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Problematique:

Develop a suitable mathematical framework for

discussing dynamical systems

aimed at modeling, analysis, and synthesis.

~~ control, signal processing, system identification, . . .

~~ engineering systems, economics, physics, . . .




‘ Motivational examples I
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Electrical circuit
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!! Model the relation between the voltage V' and the current 1
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Electromechanical system

force, position, torque, angle

voltage, current force, position, torque, angle

force, position
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!! between the positions, forces, torque, angle, voltages, currents
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Distillation column
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Features: Systems are typically

dynamical
open, they interact with their environment
interconnected, with many subsystems

modular, consisting of standard components

We are looking for a mathematical framework that is adapted to
these features, and hence to computer assisted modeling.
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Historical remarks I




a )

Early 20-th century: emergence of the notion of a transfer function

(Rayleigh, Heaviside).

input —__»| SYSTEM output

Since the 1920’s: routinely used in circuit theory

~» impedances, admittances, scattering matrices, etc.

1930’s: control embraces transfer functions
(Nyquist, Bode, - - - ) ~> plots and diagrams, classical control.
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Ground 1950: Wiener sanctifies the notion of a blackbox, \
attempts nonlinear generalization (via Volterra series).

1960’s: Kalman’s state space ideas (incl. controllability, observability,
recursive filtering, state models and representations) come in vogue




K» input/state/output systems, and the ubiquitous

%mzAw—l—Bu, y = Cx + Du,

or its nonlinear counterpart

d

i f(x,u), y = h(x,u).

These mathematical structures, transfer functions, + their
discrete-time analogs, are nowadays the basic models used in
control and signal processing (cfr. MATLAB®).

All these theories: input/output; cause = effect.

input —__ | SYSTEM output
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Beyond input/output I




K What’s wrong with input/output thinking?

Let’s look at examples:

Our electrical circuit.

\Y%

environment
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Qs V' the input? Or I ? Or both, or are they both outputs?




a )

An automobile:

wind, tires, steering wheel, gas/brake pedal.

External terminals:

What are the inputs?

at the wind terminal: the force,

at the tire terminals: the forces, or, more likely, the positions?
at the steering wheel: the torque or the angle?

at the gas-pedal, or the brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired)
interconnection variables
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/ Input/output is awkward in modeling interconnections. \

Consider a two-tank example.

P £, O B,

N

Reasonable input choices: the pressures, output choices: the flows.

Assume that we model the interconnection of two tanks.

Interconnection: p; = p, f;+ f;' =0

\ input=input; output=output! =<« SIMULINK® j




Geat diffusion

q(x,t)
| %
> |
X
T(x,t)
The PDE
0 T ok T+
ot~  Ox2 a
fits the

d
Ew:Aw-l—Bu, y=Cx

input/output framework, with

u(t) =q(-,t); y(t) ==(t) =T(,¢)

Qerfectly.
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Now interconnect two such systems




T T’ (X,t)
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T"(x.t)

Interconnection:

it

q’(x,t)

T (x,t) =T"(x,t), q'(x,t)+q"(x,t) =0

~

1! input’=input”’; output’=output” ! =<« SIMULINK®

Interconnections contradicting SIMULINK® are in fact

normal, not exceptions,

in mechanics, fluidics, heat transfer, electrical circuits, etc.
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4 )

The standard system theoretic / SIMULINK© input-to-output idea of
interconnection is inappropriate as a paradigm for interconnecting
physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection
between subsystems. Input/output representations of systems allow us to
build models of very complex systems by linking component behaviors ...

[Panel on Future Directions in
Control, Dynamics, and Systems
Report, 26 April 2002, page 11]
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4 )

Conclusions = for physical systems (=< signal processors)

e External variables are basic, but what ‘drives’ what, is not.

e A physical system is not a signal processor.

e It is impossible to make an a priori, fixed, input/output selection
for off-the-shelf modeling.

e What can be the input, and what can be the output should be
deduced from a dynamical model. Therefore, we need a more
general notion of ‘system’, of ‘dynamical model’.
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Variable sharing,

rather that input selection,

is the basic mechanism by which a system interacts with its
environment.

=> We need a better framework for discussing ‘open’ systems!

\ ~~ Behavioral systems.




The basic concepts I
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Behavioral systems

A dynamical system = | X = (T, W, )

T C R, the time-axis (= the relevant time instances),

W, the signal space (= where the variables take on their values),

B C W' : the behavior

(= the admissible trajectories).

\_




/ > = (T, W, B) \

For a trajectory w : T — W, we thus have:

w € *B : the model the trajectory w,
w & B : the model forbids the trajectory w.

