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Abstract—The problem of providing an adequate definition of subset of the outcome space is an event is unduly restrictive
a stochastic system is addressed and motivated using exam@pl even for elementary applications. We shall show that a eoars
A stochastic system is defined as a probability triple. The o-algebra of events is needed in order to study open systems

specification of the set of events is an essential part of a d their int i Related t h it
stochastic model and it is argued that for phenomena with as an €ir Interconnection. kelated concepts, such asritpea

outcome space a finite dimensional vector space, the frameo and constrained probability, also function comfortablytyon
of classical random vectors with the Borel sigma-algebra as within the context of coarse-algebras.

events is inadequate even for elementary applications. M@s  The main original contributions of this paper are the nation
very often require a coarse event sigma-algebra. A stochdst . (i) interconnection of stochastic systems (Definitiora@jl

system is linear if the events are cylinders with fibers pardeél to . . - . .
a linear subspace of a vector space. We address interconniect of their complementarity (Definition S), a condition requiried

stochastic systems. Two stochastic systems can be intercested Order to be able to interconnect, (ii) linearity stochasjistem
if they are complementary. We discuss aspects of the identifition  (Definition 4), and (iii) constrained probability (Defirot 7).

problem from this vantage point. A notion that emerges is \We feel that these notions are worthwhile additions to the
constrained probability, a concept that is reminiscent butdistinct  5r5eng| of elementary concepts of mathematical probgabilit
from condltlon_al probab|I|ty._ We end up with a comparison of We now introduce some of the notation used in the pa-
open stochastic systems with probability kernels.
per.N={1,2 ... k,...} denotes the set of natural numbers.
R,R*,R**™ denote the sets of real numbetsdimensional
real vectors, and x m real matricesR*/IL with L a linear
subspace oR”®, denotes the quotient spa&8 moduloL, that
. INTRODUCTION is, the class of subsets B consisting of the affine subspaces
Open systems and their interconnection lie at the heart fd+1L | ac R*}. ForM =M' € R***, M = 0 means thaM
system theory. By an ‘open’ system we mean a model thatnonnegative definite, that ig,” Mx > 0 for x € R®, while
incorporates the influence of the environment explicitly, aM - 0 means that is positive definite, that isx" Mx > 0
an unmodeled feature. We view interconnection as ‘variabfier 0 £ x € R*. ForM € R**®, kernel(M) denotes théernel
sharing’. before interconnection, the variables pertainio of M, defined bykernel(M) := {x € R® | Mx = 0}. For a
the interconnected subsystems regarded as independélet, wdet S,2° denotes thepower setof S, that is, the class of
after interconnection some of subsystem variables ardremu all subsets ofS. For a mapf : X — Y with domainX and
to be equal. codomainY, image(f) denotes themage of f, defined by
The aim of the present paper is to present open systemsiitage(f) := {y € Y | there existx € X such thaty = f(x)},
a stochastic setting. Our interest is mainly in systems with while f—1:2Y — 2X denotes theet theoretic inversef f, that
outcome spac®=® or a subset ofR™. If the corresponding is, forSC Y, f~1(S) :={xe X | f(x) € S}. The set-to-set map
event space consists of the Borel sets, or of all subsdts! is called thepullbackof f.
of the outcome space if this space is countable, then weThe paper is organized as follows. In Section Il the concept
call the o-algebra of events ‘rich’ or ‘fine’, in contrast to of a stochastic system is introduced. A stochastic system is
‘coarse’ g-algebras. As we shall see, openness of systesimply a standard probability triple as used in mathemhtica
requires probability spaces with a coarselgebra of events, probability theory. This concept is contrasted with what we
in contrast to what we call ‘classical’ stochastic systemsall a ‘classical’ stochastic system when the event space
where theo-algebra of events is assumed to be rich. The thergensists of the Borel sets. Our interest, however, is pilgnar
developed in this paper is that tleealgebra of events shouldin systems with a coarse-algebra of events. We illustrate
not be taken for granted, but is a not to be ignored featuretbe notion of stochastic system in Section Ill by means of
the stochastic phenomenon that is modeled. two examples, a noisy resistor, and the price/demand and
This is not a paper about the interpretation or about tipeice/supply characteristics of an economic good. In $acti
mathematical foundations of probability. The article fiaes |V we formalize linearity of stochastic systems, and gaarssi
completely in the orthodox measure theoretic setting obprosystems as a special class of linear stochastic systems. In
ability with a o-algebra of events and countable additivitySection V we discuss in an informal manner several ways
the mathematical framework of probability theory usuallpf combining systems, while in Section VI we formalize
attributed to Kolmogorov [1]. The main point of the papeinterconnection of two stochastic systems. Interconoacti
is pedagogical in nature, namely that the usual emphasisréyuires that the interconnected systems are complemyentar
the teaching of probability on settings wherssentiallyevery We illustrate interconnection by means of two examples,
) o ) . the noisy resistor connected with a voltage source, and the
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of linear stochastic systems. In Section VIII we argue th&éd a probability space, then the class of subsetsQobf
classical stochastic systems are basically closed systnee the form AUN, with A€ &/ andN a null set, forms ao-
complementarity of stochastic systems requires a coaes® ewalgebra.«?’. Define P’ : &7’ — [0,1] by P'(AUN) := P(A).
o-algebra. In Section IX we discuss some of the implicationghen (Q, «7’,P') is a complete probability space, called the
to system identification of the view of stochastic systemd aompletionof (Q,.«/,P). Two probability spacegQ,.«/,P)
their interconnection put forward in the previous sectidns and(Q, «’,P’) are said to bequivalentf they have the same
Section X we introduce the notion of the stochastic systecompletion. Equivalence means that the measurable sets in
with outcomes constrained to be in a subset of the outcotneth spaces correspond up to sets of probability zero.
space. Constraining, while reminiscent of conditioning, i We denote theo-algebra onR® generated by the open
quite different from it. In fact, conditioning requires thasets with respect to the norm topology B(R"). Elements
the conditioning set is an event, while constraining bdlsicaof #(R*) are calledBorel measurableor simply Borel. A
requires that the constraining set is not an event. Congtiai probability measure oZ(R*) is called aBorel probability

is effective only in the context of coarse evemalgebras. In on R®. The support of a Borel probabilityP, denoted by
Section XI we show how to construct the stochastic systesapport(P), is the smallest closed s& C R* such that
induced by a map with the outcome space as domain. One W&(§) = 1.

of obtaining open stochastic systems is as a family of aassi

probability measures on the output space, parameterized by II. STOCHASTIC SYSTEMS

an input. Such fa_lr_nilies of probability_measures go under the,, yhis section we introduce the central concept of a stochas
”agne of ';mbabl'“t%/ kerlne.ls. Ln Section Xlt: Vgel d|icussgotic system, which is nothing else than a probability space as
abinary ¢ afnne tt_] e refation etweebr! prc(j) é}r:lty eraes gut forward in orthodox mathematical probability theory.
our notion of stochastic system combined with constrainingy.inition 1: A stochastic systeris a triple (W, &, P) with

