THE BEHAVIORAL APPROACH

to

SYSTEMS and CONTROL

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium
\&
Mathematics Department, University of Groningen, NL

Problematique:

Develop a suitable mathematical framework for

 discussing dynamical systemsaimed at modeling, analysis, and synthesis.
\sim control, signal processing, system identification, . . .
$~$ engineering systems, economics, physics, . . .

Motivational examples

Electrical circuit

!! Model the relation between the voltage V and the current I

Electromechanical system

force, position, torque, angle

force, position, torque, angle

!! between the positions, forces, torque, angle, voltages, currents

Distillation column

Features: Systems are typically
dynamical
open, they interact with their environment
interconnected, with many subsystems
modular, consisting of standard components

We are looking for a mathematical framework that is adapted to these features, and hence to computer assisted modeling.

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory
\leadsto impedances, admittances, scattering matrices, etc.
1930's: control embraces transfer functions
(Nyquist, Bode, ‥) \leadsto plots and diagrams, classical control.

Around 1950: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

1960's: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

$~$ input/state/output systems, and the ubiquitous

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

or its nonlinear counterpart

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u)
$$

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB ${ }^{\text {© }}$).

All these theories: input/output; cause \Rightarrow effect.

Beyond input/output

What's wrong with input/output thinking?

Let's look at examples:

Our electrical circuit.

Is V the input? Or I ? Or both, or are they both outputs?

An automobile:

External terminals: wind, tires, steering wheel, gas/brake pedal.

What are the inputs?
at the wind terminal: the force, at the tire terminals: the forces, or, more likely, the positions? at the steering wheel: the torque or the angle? at the gas-pedal, or the brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired) interconnection variables

Input/output is awkward in modeling interconnections.

Consider a two-tank example.

Reasonable input choices: the pressures, output choices: the flows.
Assume that we model the interconnection of two tanks.

$$
\begin{array}{cl}
\begin{array}{|ll}
\text { Interconnection: } p_{1}^{\prime}=p_{2}^{\prime \prime}, & f_{1}^{\prime}+f_{2}^{\prime \prime}=0 \\
\text { input=input; output=output! } & \Rightarrow \Leftarrow \text { SIMULINK }{ }^{\circledR}
\end{array}
\end{array}
$$

Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

fits the

$$
\frac{d}{d t} x=A x+B u, \quad y=C x
$$

input/output framework, with

$$
u(t)=q(\cdot, t) ; \quad y(t)=x(t)=T(\cdot, t)
$$

perfectly.

Now interconnect two such systems

Interconnection:

$$
\begin{aligned}
& T^{\prime}(x, t)=T^{\prime \prime}(x, t), \quad q^{\prime}(x, t)+q^{\prime \prime}(x, t)=0 \\
& !!\text { input'=input’; output'=output’" }!\Rightarrow \Leftarrow \text { SIMULINK }{ }^{\circledR}
\end{aligned}
$$

Interconnections contradicting SIMULINK ${ }^{\circledR}$ are in fact normal, not exceptions, in mechanics, fluidics, heat transfer, electrical circuits, etc.

The standard system theoretic / SIMULINK ${ }^{\circledR}$ input-to-output idea of interconnection is inappropriate as a paradigm for interconnecting physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection between subsystems. Input/output representations of systems allow us to build models of very complex systems by linking component behaviors ...
[Panel on Future Directions in Control, Dynamics, and Systems Report, 26 April 2002, page 11]

Conclusions $\quad *$ for physical systems $(\Rightarrow \Leftarrow$ signal processors) $*$

- External variables are basic, but what 'drives' what, is not.
- A physical system is not a signal processor.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and what can be the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.

Variable sharing,

rather that input selection,
is the basic mechanism by which a system interacts with its environment.
\Rightarrow We need a better framework for discussing 'open' systems!
\leadsto Behavioral systems.

The basic concepts

Behavioral systems

A dynamical system $=\Sigma \Sigma(\mathbb{T}, \mathbb{W}, \mathfrak{B})$
$\mathbb{T} \subseteq \mathbb{R}$, the time-axis (= the relevant time instances),
\mathbb{W}, the signal space (= where the variables take on their values),
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior \quad (= the admissible trajectories).

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}$: the model allows the trajectory w, $w \notin \mathfrak{B}:$ the model forbids the trajectory w.

Usually, $\mathbb{T}=\mathbb{R}$, or $[0, \infty)$ (in continuous-time systems), or \mathbb{Z}, or \mathbb{N} (in discrete-time systems).

