B} to reduce the pbm to \mathfrak{C}^{∞} are the causes of the unavoidable presence of (possibly unobservable, i.e., 'hidden') latent variables in the local dissipation law.

UNIQUENESS

Non-uniqueness of the storage function stems from 3 sources

- 1. The non-uniqueness of the latent variable ℓ in various (non-observable) image representations.
- 2. The non-uniqueness of D in the factorization equation

$$\Phi(-\xi,\xi) = D^{ op}(-\xi)D(\xi)$$

3. The non-uniqueness (in the case n > 1) of the solution Ψ of

$$(\zeta + \eta)^{ op} \Psi(\zeta, \eta) = \Phi(\zeta, \eta) - D^{ op}(\zeta) D(\eta)$$

For conservative systems, $\Phi(-\xi, \xi) = 0$, whence D = 0, but, when n = 1, the third source of non-uniqueness remains, even when working with a specific image representation.

It seems to be a very real non-uniqueness, even for EM fields. Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for u [the internal energy] and S [the flux] ... It is sometimes claimed that this problem can be resolved using the theory of gravitation ... as yet nobody has done such a delicate experiment ... So we will follow the rest of the world - besides, we believe that it [our choice] is probably perfectly right.

The Feynman Lectures on Physics, Volume II, page 27-6.

CONCLUSIONS

- $\lceil global \ dissipation \Leftrightarrow \exists \ local \ dissipation \ law$
- Involves hidden latent variables (e.g. \vec{B} in Maxwell's eq'ns)
- The proof \cong Hilbert's 17-th problem
- Neither controllability nor observability are good generic assumptions

<u>Reference</u>: H. Pillai and JCW, Dissipative distributed systems, *SIAM J. Control and Opt.*, electronically published in January 2002.

The ms. & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~jwillems