Finally, a brief reminder of the most important probabidist |y o non-empty set, theutcome spacwith elements called
concepts used in the paper. We add these well known itcomes ’

tions here for easy reference and in order to introduce tQe o a o-algebra of subsets & with elements calleévents
nomenclature and notation. More details about these roti P: & - [0,1] a probability measure n

may be found in Wikipedia and in any book on mathematical The intuitive background underlying this definition is as

pr;bgzi';yozhsefg'eﬁ of a seff is said to be amlgebraon F follows. Assume that we have a stochastic phenomenon that
we wish to model. The phenomenon produces variables in
if () Fe .7, (i) F €7 implies Foomplemente gz (peomplement o o come space. The gim of the mog)el is to specify (i) the
denotes the complement & with respect toF), and (iil) - g psets of the outcome space to which a probability is assign
Fi,F € .7 impliesF UF, € 7. 1 (i) is strengthened to (iii)’ 54 (ji) the numerical value of the probability (in the senge
Fce 7 for k € N implies kLGJNFk €7, then7 is said t0 be & (g|ative frequency, degree of belief, or whatever intettien
g-algebraon F. For any class of subset& of F, there is a of probability is relevant in the application at hand) thiag t
smallesto-algebra of subsets df that contains%. This g- outcomes belong to a particular subset. The set in which the
algebra is called the-algebragenerated by#. A measurable outcomes take on their value is the outcome spgéicd he set
spaceis a pair(F,.#) with .# a o-algebra onfF. Let (F,.#) of eventsd consists of those subsetsWf to which the model
and (D, 2) be measurable spaces. A mépF — D is said assigns a probability. The probability that the outcomdsrige
to be measurablewith respect to(F,.#) and (D, 2) if the to the sefE € & is P(E). & is required to be @-algebra, and
inverse image undefr of a measurable set is measurable, th& a probability measure.
is, if D € 2 implies f~1(D) € #. Two important special cases are obtained as follows. We
A probability spaces a triple(Q, <, P) consisting of a non- refer to these special casesdassicalstochastic systems.
empty setQ, called thebasic spacea o-algebras of subsets » The first special case i§W,2",P) with W a countable
of Q (elements ofe/ are calledmeasurably and a map Set.P can then be specified by giving the probabilipyof
P: .o/ — [0,1] called theprobability measurgor simply the the individual outcomesp : W — [0,1], and definingP by
probability. A probability measur® must satisfy ()P(Q)=1 P(E):= eGZE p(e). In this case, every subset%f is assumed to
and (i) P(kUNAk) = kZNF’(Ak) for setsA, € o7, k€ N, that are be an event, anB is completely determined by the probability

€ S .
disjoint (i.e.,Ay N A = 0 for X' £ "). Property (ii) is called Of the singletons. .
» The second special case ®R®*,#(R"),P), a Borel

countable additivityof P. = A .
Let < be an algebra of subsets 8f andP’ : &' — [0,1] p_rob_abll_lty onR". P can thgn _be _spe_cmed _b_y a probability

a map that satisfies (IP(Q) = 1 and (i) finite additivity: distribution onI_R_“, or, if t_he dlstrlpunon I|ls sufficiently s_mooth,

P/(A, UA,) = P'(A,) + P/(A}) for disjoint setsAl A, € ', by the probablllty density functiop: R* — [0, ) leading to

The Hahn-Kolmogorov extension theorestates that there P(E) :ép(x)dx

exists a unique probability measuReon <7, the o-algebra  For a classical stochastic system ‘essentially every’ subs

generated byz’, such thatP(A') = P'(A') for all A € &'. of W is an event and is therefore assigned a probability.
Let (Q,</,P) be a probability space. A subset of a seln the countable case this is completely correct, since then

with probability zero is called aull set (Q,«7,P) is said every subset ofW is in &, while in the case oR®, this is a

to be completeif every null set is measurable. [Q,.o/,P) consequence of the fact that every ‘reasonable’ subs&" of



is a Borel set. Thus for classical stochastic systems, teetev ~ As an example of a noisy circuit, consider a resistor with

are obtained from the structure (finiteness, or the topglogy thermal noise. In 1928, John Bert Johnson, an engineer at
the outcome space. No probabilistic modeling enters inéo tBell Labs, observed that a resistor in a heat bath (see 1(c))
specification of the events. In Definition 1, on the other handroduces current even when no voltage is applied. Harry
the event spacé is very much a part of the stochastic modelNyquist explained this phenomenon as resulting from thérma

We formalize the second special case as a definition.  energy being transformed to electrical energy due to therma
Definition 2: The stochastic systeifR®, # (R*),P) is called agitation. This is a nice example of a physical phenomenon
a classicaln-dimensional random vector B that can be described stochastically.

We use the term classical random vector also when the
outcome spacéV is a Borel subset ofR®, and the events v event E
are the elements o8 (R") that are contained ifW.

Classical stochastic systems and classical random vectors .=
dominate the development and the teaching of probabiIistic‘,_..---'_f,'ff.«“ g
modeling and analysis techniques, as witnessed by the empha™
sis on notions as mean and variance, in the classical definiti C/‘ !

strip

A /
RI \ V=RI
|
of a random variable, a random vector, and a stochasti T

process, in notions as marginal and conditional probaslit (a) (b)
in the concept of Markov process, etc. The aim of the present _ _

. - . . FII% 2. Events for the noisy resistor
paper is to show that this emphasis on classical stochast
systems with richg-algebras is unduly restrictive, even for . e _ _ .
elementary applications. In addition, we aim to demonsstrai1 This an'S_Bt/ g_hot)t;‘esstor Its m_odeledoahs f.OIIOWS.' :Mthout
that notions as linearity and interconnection of stockasf ern('jlab a?;]a |0r:,t_ rE\}/ rfsllqsl O(N!fh iﬂ T'C rtestls or,thgov-
systems require coarsg-algebras and the full generality ofrNed by the refationy’ = K1 Wi ermal agation, the

Definition 1. In Section VIII, we argue that Borel-algebras voltage(current pair(V,I) bglongs to_ Fhe incremental strip
aim solely at ‘closed’ systems, while coarsealgebras allow shown in 2(a) with a certain probability. Concretely, assum
to consider ‘open’ systems ' that the probability thatx <V — Rl < x+ dx is equal to

/ —x2/202 : /
Deterministic systems emerge as special cases of stoa:ha%ﬂ an € _/ dxwith & ~ +/RT andT the temperaure Of.
systems, as they should. the resistor in the heat bath. More generally, the prolgbili

Ve R2 |V _ :
Definition 3: The stochastic systerfW, &, P) is said to be °f {[Y]e R* |V —RI€Awith A a Borel subset OR} (the
deterministicif & = {0, B, BComPlementyy) andpP(B) = 1. B is shaded region of 2(b)) is thug ¥/2mo [ e /29" dx.
called thebehaviorof the deterministic system. B The noisy resistor defines a stochastic system with outcome
Deterministic and classical stochastic systems are eeepaceW = R? and as outcomes voltage/current vectpYs.

of a spectrum ranging from systems with very coarse tthe eventE e & are the sets of the form
systems with very ricto-algebras.
E={[Y] eR?|V-RIcAwith ACR Borel}. (1)

. EXAMPLES The event is illustrated in Figure 2(b). The probability &

We illustrate the relevance of coargealgebras by two jg
examples. 1 2
Example 1: A noisy resistor. Consider a 2-terminal 1-port P(E) = V210 / e 2% dx 2)
electrical circuit shown as a black box in Figure 1(a). The A
aim is to model the relation between the voltageand the The parameters that specify the stochastic laws of the noisy
currentl. The outcomes are voltage/current pdi¥s. Hence resistor areR and .