Usually, T = R, or [0, 00) (in continuous-time systems),
or Z, or N (in discrete-time systems).

Usually, W C R (in lumped systems),
a function space
(in distributed systems, with time a distinguished variable),
or a finite set (in DES).

Emphasis later today: T =R, W = RV,
k 8 — solutions of system of linear constant coefficient ODE’S./




@ )

We now discuss the fundamentals of the theory of systems

> = (R, RY, 5B)

that are

1. linear, meaning
(w1, w2 € B) A (o, B € R)) = (awr + w2 € B);

2. time-invariant, meaning
((w € B)A(t €R)) = (octw € B)),
where ot denotes the backwards ¢ —shift;

3. differential, meaning

5 consists of the solutions of a system of differential equations.

Yields




/ d @ \

with Ro,R1,° ° ,R,n & R®Xw,

Combined with the polynomial matrix

R(¢) = Ro + R1&+ -+ - + R,E&",

we obtain the short notation

d
R(S)w = o.
(@)™

The theory has also been developed for n-D systems

k and constant coeff. linear PDE’s (as Maxwell’s equations). /




Gssociated behavior
d
%:{w:R%RW|R(E)’w:O}

appropriate def. of sol’n.
Note: any number of DE’s, any number of variables.
Often many algebraic eqn’s.

NOMENCLATURE

£Y : the set of such systems with w dependent variables
£° : with any - finite - number of dependent variables

Elements of £® : linear differential systems

R(%)w = 0: a kernel representation of the
k corresponding X € £%orB € £°




3 basic theorems '




Theorem 1

Theorem 2

Theorem 3

Algebraization:

€ <, sub-modules of R” [€]

Elimination:

(Brann € £°) = (B € L£°)

Image representation:

Controllabilility << (d Image representation)

-




Elimination I




4 )

First principle models ~» latent variables.

In the case of differential eq’ns: ~-

d d
R(a)’w = M(E)f

with the w’s the variables that the model aims at,

with the ¢’s auxiliary variables, and

with R, M € R®**®|[£] polynomials with the ‘system parameters’.
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Example:

I

+

A%

environmen

system

w = (V, I) = the port variables,
¢ = the interconnection variables, internal voltages and currents

Differential eq’ns: Kirchhoff’s laws, constitutive eq’ns .
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4 )

d d
R(—)w = M(—)¢
(=) (=)
is the natural model class to start a theory of finite dimensional linear

time-invariant systems!

Much more so than the ubiquitous

d
Ew=Aw+Bu, y = Cx 4 Du.
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But is it(s manifest behavior) really a differential system ??

The full behavior of R(%)w = M(%)E,

Bean = {(w, £) | R(%)w = M(%)E}

belongs to £°7%, by definition. Its manifest behavior equals

d d
B = 3 £ such that R(— = M(—)l}.
{w]3 Esu (Z)w = M(3)E}

Does *B belong to £ ?

Theorem: It does!




4 )

e Number of equations (constant coeff. lin. ODE’s)
< number of variables.
Elimination =- fewer, higher order equations.

e There exist effective computer algebra/Grobner bases algorithms

for elimination
(R,M) — R’

e Not generalizable to smooth nonlinear systems.
Why are differential equations models so prevalent?
External behavior of interconnected nonlinear differential
systems need not be a differential system.
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Controllability I




ﬂontrollability =

system trajectories must be ‘patch-able’, ‘concatenable’.

_—

time

for all w,, ws € B, there exists w such that ...

~

/
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This def. nicely generalizes to fields.

Consider two solutions:







-

Is the system defined by

w = 0,

d
Row + Ry —w+---+ R,
ow —+ 1dt’w—|- + g

with w = ('wlv'wZa cee 9ww) and ROa Rla' ° e aRn c Rng,

i.e., R(%)w = 0, controllable?

We are looking for conditions on the polynomial matrix R
and algorithms in the coefficient matrices Rg, R1,: - , R,.

\_
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Thm: R( % )w = O defines a controllable system if and only if

rank(R(\)) is independent of \ for A € C.

Example: 1 (5 )wy = ra( 5wy far)
xampie: T"i(— )W = Tro(— )JW2 w1y, Wo SCalar
dt dt

is controllable if and only if 7, and 5 have no common factor.

Non-example: R € R"*"[£], det(R) # constant.

\_
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Image representations

Representations of £":

R(g)w =0

called a ‘kernel’ representation of B = ker(R/( %));

R(5)w = M(5)¢

called a ‘latent variable’ representation of the manifest behavior
= (R(g)) "M (5)€> (R R").

\_
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Missing link: w=M (%)E

called an ‘image’ representation of 8 = im(M (%))

Elimination theorem => every image is also a kernel.

