

Motivational examples

Distillation column

Features: Systems are typically

dynamical

open, they interact with their environment interconnected, with many subsystems modular, consisting of standard components

We are looking for a mathematical framework that is adapted to these features, and hence to computer assisted modeling.

Historical remarks

Early 20-th century: emergence of the notion of a transfer function (Rayleigh, Heaviside).

Since the 1920's: routinely used in circuit theory

 \rightsquigarrow impedances, admittances, scattering matrices, etc.

<u>1930's</u>: control embraces transfer functions

(Nyquist, Bode, \cdots) \rightsquigarrow plots and diagrams, classical control.

<u>Around 1950</u>: Wiener sanctifies the notion of a blackbox, attempts nonlinear generalization (via Volterra series).

<u>1960's</u>: Kalman's state space ideas (incl. controllability, observability, recursive filtering, state models and representations) come in vogue

→ input/state/output systems, and the ubiquitous

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx + Du,$$

or its nonlinear counterpart

$$\frac{d}{dt}x = f(x, \mathbf{u}), \quad \mathbf{y} = h(x, \mathbf{u}).$$

These mathematical structures, transfer functions, + their discrete-time analogs, are nowadays the basic models used in control and signal processing (cfr. MATLAB[©]).

All these theories: input/output; cause \Rightarrow effect.

Beyond input/output

An automobile:

External terminals:

wind, tires, steering wheel, gas/brake pedal.

What are the inputs?

at the wind terminal: the force,

at the tire terminals: the forces, or, more likely, the positions?

at the steering wheel: the torque or the angle?

at the gas-pedal, or the brake-pedal: the force or the position?

Difficulty: at each terminal there are many (typically paired) interconnection variables

The standard system theoretic / SIMULINK[©] input-to-output idea of interconnection is inappropriate as a paradigm for interconnecting physical systems!

Contrast this with the claim

... A third concept in control theory is the role of interconnection between subsystems. Input/output representations of systems allow us to build models of very complex systems by linking component behaviors ...

> [Panel on Future Directions in Control, Dynamics, and Systems Report, 26 April 2002, page 11]

<u>Conclusions</u> * for physical systems ($\Rightarrow \Leftarrow$ signal processors) *

- External variables are basic, but <u>what 'drives' what</u>, is not.
- A physical system is not a signal processor.
- It is impossible to make an a priori, fixed, input/output selection for off-the-shelf modeling.
- What can be the input, and what can be the output should be deduced from a dynamical model. Therefore, we need a more general notion of 'system', of 'dynamical model'.

The basic concepts

$$\Sigma=(\mathbb{T},\mathbb{W},\mathfrak{B})$$

For a trajectory $w : \mathbb{T} \to \mathbb{W}$, we thus have:

 $w \in \mathfrak{B}$: the model allows the trajectory w, $w \notin \mathfrak{B}$: the model forbids the trajectory w.

Usually, $\mathbb{T} = \mathbb{R}$, or $[0, \infty)$ (in continuous-time systems), or \mathbb{Z} , or \mathbb{N} (in discrete-time systems).

Usually, $\mathbb{W} \subseteq \mathbb{R}^{w}$ (in lumped systems),

a function space

(in distributed systems, with time a distinguished variable), or a finite set (in DES).

Emphasis later today: $\mathbb{T} = \mathbb{R}$, $\mathbb{W} = \mathbb{R}^{W}$,

 \mathfrak{B} = solutions of system of linear constant coefficient ODE's.

We now discuss the fundamentals of the theory of systems

$$\Sigma = (\mathbb{R}, \mathbb{R}^{\scriptscriptstyle W}, \mathfrak{B})$$

that are

- 1. <u>linear</u>, meaning $((w_1, w_2 \in \mathfrak{B}) \land (\alpha, \beta \in \mathbb{R})) \Rightarrow (\alpha w_1 + \beta w_2 \in \mathfrak{B});$
- 2. <u>time-invariant</u>, meaning $((w \in \mathfrak{B}) \land (t \in \mathbb{R})) \Rightarrow (\sigma^t w \in \mathfrak{B})),$ where σ^t denotes the backwards t-shift;
- 3. differential, meaning

B consists of the solutions of a system of differential equations.