Usually, $\mathbb{W} \subseteq \mathbb{R}^{w}$ (in lumped systems), a function space
(in distributed systems, with time a distinguished variable), or a finite set (in DES).

Emphasis later today: $\quad \mathbb{T}=\mathbb{R}, \quad \mathbb{W}=\mathbb{R}^{W}$, $\mathfrak{B}=$ solutions of system of linear constant coefficient ODE's.

We now discuss the fundamentals of the theory of systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the backwards t-shift;
3. differential, meaning
\mathfrak{B} consists of the solutions of a system of differential equations.

Yields

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $\boldsymbol{R}_{0}, \boldsymbol{R}_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times{ }^{\bullet}}$.
Combined with the polynomial matrix

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain the short notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

The theory has also been developed for $n-D$ systems and constant coeff. linear PDE's (as Maxwell's equations).

Associated behavior

$$
\mathfrak{B}=\left\{\mathrm{w}: \mathbb{R} \rightarrow \mathbb{R}^{w} \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

appropriate def. of sol'n.
Note: any number of DE's, any number of variables.
Often many algebraic eqn's.

NOMENCLATURE

$\mathfrak{L}^{\mathrm{w}}$: the set of such systems with w dependent variables
\mathfrak{L}^{\bullet} : with any - finite - number of dependent variables
Elements of \mathfrak{L}^{\bullet} : linear differential systems

$$
\begin{aligned}
& R\left(\frac{d}{d t}\right) w=0: \text { a kernel representation of the } \\
& \text { corresponding } \Sigma \in \mathfrak{L}^{\bullet} \text { or } \mathfrak{B} \in \mathfrak{L}^{\bullet}
\end{aligned}
$$

3 basic theorems

Theorem 1 Algebraization:

$$
\mathfrak{L}^{\mathrm{w}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{w}}[\xi]
$$

Theorem 2 Elimination:

$$
\left(\mathfrak{B}_{\text {full }} \in \mathfrak{L}^{\bullet}\right) \Rightarrow\left(\mathfrak{B} \in \mathfrak{L}^{\bullet}\right)
$$

Theorem 3 Image representation:

$$
\text { Controllabilility } \Leftrightarrow \text { (} \exists \text { Image representation) }
$$

Elimination

First principle models \leadsto latent variables.

In the case of differential eq'ns:

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

with the w^{\prime} s the variables that the model aims at,
with the $\ell^{\prime} \mathrm{s}$ auxiliary variables, and with $R, M \in \mathbb{R}^{\bullet \times}[\xi]$ polynomials with the 'system parameters'.

Example:

$w=(V, I)=$ the port variables,
$\ell=$ the interconnection variables, internal voltages and currents

Differential eq'ns: Kirchhoff's laws, constitutive eq'ns .

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

is the natural model class to start a theory of finite dimensional linear time-invariant systems!

Much more so than the ubiquitous

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u
$$

But is it(s manifest behavior) really a differential system ??

The full behavior of $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell$,

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right.\right\}
$$

belongs to $\mathfrak{L}^{\omega+\ell}$, by definition. Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\}
$$

Does \mathfrak{B} belong to $\mathfrak{L}^{\text {w }}$?
Theorem: It does!

- Number of equations (constant coeff. lin. ODE's)

$$
\leq \text { number of variables. }
$$

Elimination \Rightarrow fewer, higher order equations.

- There exist effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

- Not generalizable to smooth nonlinear systems. Why are differential equations models so prevalent?
External behavior of interconnected nonlinear differential systems need not be a differential system.

Controllability

Controllability \Leftrightarrow

system trajectories must be 'patch-able', 'concatenable'.

for all $w_{1}, w_{2} \in \mathfrak{B}$, there exists w such that \ldots

This def. nicely generalizes to fields.
Consider two solutions:

Controllability = patchability:

Is the system defined by

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $w=\left(w_{1}, w_{2}, \cdots, w_{\text {w }}\right)$ and $R_{0}, R_{1}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{g} \times \mathrm{w}}$,
i.e., $R\left(\frac{d}{d t}\right) w=0$, controllable?

We are looking for conditions on the polynomial matrix R and algorithms in the coefficient matrices $R_{0}, R_{1}, \cdots, R_{\mathrm{n}}$.