¢ Which kernels are also images ??
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Theorem: The following are equivalent for 28 € £V :

1. B is controllable,

2. | B admits an image representation,

3. foranya € R¥[¢], a' (%)% equals O or all of €°° (R, R),
4. RY[£] /My is torsion free,

etc., etc.

\_




4 )

Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R® — R and
the vector potential A:R x R3 — R3, generate exactly the solutions
to Maxwell’s equations:

E = —EA’—W&,
ot
B = VxA,
j = 608_214._6 2V2A 4 €9’V (V - A) + ¢ 2qu)
Ot2 0 0 Oat ’
P — —603V°£—€0V2¢.
ot

Proves controllability. Illustrates the interesting connection

\_

controllability < 3 potential!

/
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Remarks:

e Algorithm: R + syzygies + Grobner basis

=>  numerical test for on coefficients of F.

e for the input/output system

P(5y=Q()u, w=(u,v)

the behavior
e - complete generalization to linear PDE’s
e d partial results for nonlinear systems

e Kalman controllability is a straightforward special case

the transfer f’n P~1(Q determines (only) the controllable part of

/




Control as Interconnection I
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In the case of control, our point of view leads to

PLANT:

to—be—controlled y . PL ANT c - V;(:-Ii:f,(l);‘
variables : : L




-

The plant has two Kinds of variables
(or, often more appropriately, terminals):

e variables to be controlled: w,
e control variables: c.

The control variables are those variables through which we
interconnect the controller to the plant.

\_
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CONTROLLER:

control

variables € ° CONTROLLER

The controller restricts the behavior of the control variables
and, through these, that of the to-be-controlled variables.

\_
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CONTROLLED SYSTEM:

to—be—controlled vy .
variables

\_

PLANT

control
variables

Control variables = shared variables.

CONTROLLER
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I want to discuss two items in this context:
1. A (very low-tech) example

2. One general result




Gxample of such a control mechanism: \

AN v

AN wall

hinges

spring

door
door

AN A e

CONTROLLER

Similar idea: A damper of a car, etc.:
the very many control devices that are not
\ sensor-output 2 actuator-input feedback mechanisms. j




/ | A general implementability result I

control
variables

to—be—controlled vy : PLANT c - CONTROLLER
variables __ ° | :

Let 28 € £91¢ be the behavior of the plant
(with w to-be-controlled and c control variables.)

Let € € £° be the behavior of the controller
(with c control variables.)

This yields the controlled behavior

:= {w | 3 ¢ € € such that (w, c) € B}.

Qy the elimination theorem K € £V,

~

/
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Implementability question:

Which are the
controlled behaviors | € £7

that can be obtained this way?

The answer to this question is surprisingly simple and explicit:

\_




ﬁheorem: K € LY is implementable if and only if \

MCRKRCP

to—be—controlled vy . PL. ANT c . Vg(;lil;{‘)(l)é‘
variables . o £

N:={w | (w,0) € B},

is the ‘hidden’ behavior, and

where

B := {w | 3 csuch that (w,c) € B},

is the ‘manifest plant’ behavior.

Qote: pole assignment follows, many refinements,... j




Remarks:

~

\_

Many control mechanism in practice do not function as sensor
output to actuator input drivers

Control = Interconnection = controlled behavior can be any
behavior that is wedged in between hidden behavior and plant
behavior

Control = integrated system design; finding a suitable subsystem

3 a complete theory of controller synthesis (stabilization, H ..,
...) of interconnecting controllers for linear systems

Via (regular) implementability, the usual feedback structures are
recovered

Controllability and observability: central ideas also here

/







A system = a behavior
Importance of latent variables
Relevance in modular modeling

There is a complete theory for linear time-invariant differential
systems

Nice theory of controllability
Limitation of input/output thinking

Relevance of behaviors, even in control




‘ Further results '




-

Many additional problem areas have been studied from the
behavioral point of view:

e System representations: input/output representations, state
representations and construction, model reduction, symmetries

e System identification = the most powerful unfalsified model
(MPUM), approximate system ID

e Observers
e Control
e Quadratic differential forms, dissipative systems, H ..-control

e n-D systems (Rocha c.s.), distributed systems and PDE’s

~




Is is worth worrying about these ‘axiomatics’?

They have a deep and lasting influence! Especially in teaching.

Examples: Probability for uncertainty, QM, the development of

input/output ideas in system theory and control - often these
axiomatics are implicit, but nevertheless much very present.

\_




Thank you for your attention

Details & copies of the lecture frames are available from/at

Jan.Willems@esat.kuleuven.ac.be

http://www.esat.kuleuven.ac.be/~jwillems
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