W =R2

An example is an Ohmic resistor, shown in Figure 1(b), ! '
described byV = Rl with R the resistance. An Ohmic
resistor defines a deterministic system with behavios

{[Y] €R? |V =RI}. I/ @
|-

&v
&

R
I |

i
|

I
+ F F — —
T T T heat bath (a) (b)
\% \Y% Rg \% R%“W‘O‘E Fig. 3. Equivalent circuits for a noisy resistor
l L
! ! : This noisy resistor can be represented by equivalent t&cui

@ (b) © For example, as an Ohmic resistor in series with a random
voltage source as shown in Figure 3(a). This leads to the
Fig. 1. 2-terminal electrical circuit following relation between the currehtthrough the resistor



and the voltag®/ across it implied in the deterministic case, so why should it be inaplie
in the stochastic caseSimilarly, for the price/supply, it is
V=Rl+e& ®) reasonable to assume for example that the price/supplpect

with R> 0 the value of the Ohmic resistor asd the voltage €S ir_1 certain rggions like those shown in Figure 5(b) with a
generated by the noisy voltage source. In the standard dohn<ertain probability.

Nyquist model, the nois@y is taken to be gaussian, with

zero mean and standard deviation Alternatively, the noisy  gemand events  supply events

resistor can also be represented as an Ohmic resistor iligbara 7 \\

with a random current source as shown in Figure 3(b). This

leads to the following relation between the currérthrough

the resistor and the voltagé across it

|:V/R+a pricey price

(a) (b)
with R> 0 the value of the Ohmic resistor amdthe current Fig. 5. Stochastic price/demand and price/supply events
generated by the noisy current source. In the standard dohns
Nyquist model, the noisg is taken to be gaussian, with zero One can make these examples more concrete by assuming
mean and standard deviatiaryR. These equivalent circuits that the price/demand relation is for instance giverppy= &
are merely representations of the noisy resistor. The bagigh & a classical positive real random variable. The events
physical phenomenon is best described by the events (1) &n@f the stochastic price/demand system then consist of the
their probabilities (2). sets

H(_ence, wherea_sv and g are classical random vari_ables, E— {[?ﬂ € (o, 00)2 | & = p1d € A with AC (0, ) Borel}
[V] is not a classical random vector. Only cylinders with rays
parallel toV = RI (see Figure 2(a)) are events that are assignadd P(E) equal to the probability that; € A. Similarly, we
a probability. In particulary and| are not classical randomcould assume that the price/supply relation is for instance
variables. Indeed, the basic model of a noisy resistor does given by s = £2p§ with & a classical positive real random
imply a stochastic law fo¥ or I, in the sense that (1, 2) doesvariable. The eventg of the stochastic price/supply system
not modelV and| individually as classical random variablesthen consist of the sets

| .

o P2 2 . 2
Example 2: Price/demand and price/supplylmportant char- E= {[ g1 € (0,0)7 | &2=5/p; € Awith AC (0,e0) Borel}
acteristics of an economic good are the responsivenesof &éind P(E) equal to the probability that, € A. |

demand and of the supply to the price. Typical deterministic Many modeling problems studied in physics, economics,
price/demand and price/supply characteristics are shewnaind statistics aim at the stochastic relation between tab re
Figure 4(a) and Figure 4(b). These characteristics defiter-devariables (voltage versus current, price versus demarck pr
versus supply, weight versus size, intelligence versusesco
demand supply on tests, age versus medical expenditures, and so forth). In
many situations, it is reasonable to assume in the detestitini
case that the relation between the two variables in quegion
given by a curve (such as Ohm’s law= RI for a resistor,
a price/demand characteristic, or a price/supply chariatite
as those shown in Figure 4). Arguably, when we study a
stochastic version of such a relation, we invariably end up
with a stochastic system in the sense of Definition 1 with a
coarseg-algebra. It is unreasonable to expect that a classical
stochastic system will emerge, since it is the charactesist

pricey prices

@) (b)

Fig. 4. Deterministic price/demand and price/supply characterisics

ministic systems withV = (0,%)? and behavior given by the q h iabl hat b ‘ by addi
graph of respectively the price/demand and the price/sup n not the variables, that become fuzzy by adding uncer-
characteristics tainty. So, we need a coarsealgebra in order to obtain the

In order to express that the demand is influenced %ete.rministic case agaspecial s!tuation. In order to mibéel
uncertain factors in addition to the price, randomness @an flation betvveen.vanables, classical random vectors|dfime,
added to the price/demand characteristic. This leads teetnodMO"® the exception than the rule.

that state that the price/demand vector lies in certainoregi

like those shown in Figure 5(a) with a certain probability. IV. LINEARITY

While it is viable to assign a probability to certain region®efinition 4: The n-dimensional stochastic systefR®, &, P)

of the price/demand plane, it is not reasonable to assuisesaid to belinear if there exists a linear subspateof R*

that the price/demand is modeled as a classical 2-dimeaisiosuch that the events are the Borel subsets of the quotient
random vector. Indeed, the uncertainty of the price/demaspaceR"/L, and the probability is a Borel probability on
phenomenon does not imply a probability distribution foe thR*/IL. Note thatR*/L is a finite dimensional real vector
price itself. No such probability distribution for the price is space, with, therefore, well-defined Borel sets. The dinoens



of R*/LL is equal ton — dimension(L). L is called thefiber by (4) is hence parameterized by the tripgle,m,S) with
anddimension(LL) the number of degrees of freedmhthe R e RP** a matrix of full row rank,m € RP the mean, and
linear stochastic system. The stochastic syst&h&,P) is ScRP*P,S=S' -0, the covariance of. All triples (R,m,S)
said to begaussianif it is linear and if the Borel probability that define the same gaussian system are obtained by the
on R*/LL has a gaussian distribution. B transformation group

We c_:onS|der a probablllty_ measure that is concentratgd RMS (URUMUSUT). (5)
on a singleton to be gaussian. More generally, a gaussian UeRP*P nonsingular

probability measure may be concentrated on a linear variety - . o
The idea behind Definition 4 is illustrated in Figure 6(a), Observe that our definition of linearity involves only the

. S ) éventg-algebra, but not the probability measure. This fact has
The events are cylinders " with rays parallel to the fiber subtle consequences when applied to deterministic systems

But it is easy to see that a deterministic system with behavio
L B is equivalent to a linear stochastic system if and onl§ is
an affine subspace &". Hence, while a deterministic system
with a linear behaviof® does not define a linear stochastic
system, it is equivalent to a linear stochastic system.