Yields

$$R_0 oldsymbol{w} + R_1 rac{d}{dt} oldsymbol{w} + \cdots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} oldsymbol{w} = 0,$$

with
$$R_0, R_1, \cdots, R_n \in \mathbb{R}^{\bullet imes w}$$
.

Combined with the polynomial matrix

$$R(\xi)=R_0+R_1\xi+\dots+R_{
m n}\xi^{
m n},$$

we obtain the short notation

$$R(rac{d}{dt})w = 0.$$

The theory has also been developed for n-D systems and constant coeff. linear PDE's (as Maxwell's equations). **Associated behavior**

$$\mathfrak{B} = \{ \mathtt{w}: \mathbb{R} o \mathbb{R}^{\mathtt{w}} \mid R(rac{d}{dt})w = 0 \}$$

appropriate def. of sol'n.

<u>Note</u>: any number of DE's, any number of variables. Often many algebraic eqn's.

NOMENCLATURE

 \mathfrak{L}^{w} : the set of such systems with w dependent variables \mathfrak{L}^{\bullet} : with any - finite - number of dependent variables Elements of \mathfrak{L}^{\bullet} : *linear differential systems*

 $R(\frac{d}{dt})w = 0: \text{ a } kernel representation of the corresponding } \Sigma \in \mathfrak{L}^{\bullet} \text{ or } \mathfrak{B} \in \mathfrak{L}^{\bullet}$

3 basic theorems

Elimination

First principle models \rightarrow latent variables.

In the case of differential eq'ns: \sim

$$\boxed{R(\frac{d}{dt})\boldsymbol{w} = M(\frac{d}{dt})\boldsymbol{\ell}}$$

with the w's the variables that the model aims at,

with the ℓ 's auxiliary variables, and

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ polynomials with the 'system parameters'.

w = (V, I) = the port variables,

 ℓ = the interconnection variables, internal voltages and currents

Differential eq'ns: Kirchhoff's laws, constitutive eq'ns.

$$R(\frac{d}{dt}) \boldsymbol{w} = M(\frac{d}{dt}) \boldsymbol{\ell}$$

is the natural model class to start a theory of finite dimensional linear time-invariant systems!

Much more so than the ubiquitous

$$\frac{d}{dt}\boldsymbol{x} = A\boldsymbol{x} + B\boldsymbol{u}, \quad \boldsymbol{y} = C\boldsymbol{x} + D\boldsymbol{u}.$$

But is it(s manifest behavior) really a differential system ??

The full behavior of $R(\frac{d}{dt})w = M(\frac{d}{dt})\ell$,

$$\mathfrak{B}_{\mathrm{full}} = \{(oldsymbol{w}, oldsymbol{\ell}) \mid R(rac{d}{dt})oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell}\}$$

belongs to $\mathfrak{L}^{w+\ell}$, by definition. Its manifest behavior equals

$$\mathfrak{B} = \{ w \mid \exists \ \ell \text{ such that } R(\frac{d}{dt}) w = M(\frac{d}{dt}) \ell \}.$$

Does \mathfrak{B} belong to \mathfrak{L}^{w} ?

Theorem: It does!

• Number of equations (constant coeff. lin. ODE's)

 \leq number of variables. Elimination \Rightarrow fewer, higher order equations.

• There exist effective computer algebra/Gröbner bases algorithms for elimination

 $(R,M)\mapsto R'$

Not generalizable to smooth nonlinear systems.
 Why are differential equations models so prevalent?
 External behavior of interconnected nonlinear differential systems need not be a differential system.

Controllability

Is the system defined by

$$\overline{R_0 w + R_1 rac{d}{dt} w + \cdots + R_{ ext{n}} rac{d^{ ext{n}}}{dt^{ ext{n}}} w} = 0,$$

with $w = (w_1, w_2, \cdots, w_w)$ and $R_0, R_1, \cdots, R_n \in \mathbb{R}^{g \times w}$, i.e., $R(\frac{d}{dt})w = 0$, controllable?

We are looking for conditions on the polynomial matrix Rand algorithms in the coefficient matrices R_0, R_1, \cdots, R_n . **<u>Thm</u>**: $R(\frac{d}{dt})w = 0$ defines a controllable system if and only if

 $\mathrm{rank}(R(\lambda))$ is independent of λ for $\lambda \in \mathbb{C}$.