Thm: $R\left(\frac{d}{d t}\right) w=0$ defines a controllable system if and only if $\operatorname{rank}(\boldsymbol{R}(\boldsymbol{\lambda}))$ is independent of $\boldsymbol{\lambda}$ for $\boldsymbol{\lambda} \in \mathbb{C}$.

Example: $\quad r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2} \quad\left(w_{1}, w_{2}\right.$ scalar $)$ is controllable if and only if r_{1} and r_{2} have no common factor.

Non-example: $R \in \mathbb{R}^{w \times w}[\xi], \quad \operatorname{det}(R) \neq$ constant.

Image representations

Representations of $\mathfrak{L}^{\mathrm{w}}$:

$$
R\left(\frac{d}{d t}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$;

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior $\mathfrak{B}=\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)^{-1} M\left(\frac{d}{d t}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\ell}\right)$.

Missing link:

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$.

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.
¿¿ Which kernels are also images ??

Theorem: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{w}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{w}[\xi], \quad a^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$,
4. $\mathbb{R}^{w}[\xi] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free,
etc., etc.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Remarks:

- Algorithm: $\boldsymbol{R}+$ syzygies + Gröbner basis
$\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- for the input/output system

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, \quad w=(u, y)
$$

the transfer f'n $P^{-1} Q$ determines (only) the controllable part of the behavior

- \exists complete generalization to linear PDE's
- \exists partial results for nonlinear systems
- Kalman controllability is a straightforward special case

Control as Interconnection

In the case of control, our point of view leads to

PLANT:

The plant has two kinds of variables (or, often more appropriately, terminals):

- variables to be controlled: w,
- control variables: c.

The control variables are those variables through which we interconnect the controller to the plant.

CONTROLLER:

The controller restricts the behavior of the control variables and, through these, that of the to-be-controlled variables.

CONTROLLED SYSTEM:

Control variables $=$ shared variables.

I want to discuss two items in this context:

1. A (very low-tech) example
2. One general result

Example of such a control mechanism:

Similar idea: A damper of a car, etc.: the very many control devices that are not sensor-output 2 actuator-input feedback mechanisms.

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}$ be the behavior of the plant (with w to-be-controlled and c control variables.)

Let $\mathfrak{C} \in \mathfrak{L}^{c}$ be the behavior of the controller (with c control variables.)

This yields the controlled behavior

$$
\mathfrak{K}:=\{w \mid \exists c \in \mathfrak{C} \text { such that }(w, c) \in \mathfrak{B}\}
$$

By the elimination theorem $\mathfrak{K} \in \mathfrak{L}^{W}$.

Implementability question:

Which are the

 controlled behaviors $\mathfrak{K} \in \mathfrak{L}^{W}$ that can be obtained this way?The answer to this question is surprisingly simple and explicit:

Theorem: $\mathfrak{K} \in \mathfrak{L}^{n}$ is implementable if and only if

$$
\mathfrak{N} \subset \mathfrak{K} \subset \mathfrak{P}
$$

where

is the 'hidden' behavior, and

$$
\mathfrak{P}:=\{w \mid \exists c \text { such that }(w, c) \in \mathfrak{B}\}
$$

is the 'manifest plant' behavior.
Note: pole assignment follows, many refinements,...

Remarks:

- Many control mechanism in practice do not function as sensor output to actuator input drivers
- Control $=$ Interconnection \Rightarrow controlled behavior can be any behavior that is wedged in between hidden behavior and plant behavior
- Control = integrated system design; finding a suitable subsystem
- \exists a complete theory of controller synthesis (stabilization, \mathcal{H}_{∞}, ...) of interconnecting controllers for linear systems
- Via (regular) implementability, the usual feedback structures are recovered
- Controllability and observability: central ideas also here

Nomew

- A system = a behavior
- Importance of latent variables
- Relevance in modular modeling
- There is a complete theory for linear time-invariant differential systems
- Nice theory of controllability
- Limitation of input/output thinking
- Relevance of behaviors, even in control

Further results

Many additional problem areas have been studied from the behavioral point of view:

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification \Rightarrow the most powerful unfalsified model (MPUM), approximate system ID
- Observers
- Control
- Quadratic differential forms, dissipative systems, \mathcal{H}_{∞}-control
- n-D systems (Rocha c.s.), distributed systems and PDE's

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Examples: Probability for uncertainty, QM, the development of input/output ideas in system theory and control - often these axiomatics are implicit, but nevertheless much very present.

Thank you for your attention

Details \& copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~jwillems