event

event
L

V. COMBINATION OF STOCHASTIC SYSTEMS

One of the central aspects of systems thinking is the pos-
@) (b) sibility of combining systems and viewing a complex system
as an architecture of interconnected subsystems. Thigréeat

is important in all aspects of systems theory and control,

. . , . in modeling, in analysis, and in synthesis. In [2] we have
L. A linear stochastic system is a classical random vectordf

d only if lassical q scussed ‘tearing, zooming, and linking" modeling praoed
and only | L= .{O}' Hepce every classical random VeCIOf, . yeterministic systems, while in [3] we applied theseagle
with W = R" defines a linear stochastic system. At the oth

herl — R th © b he trivial & the modeling oRLC circuits. In the present section we deal
extreme, wherl, = R, the event set” becomes the trvial |, the composition of stochastic systems in an informat.wa
o-algebra{0,R"}.

o . _ _ In Section VI we formalize interconnection in detail.
A concrete way of thinking about a lineardimensional
stochastic system is in terms of two linear subspdcg¥l
of R» t_hat are complementary,, ® M = R®, and a Borel W
probability Py; on M. Take as events the sets of the form :

Fig. 6. Events for a linear system

E={J (w+L)| M a Borel subset of}

weM Fig. 7. A system as a black box

(see Figure 6(b)) andP(E) equal to Py (M). A linear n- _ _ _ _ _
dimensional stochastic system is thus parameterized by ité\ convenientway to visualize systems is by block diagrams.

linear fiberL, a linear subspackl complementary td., and Figure 7 shows a pictorial representation of a system as a
a Borel probability onM. black box with terminals. The variables that are relevant

Let R € RP*® be a matrix of full row rank (that is, in the model are shown as associated with terminals. In
rank(R) = p) and ¢ a classicalp-dimensional random vector SOme applications (as electrical circuits, and some mecaian

with Borel probabilityP.. Consider the equation thermal, and hydraulic systems) these terminals can ba take
literally, while for other applications they should be tigha
Rw=¢ (4)  of as virtual terminals. For example, i € R*, we may

describing the stochastic laws of the vectore R®. This think of each of the terminals as corresponding to one of the
equation defines the linear stochastic sys®m (R®,&,P) Components of the vectov = (Wi, W, ..., W,). The black box

with indicates that the variables on the terminals are intawd]a
for example through the laws of a stochastic system.
[E € &] = [E =R Y(A) for some Borel subseA C R?] We consider several ways in which systems can be com-
and bined. T_he first way is juxtgposition. We start_with two sysxe.
p (Rfl(A)) — P,(A). with variablesw; andw, (Figure 8(a)) respectively, and obtain

a new system with variables = (w1,w») (Figure 8(b)).

R ! denoted the pullback oR. The fiber of this linear A second way of combining systems is by interconnection.
stochastic system igernel(R). The number of degrees ofWe start again with two systems with variablesandw, (Fig-
freedom equalsr — p. We call (4) akernel representation ure 9(a)) respectively, and obtain a new system with vasgbl
of 2. Every n-dimensional linear stochastic system admits @& (Figure 9(b)). The interconnection imposes = w, = Ww.
kernel representation. Note that (4) defines a gaussiahadec Interconnection can also be viewed as an operation on the
tic system if and only ife is gaussian. Am-dimensional terminal variables of a single system. We start with a system
gaussian system with —p degrees of freedom representedvith variablesw; andw, (Figure 10(a)), and obtain a new
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. . . Fig. 11. Elimination of variables

@ () A third way of obtaining a system from another one is by
Fig. 8. Juxtaposition of systems elimination of variables. We start with a system with valéeb
wi and w, (Figure 11(a)) and obtain a new system with
variablesw by settingw = w; (Figure 11(b)). In other words,

@) TW1 Wot the variablesw, are eliminated. Elimination of variables of
- - stochastic systems is discussed briefly in Section XI.
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Fig. 9. Interconnection of systems

system with variablew by settingw =w; =ws, (Figure 10(b)). Fig. 12. Interconnection and elimination
The situations of Figures 9 and 10 are not really different,

By combining the operations explained above, it is possi-
ble to obtain complex interconnected systems from simpler
@ Wy : T Wy subsystems. For example, by combining juxtaposition,rinte

- - connection, and elimination we can deal with the situation
illustrated in Figure 12.

We have discussed so far the combination of two systems.

m These operations are of course readily extended sequghtial
more than two systems, and therefore to complex archiestur
of interconnected systems.

VI. INTERCONNECTION

SYSTEM

(b) In this section we formalize interconnection. We start by
considering the situation discussed in Figure 9 with the
assumption that the two to-be-interconnected systems are
stochastically independent. Note that interconnectiomen
down to imposing two distinct probabilistic laws on the same
w set of variables. The question iss it possible to define
one law which respects both laws®s we shall see, this

is indeed possible, provided a regularity condition, chlle

since by combining juxtaposition of Figure 8 with terminaic®mplementarity’, is satisfied.

interconnection of Figures 10 applied to a single system, ¥&finition 5: Two o-algebrasf; andé; on a S?W are sai/d to
obtain system interconnection as in Figure 9. becomplementarif for all nonempty set&;, E; € £1,E2, E; €

The basic idea of interconnection igriable sharing in ¢2 there holds
the sense explained in [2] anq [3] for detgrministic sy;tems [E:NE; = E{NE)] = [E1 = E} andE, = E}].
Series, parallel, and feedback interconnections arelyesein
to be special cases. We formalize interconnection of s&igha The stochastic systeniy = (W,&1,P) and2; = (W, &, P»)
systems in Section VI. are said to beomplementarif for all Ey,E] € &1 andE,, E) €

Fig. 10. Interconnection of terminals



&> there holds Note that the definition of the probability for rectangles
- , , uses complementarity in an essential wéy.the g-algebra

[FEinE=E1NE] = [A(E)R(E) = P(EDR(E)]. g generated by, U &, is in fact also theo-algebra generated

In words, complementarity of stochastic systems requirby these rectangles. It is readily seen that the class okessibs
that the intersection of two events, one from each of thed W that consist of the union of a finite number of disjoint
o-algebras, determines the product of the probabilities t#ctangles forms an algebra of subsetsVdf (it is closed
the intersecting events uniquely, while complementarity einder taking the complement, intersection, and union). The
the g-algebras requires that the intersection of two sets, opeobability of rectangles defines the probability on thesaib
from each of theo-algebras, determines the intersecting setd W that consist of a union of a finite number of disjoint

uniquely. rectangles. By the Hahn-Kolmogorov extension theorens, thi
Note that leads to a unique probability measwPeon &, the g-algebra
generated by the rectangles. This construction obtredgebra
[€1, &2 complementary= [61N &2 = {0, W}] & and of the probability measut is completely analogous
and to the construction of a product measure in measure theory.