Example:
$$r_1(\frac{d}{dt})w_1 = r_2(\frac{d}{dt})w_2$$
 $(w_1, w_2 \text{ scalar})$
is controllable if and only if r_1 and r_2 have no common factor.
Non-example: $R \in \mathbb{R}^{w \times w}[\xi]$, $\det(R) \neq \text{ constant}$.

Image representations

Representations of \mathfrak{L}^{\mathsf{w}}:

$$R(rac{d}{dt})oldsymbol{w}=0$$

called a 'kernel' representation of $\mathfrak{B} = \ker(R(\frac{d}{dt}));$

$$R(rac{d}{dt}) oldsymbol{w} = M(rac{d}{dt}) oldsymbol{\ell}$$

called a *'latent variable' representation* of the manifest behavior $\mathfrak{B} = (R(\frac{d}{dt}))^{-1}M(\frac{d}{dt})\mathfrak{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^\ell).$

Missing link:

$$w = M(rac{d}{dt}) {oldsymbol{\ell}}$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

<u>Theorem</u>: The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$:

1. B is controllable,

2. B admits an image representation,

- **3.** for any $a \in \mathbb{R}^{\mathbb{W}}[\xi]$, $a^{\top}(\frac{d}{dt})\mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R})$,
- **4.** $\mathbb{R}^{\mathbb{W}}[\xi]/\mathfrak{N}_{\mathfrak{B}}$ is torsion free,

etc., etc.

Are Maxwell's equations controllable ?

The following equations in the *scalar potential* $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the *vector potential* $\vec{A} : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$\begin{split} \vec{E} &= -\frac{\partial}{\partial t} \vec{A} - \nabla \phi, \\ \vec{B} &= \nabla \times \vec{A}, \\ \vec{j} &= \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi, \\ \rho &= -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi. \end{split}$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ **potential!**

<u>Remarks</u>:

• Algorithm: R + syzygies + Gröbner basis

 \Rightarrow numerical test for on coefficients of *R*.

• for the input/output system

$$P(rac{d}{dt})y = Q(rac{d}{dt})u, \ \ w = (u,y)$$

the transfer f'n $P^{-1}Q$ determines (only) the controllable part of the behavior

- \exists complete generalization to linear PDE's
- ∃ partial results for nonlinear systems
- Kalman controllability is a straightforward special case

Control as Interconnection

The plant has two kinds of variables

(or, often more appropriately, terminals):

- variables to be controlled: w,
- control variables: c.

The control variables are those variables through which we interconnect the controller to the plant.

I want to discuss two items in this context:

- 1. A (very low-tech) example
- 2. One general result

By the elimination theorem $\mathfrak{K} \in \mathfrak{L}^{W}$.

Implementability question:

Which are the

controlled behaviors $\mathfrak{K}\in\mathfrak{L}^{\scriptscriptstyle W}$

that can be obtained this way?

The answer to this question is surprisingly simple and explicit:

<u>Remarks</u>:

- Many control mechanism in practice do not function as sensor output to actuator input drivers
- Control = Interconnection ⇒ controlled behavior can be any behavior that is wedged in between hidden behavior and plant behavior
- Control = integrated system design; finding a suitable subsystem
- ∃ a complete theory of controller synthesis (stabilization, H_∞,
 ...) of interconnecting controllers for linear systems
- Via (regular) implementability, the usual feedback structures are recovered
- Controllability and observability: central ideas also here

- A system = a behavior
- Importance of latent variables
- Relevance in modular modeling
- There is a complete theory for linear time-invariant differential systems
- Nice theory of controllability
- Limitation of input/output thinking
- Relevance of behaviors, even in control

Further results

Many additional problem areas have been studied from the behavioral point of view:

- System representations: input/output representations, state representations and construction, model reduction, symmetries
- System identification ⇒ the most powerful unfalsified model (MPUM), approximate system ID
- Observers
- Control
- Quadratic differential forms, dissipative systems, \mathcal{H}_{∞} -control
- n-D systems (Rocha c.s.), distributed systems and PDE's

Is is worth worrying about these 'axiomatics'?

They have a deep and lasting influence! Especially in teaching.

Examples: Probability for uncertainty, QM, the development of **input/output ideas** in system theory and control - often these axiomatics are implicit, but nevertheless much very present.