The notions of interconnection of stochastic systems and
[61,&2 complementanyE; € 61,E; € &, of colmpler?]entarifcy of §to<|:hastic syste;mﬁ_ atealgebras .
B B B constitute the main original concepts of this paper, viewe
andB; NE; = 0] = [E =0 or &, =0]. as a contribution to mathematical probability theory.
Indeed, S € & N & implies SNS= SNW. Therefore, if Obviously, there holdsy,4> C &. Also, for E; € & and
61,6, are also complementary, thed= 0 or S=W. Fur- E € &, we haveP(E1) = Pi(E1) andP(Ez) = P»(Ez). Hence
ther, EyNE, = 0 implies E; N Egomp'emem: E; = E;N'W. interconnection refines the eveatalgebrasé; and & and
Hence, if &1, & are also complementary, then eitfer= 0, the probabilitiesP, and P, . This implies in particular that
or Egomp'emem: W, that is,E, = 0. 3; and %, are unfalsified by>; A 3,. The stochastic system
Complementarity of systems is a refinement of compléW,&,P) is said to beunfalsifiedby (W,&”,P’) if for all
mentarity of o-algebras in order to accommodate for zerE € £Né&” there hold$(E) = P'(E). Note that forE; € &1 and
probability events that may violate the complementarity df2 € 62, P(E1NEz) = Pi(E1)P2(E2) = P(E.NW)P(WNEz) =
o-algebras. It is easy to construct examples involving zeR{E1)P(Ez). Henceé1 and &, are stochastically independent
probability events that show that complementarity of twub-o-algebras of&’. This expresses tha; and 2, model
stochastic systems does not imply complementarity of the @&henomena that are stochastically independent.
sociatedo-algebras. Complementarity of the evenalgebras ~ The deterministic system@V,£1,Py) and (W, &2, P,) with
is a more primitive condition that is convenient for provingehaviorBB; andB, respectively, are complementary if either
complementarity of stochastic systems. By =W, or B, =W, or if By andB, are both strict subsets
Complementarity of two stochastic systems is indeed iref W andB; NB # 0. Their interconnection is equivalent to
plied by complementarity of the associatedalgebras. In the deterministic syster(W,&’,P) with behaviorB; NIB,.
order to see this, leEj,E] € &1,E;,E} € &. On the one  We illustrate interconnection by our two examples.
hand, if the setE;,Ej,Ep,E, are all non-empty andy,6, Example 3: The noisy resistor, interconnected Consider
are complementary, thei; N E, = E; NE, implies E; = the interconnection of a noisy resistor and a voltage source
E; andE; = E}, and, thereforeR, (E1)Po(Ez) = Py(E])P2(E5).  with an internal resistance and thermal noise. In terms @f th
On the other hand, assume that at least one of the setgiivalent circuits with a random voltage source, this setad
Ea,E},Ez, E), sayEy, is empty. TherE; NE, = E;NE) implies

event € &
EiNE, =0. By what we proved in the previous paragraph, L, !
complementarity of%, & therefore implies that eithdt;, = 0, _|_| 1 V=RI
or E; = 0. Consequently, also in this caBeNE, = E; NE, Vo= T gﬁPs\/
implies Py(E1)Po(Ez) = 0= Py(E})Pa(ED). 40 | Vv e eventc &
Definition 6: Let T; = (W.&1,P) and X, = (W,6.P) be | RZE | | | T |
complementary stochastic systems. Then ittterconnection L1 / .
of 21 andX,, assumed stochastically independent, denoted by v :jVO —Ril
31 A3y, is defined as the stochastic system @ o) Cventes

SN = (W, &,P). Fig. 13. Interconnection of noisy circuits

The o-algebras’ and the probability> are defined as follows. the configuration shown in Figure 13(a). System 1 correspond
& is the o-algebra generated bf; U &, while P is defined g the nojsy resistor described by (1, 2). System 2 corredpon
on the ‘rectangles{E1 NE; | Ey € £1,Ez € &3} by to the voltage source, and is described by equatieaVy —
.7 R1+ &, with Vp a constant voltageR the internal resistance,
PELNE) :=PuER(Ep) for By € 61, B2 € &, and &, a random variable independent ef. Assume that
and extended to all of’ by the Hahn-Kolmogorov extensiong), is gaussian, with zero mean and standard deviadiorA
theorem. B rectangular event of the interconnection is shown in Figure



13(b). It is easily seen that the correspondm@lgebras are probability for the interconnected stochastic systemofed
complementary if and only iR+ R # 0. Theo-algebra of the the construction of Definition 6. The specific case discussed
interconnected system is then the Basehlgebra orR?, and in Example 2 leads to the following equations for the inter-
[Y} is the classical 2-dimensional random vector governed bgnnected system

vl 1 R R &y _3/& e 32
rm Lt et ST
with &, as in equation (3). For the interconnection of the stochastic systém=

m (W, &, Pr) with the deterministic systel, = (W, &%, P,) with
Example 4: Equilibrium price/demand/supply. Consider behaviorB, stochastic independence is trivially satisfied.
first the deterministic price/demand and price/supply abi@r- andX, are then complementary if and only if
istics of an economic good shown in Figure 4. Assuming that / e _ /
these characteristics pertain to the same good is exprésgsed [E1, By € 61, and B NB =By NB] = [Pu(Er) = Ru(By)].
price;=pricey, while equilibrium implies demand = supply. WeAssuming this complementarity, interconnection leadshe t
stochastic system that is equivalent {&/,&,P) with & =
&g U {BEOmPlementyyy - where & = {E1NB | E; € &1}. The
probability P of the interconnection is given tl(E) = Py (E;z)
with E; any element o7 such thatt = E;NB. This implies
thatP(B) = 1, and the probability in the interconnected system
is therefore concentrated dh

We now consider the interconnection of terminals as shown

in Figure 10. Before interconnection, we have the stocbasti
price system = (W x W, &, P) with variables(wy,w;). Both wy
andw, have their outcomes i, and the laws governing these
outcomes are coupled throughand P. The interconnection
imposesw; = w, and we wish to consider the stochastic
system that govern& = w; = wp. This stochastic system a
special case of the interconnection with a deterministitesy
discussed in the previous paragraph with the behavior diyen
B = {(wg,w2) € Wx W | w; =wy}. Complementarity requires
that

demand supply

equilibrium

Fig. 14. Deterministic equilibrium price/demand/supply

view imposing the equilibrium conditions as interconneuwti
It is readily verified that the interconnection of the detarm
istic price/demand and price/supply systems yields therdet
ministic system with equilibrium behavior the interseatiof
the price/demand and price/supply characteristics astridted
in Figure 14.

In the stochastic case, we start with the stochastic system [Ej,E; € & andE;NB = E;NB] = [P(E;) = P(E2)].
31 = ((0,0)2,£,Py) that models the price/demand, akgl= ) L i )
((0,0)2, &, P,) that models the price/supply. The elements (ﬁ‘ssur_nlng complementa/rlnj, mFerconnchon yields the- sto
&£ and &, are those to which a probability is assigned (see tif&astic systent’ = (W, &”,P’) with
discussion of Example 2 in Section Il). Interconnectiorzef [E' € &'] < [ 3 E € & such thatE’ = {(w,w) | (w,w) € E}]
and>, meansp; = p2 = p (expressing that the prices pertain
to the same good), and = s (expressing the equilibrium and L,
condition demand = supply). P(E") =P(E).

System interconnection (see Figure 9) and terminal in-
terconnection (see Figure 10) are closely related. However
terminal interconnection is more general, since it alsoslea
with interconnection of systems that are not stochasticall
independent.

supply

evente & a dvent € &

VII. INTERCONNECTION OF LINEAR SYSTEMS

Theorem 1: Consider the lineam-dimensional stochastic
systems; = (R*,41,P;) andZ,; = (R, £, P,) with associated

price fibersLL; andL,. Theo-algebras$; and&, are complementary
Fig. 15. Price/demand/supply event if and only if

evente&

Li+Lo=R"

Under reasonable conditions (related, for example, to the
cardinality, shape, and monotonity of the price/demand a%d
price/supply events) the associateehlgebrassy and &, are !
complementary, and the interconnectionalgebra consists
of the Borel subsets of0,»)2. A rectangular event for the
interconnected stochastic system is shown in Figure 15. The Li®Lo=R"

If this relation is satisfied, then the interconnected syste
AZy is again a linean-dimensional stochastic system. Its
fiber isL; NLy,. HenceZ; A2, is a classicah-dimensional
random vector if and only if



If ¥, andX, are gaussian, so 5 A Xp. ] Another way of looking at ‘open’ versus ‘closed’ is by
The straightforward proof is omitted. considering interconnection. An open stochastic system ca
be interconnected with other systems, a closed system tanno

be interconnected (or, more accurately, it can only be ¢oter

nected with a trivial stochastic system). We now illustrifizt
As a general principle, it is best to aim for models that ararseness of the-algebras is essential for complementarity.

opensystems, and a mathematical theory of modeling shouddsume that; = (R*, Z(R*),P) is a classical random vector

reflect this aspect from the very beginning. Models usualhnd that>' = (R*,&”,P’) is a stochastic system witlf’ C

leave some of the individual variables free, unexplained, a2 (R"). Then theo-algebras associated witly and X, can

merely express what one can conclude about a coupled sely be complementary i#” is trivial, that is, if & = {0, R*}.

of variables. A model should incorporate the influence of thdore generally, if the stochastic systemsnds’ are comple-

environment, but should leave the environment as unmodeletentary then foE € &7, we haveENR» =ENE =R*NE, and

The gas law does not explain the pressure all by itself, bénceP(E) = P(E)P'(E) = P/(E). Therefore the following

it explains what one can conclude about the simultaneozsro-one law must hold:

occurrence of the pressure, the temperature, the volunge, an , ,

the quantity of a gas. Which value of these variables agtuall |E € ¢'1 = [P(E) = P'(E) = 0 or P(E) = P'(E) = 1].

occurs as the result of an experiment depends on both #§s is a very restrictive condition o&’. For example, if
system and the environment. A model of the environment é%pport(p) — R®, then & cannot contain setE such that
not part of the gas law. Newton’s second law does not explaigin E and ECOmPlementhave a non-empty interior.

the position of a pointmass all by itself, but it explainsnt i e conclude thatlassical random vectors are models of
combination with the force acting on it The way the forC’%Iosed systemdhese systems cannot be interconnected with
is generated is not part of Newton's second law. Maxwelligon.trivial systems. Open systems require a coarségebra.
equations do not explain the magnetic field, the current, afiflis shows a serious limitation of the classical stochastic
the charge density, but they explain them in combinatiom Witramework, since interconnection ought to be one of thechasi

the electric field. tenets of model building.
As an illustration of what we mean by ‘open’ versus ‘closed’

stochastic systems, consider the noisy resistor. Figuneahd
Equation (3) describe an open system, since knowledge of
the system parametd® and the value of the internal noisy N this section we discuss some implications to the problem
voltage sources;, do not suffice to decide what and | of building models from data of the view of stochastic sysgem
will be. The actual value o¥ and| depends in addition on and their interconnection that emerges from the previous
some environmental conditions. Figure 13(a) is an examrﬂéctions. The question we deal with is system identification
of a closed system, since knowledge of the system parameft®¥ can we recover the laws that govern a stochastic system
R R, Vo and of the values of the internal noisy voltage sourcd®m mgasurements? .
&y and g, suffices to decide what and| are. Analogously, ~Consider the stochastic systebh= (W,&,P). Assume
the price/demand characteristic of Figure 5(a) describes #at outcomes, realizations of the variabless W, of the
open system. So does the price/supply characteristic ofr&igPhenomenon that is modeled Byare observed. The aim is to
5(b). On the other hand, the equilibrium situation of Figuriglentify the model, that ig” andP, from these observations. In
15 describes a closed stochastic system, assuming that QFer to generate these observations, experimental comslit
interconnectiono-algebra consists of the Borel subsets dgieed to be set up during the data collection process. The
(0,0)2. In the former case, the actual price, demand, afgta do not emerge from the stochastic system all by itself,
supply depend on environmental conditions in addition tH@it from observing® in interaction with an environment (see
characteristics and the randomness, while in the lattee, cakigure 16). One of the questions that arises is whether it is
the characteristics and the randomness determine the, price
demand, and supply.

Consider the classical notion of ardimensional stochastic
vector process as a family of measurable mgp§ — Rt €
T (T denotes the time-sgtfrom a basic probability spac@
with o-algebra«/, to R* with o-algebra Z(R"). This is
very much a closed systems view, since once the uncertain
parameterw € Q has been realized, the complete trajectory
t e T fi(w) € R* is determined. Such models leave no room
for the influence of the environment and this is, in our viewkig. 16. Data collection
a shortcoming. Stochastic systems with a coarssgebra do
allow to incorporate the unexplained environment. Defimiti possible to disentangle from the data the laws of the stdichas
6 shows that if stochastic systems are complementary, itsigstem from the laws of the environment. There is a clear
possible to interconnect them. This feature shows the opdistinction between modeling a stochastic system from data
nature of stochastic systems with coats@lgebras. and obtaining the statistical features of a random vectunfr

VIIl. OPEN VERSUS CLOSED SYSTEMS

IX. IDENTIFICATION

Environment



samples. The latter problem consists of inferring thestiaéil and L = kernel(R). Since X is assumed to be gaussian,
laws by sampling a random vector in an experimental set-up,is a classical gaussiap-dimensional random vector. Let
while the former problem requires in addition disentanglinme RP be the mean an§c RP*P,S= S - 0, the covariance
the laws of the system from the laws of the environment thaf €. Let I C R® denote the fiber of the gaussian system
was active while sampling. Y = (R*&',P) that is interconnected witlt during data

Let us illustrate this issue by means of the noisy resistoollection. Assume th& andZ’ are stochastically independent
of Figure 1(c). The variable@(] are governed by Equationsand thatl. & " = R®. Then, as shown in Section VII, the-

(1, 2) and the identification problem consists in deducirey tlalgebras of andX’ are complementary and the interconnected
parameters of the model, that B and g, from measured system>opserved= ZA 2’ is a classicah-dimensional stochastic
voltage/current pairs. These measurements may be getheragestem(R?, Z(R™), Pobserved With Popserved@ gaussian proba-
in various ways. One possibility is to fix the current by dniyi bility distribution on R*. Let u € R* be its the mean and
the noisy resistor by a constant current source and meastire R*® I =TT > 0, its covariance.

various realizations of the voltage. Another possibilisyto > is unfalsified byZgpserveqif and only if

fix .the vo!tage by putting a con§tant voltggg source acrass th Ru=m and RR =S ©)
noisy resistor and measure various realizations of thesouirr
A third possibility is to terminate the noisy resistor by ahe disentanglement question becomés:it possible to
voltage source with internal resistance and thermal nosse deduce from equations (6) the stochastic syskenthat is
shown in Figure 13, and measure various realizations of tflR, m,S) up to the equivalence (5), from the observed system
voltage/current pair. These terminations of the noisystesi Zopsenved that is from(u,)?

give rise to three data clouds, each with completely differe Let Rw= ¢’ be a kernel representation bf. R € R(—p)x»
statistical features, and from each of these data cloudsaye nis a matrix of full row rank withkernel(R) = L'. Let
attempt to deduce the paramet&snd o. m € R®P) pe the mean an§ € R P)x(@-p) g —gT - Q,

For the noisy resistor it may be reasonable to assume thiz covariance of¢’. Since 2 and ¥’ are assumed to be
the experimenter can control the environmental conditiostochastically independeng, and €' are independentl ©
that are active during data collection. On the other hanl, = kernel(R) @ kernel(R) = R® implies that the matrix
in many situations, for instance in economics, in the soci@@] € R**® is nonsingular. Hence
sciences, or in biology, the data are collected in a passive [R}W* [5]
way, in vivo, so to speak. The problem of disentangling the RIT™Le
laws of the system from the laws of the environment them a kernel representation Bfpserves= ZAZ'. The mearu and
becomes imperative. As an example, assume that we wishctvariancd™ of Zopserves= ZA 2 are related to the parameters
identify the stochastic system that governs the price/deinaR,m,SR,n',S of = andZ’ by

of an economic good. We could attempt to deduce the laws [R] — M

of this stochastic system from observing various realiwesi RIH = lnf S

of the variables(p,d). If these measurements are obtained [5] r [RR,]T = [O< : q”g"“) . (")
n—p)XxXp

under the equilibrium condition demand = supply, then, as ] o
shown in Section VI, under reasonable conditions, the datalN€ following theorem shows the extent to which it is
are realizations of a classical 2-dimensional random vectB?Ss'ble to deduce the parametétsn,S,R’,nf/,S’ of = and
and then the probability distribution of the vectd}| depends %' from the parameterg, " of Zopserved= A 2.
not only on the stochastic price/demand system, but also Sheorem 2:Let 4 € R® andl e R** [ =TT = 0, be given.
the stochastic price/supply system. The stochastic lawkeof For everyR € R(®~P)*= of full row rank, there exist
price/supply may also be unknowis. it nevertheless possible 1) Rec RP*® with [5] € R™**® nonsingular,
to identify the stochastic price/demand system from tha®at 2) mec RP andn' € R*P,

In this paper we discuss only a very special case of the3) Se RP*?,S=S' =0, andS € Re»*@P) g —-gT
identification problem. We assume that the system to be 0,
identified is am-dimensional gaussian stochastic system. Wgch that (7) holds. IRTRT > 0, thenR,m,S are uniquely
further assume that the data are collected while the systengjétermined by (7), up to the equivalence (5). ]
interconnected with anotherdimensional gaussian stochastigroof: By choosing a suitable bases in the domain and co-
system that is stochastically independent and complementgomain ofR, we can assume that
to the system to be identified, and such that the intercoedect
system is a classical random vector. As we have seen in R =] Owrppp  lapx@p ]
Section VII, this classical random vector is also gaussi@h achoose R = | lpx —L ] with L € RP¥@®) to be
we assume that from sampling, its mean and covariance mayitermined. Clearly{ R] € R**® is nonsingular. Partitioru
have been deduced. We assume therefore that the data coggigt conformably toR, as
of the mean and covariance of the probability distributidn o

. . T _ [T1aT12

the outcomes in the interconnected system. H= [;12] and = [le rzz} .

Let L C R® be the fiber of the gaussian systefn= C
(R™,&,P) to be identified and leRw= ¢ be a kernel rep-
resentations ofz. R € RP*® is a matrix of full row rank m=p1+Lip, m =,

Equations (7) become



S= Fl,l—rl,zLT —LF2,1+LF2,2LT, S =TIy2 l12=LI5 0. The problem is to deduce this result from the events and
the probability associated with the noisy resistor. Notat th
V = R+ gy is not the result from conditioning the random
vector [V] by | = 1 amp, since{[Y] € R? | | =1 amp is
not an event. Similarly, we want to deduce that impoding
10 volt, leads td = 10/R—&y/R, a gaussian random variable
with mean 10R and standard deviatioo/R.
Example 6: Price/demand and price/supply with con-
straints. Consider the stochastic price/demand system dis-
ﬁijssed in Example 2. Impose the condition prisel€ as il-
strated in Figure 17(ayWhat is the resulting probability dis-
Sfibution of the demandBimilarly, consider the price/supply
Ssystem and impose the condition price 1€ as illustrated in
Figure 17(b).What is the resulting probability distribution of
the supply?t is readily seen that these are sensible questions
which for the specific cases discussed in Example 2 lead to
d=¢& ands= &.

These equations define,m',S S, provided there existd
such thatl 15 = LI2,. ' = 0 implies thatkernel(l;2) C
kernel(l';2). Hence there indeed exists dn such that
M2 = LM22. Hence there exist theh,m Sm,S such that
(7) holds.

SinceRTR'™ - 0 corresponds t6 > 0, this implies that
the solutionL is unique and given by = I'Lzl'g‘%. Hence
there then exist unique,m,S ', S such that (7) holds. &

The above theorem obviously also holds with the roles
> and ' reversed. The theorem shows that without furth
assumptions oX or &', it is not possible to deduce the law
of 2 from the laws o gpserved IN fact,Z being unfalsified from
>observedleaves the fiber ok completely unspecified. So, not
only is 2 unidentifiable fromXgpserved but the deterministic
part of 2, governed byRw= 0, is left completely arbitrary.
Without further structural information on the system or be t
environment, it is not possible to recover the parameteis of
from sampling. The theorem also implies that the parameters
U, T of Zopservegtogether with the fibel of 2’ specify X and
3/ uniquely, providedRTR'™ = 0. The conditionRTRT™ >~ 0
is called sufficiency of excitatianit requires that there is an
adequate variety of experiments generated by the envirohme

For the economic example the full complexity of the 5 :
identifiability question emerges. Sampling under equilibor 1 price; e pice
conditions does not lead to identification of the price/detha (@) (b)
elasticity. A more elaborate controlled experiment is meekd
to entangle the price/demand and price/supply systems.

There are many applications in statistics in which one

attempts to identify the stochastic laws governing a ph “The problem is to deduce these probability distributions
pts 1 : ) 9 9 @ PR&Om the o-algebras and the probabilities associated with the
nomenon involving two real variables. As we remarked, suc

; . . Stochastic systems that describe the noisy resistor and the
a law invariably leads to a coarse-algebra. The important ~ . s
price/demand and price/supply characterisitics.

observation here is that data generation through Samp“B%finition 7. Let 3 — (W,&,P) be a stochastic system and
requires interconnection with another system, and thtaeeef%CW Assﬁme tha?the ’reg’]ularity condition y

data collection involvedwo distinct random systems. One
of these stochastic systems expresses the intrinsic random [E1,E2 € & andE;NS = Ex;NS] = [P(E;) = P(E2)]
laws one is after, while the other expresses the features )

of the environment that happens to be acting during th@lds. Then the stochastic system

data collection experiment. Disentangling these laws irequ S|s = (S, &ls, Pls)

further structural assumptions on the experimental set-up

supply

Fig. 17. Stochastic price/demand and price/supply events

with
X. CONSTRAINED PROBABILITY

Consider the stochastic systefW,&,P). Let S be a
nonempty subset AfV. In this section we discuss the meanin@nd
of the stochastic system induced 6/, &, P) with outcomes Pls(E') := P(E) with E € & such thatE’ = ENS,
constrained to be irS. We shall see that this is indeed a
sensible concept. is calledthe stochastic systethwith outcomes constrained to
Before entering into the mathematical development, wee inS. |
illustrate the concept which we will introduce in this secti  Constraining corresponds to interconnecting with the de-
by means of some examples. terministic systen{W, {0, S, Scomplementyyl p) and regularity
Example 5: The noisy resistor with constraints.Consider corresponds to complementarity. The regularity conditian
the noisy resistor described by Equations (1, 2). Now imposeally impliesS ¢ &. In fact, if S € &, then regularity holds if
the constraint = 1 amp.What is the probability distribution and only if P(S) = 1. In order to see this, observe first thgat
of the resulting voltageFrom an equation point of view, theS =WnS. HenceS € & and regularity yieldP(S) = P(W) = 1.
answer is easy. The noisy resistor is described by equati@anversely, assume th&te & and P(S) = 1. ThenE € &
(3). When| = 1 amp, thenV is then equal toR+ &/, a implies P(E) = P(ENW) = P(ENS) + P(E nScomplemeny _
gaussian random variable with meBrand standard deviation P(EN'S). ThereforeEj,E; € & andE; NS = E; NS imply

&ls:={E €& | E' =ENS for someE € &},



P(E1) = P(E1NS) = P(E;NS) = P(E,). Hence regularity with we W governed by the stochastic systél, &, P) and

holds. It follows that constraining is interesting wh&g &.  f a map fromW into W’. We want to construct the stochastic
The notion ofthe stochastic systeih with outcomes con- system(W’,&”,P') that governs the outcomes of the variables

strained to be inS, while reminiscent of the notion ofhe w e W’'. A special case of (8) of particular interest is the

stochastic systerd conditioned on outcomes if, is quite projection(w;,w,) — wj, which in Section V we have referred

different from it. The former basically requirés¢ &, while to as ‘elimination’.

the latter requiresS € &. Secondly, constraining associates In classical probability theory with, for exampl&y = R®

with the eventE € & of %, the eventENS of Z|s with and W' = R¥, the assumption is usually made that tbe

probability P(E), while conditioning associates with the evensigebrass and & are given, for example as the Boret

E € & of Z the eventENS, also in &, with probability algebras, and that is measurable, for example continuous,

P(ENS)/P(S). So, constraining pulls the probability & leading to the definition of’ asP/(E’) =P (f~1(E’)). In this

‘globally’ into EN'S, while conditioning associates with case the event§ and &’ are obtained from the (topological)

‘locally’ the probability of ENS, renormalized by dividing by structure of the outcome spac®s and W’ and therefore the

P(S). construction of& and &’ does not involve the probabilistic
Constraining allows to deduce probability distributions olaws. The main theme of the present article is that the events

the outcome space beyond those that are obtained duritg an essential part of a stochastic model and must therefor

the identification process. Assume that the stochasti@systbe constructed in accordance to the sets to which the model

2 = (R",&,P) is interconnected witlt’ = (R*,&”,P') during  assigns a probability. When the variableis generated by (8),

data collection and thafl A X' = Zopserveds= (R*, Z(R™),P”)  the question therefore emerges how to chasand P’ from

is a classicam-dimensional system. Assume further that & P, and f, with & the class of subsets &%’ to which a

is identified by samplingopserved@nd disentangling: from  probability can be assigned. This situation has already bet

¥', in the manner discussed in Section IX. The questiarp by Kolmogorov in his original book on probability theory

is to determine the probability distribution of the outcame[1, IIl §1]

on a subsetS C R*. In its present form, this question is e start with some facts aboatalgebras and pullbacks of

ambiguous. Analyzing the outcomesSnin the experimental maps. Letf : W — W’. The pullbackf ! satisfies

set-up to leads to the conditional probabil®/ conditioned

by we S. A more relevant interpretation of the above question ~ f~H(E/®™Pemen — (f~1(E’))complementang

is that we want the probability associated with the stodbast f*l( U E(() (f1 (EO)-

system(W, &, P) with outcomes constrained to be $h Both keN

the conditional and constrained probability may be deducgfiese relations show that—! takes o-algebras intoo-

from the identified system after sampling. The former reegiir igepras, in both directions. More concretely,difis a o-

deducingP” from the samples anBlobservea While the latter aigebra of subsets 6, then the class of subsef€ of W’
requires first disentangling from %', assuming tha is gefined by

= U
keN

identifiable fromz_obsen,ed and subsequently constra}i_n_ing the [E €é]:e I[f—l(E/) € &] ©)
outcomes to be irS. In general, these two probabilities are
quite different. is also ac-algebra of subsets dfy’. Conversely, if§’ is a

In order to make this difference more concrete, consider tgealgebra of subsets a#’, then the class of subsefsof W
noisy resistor (1, 2). We can deduce the parameéReasido  defined by

by sampling for example under the experimental conditions L ) )
| =1 amp. The conditional distribution df conditioned by [E€ &) [E=f"7(E) for someE € &]
V = 10 volt in the interconnected system is the point measure

S : IS a subg-algebra ofé.
concentrated dt=1 amp. The distribution df with outcomes . ) ,
constrained to satisf¥ = 10 volts is gaussian with mean Let (W,£,P) be a stochastic system arfd: W — W'.

o o Define&” by (9). Thenf : W — W’ is measurable with respect
10/R and standard deviatiod /R. Thus constraining allows Ny !
to obtain probability distributions beyond the experinaiset- to the measurable spac€#/, &) and (W', &), leading to the

up used to identify the model parameters. In this and similBFObab'“ty
examples, constraining appears a more relevant notion than P(E) = P(ffl(E/)) for E € & (10)
conditioning, because of the prevalence of coarssggebras.

The notion of the stochastic systeéimconstrained byveS  Definition 8: The stochastic systentW’,&”,P’) with &’
appears to be an interesting and useful addition to the litfined by (9) and® defined by (10) is called thstochastic

of elementary concepts in mathematical probability. It is gystem oW’ induced by(W,& ,P) and f: W — W', [ |
concept that is effective for stochastic systems with asmar The construction of” defined by (9) leads to the largest
o-algebra. class of subsets a#’ for which the probability can be defined

XI. FUNCTIONS ON THE OUTCOME SPACE from the probability of events i . _
. . . . When f : R®* — R" is linear, then Definition 8 associates
In this section we discuss _functlons on t_he outcome SpaEy 4 finear stochastic system another linear stochagse s
of a stochastic system. Consider the equation tem. The fibed.’ C R™ in the co-domain is related to the fiber
w = f(w) (8) L in the domain by’ = f(LL).



For the noisy resistor wittR £ 0, the maps[Y] —V The channel functions as follows. There are two possible
and [Y] — | both generate the trivial stochastic systermputs,up andu;. The channel transmits the input and produces
(R,{0,R},P). The variables/ and| are hence not classicaltwo possible outputsjy andy;. The inputup leads to output
random variables. The only non-zero real linear functi@mral yp with probability pg and to output; with probability 1— pg,

R? that generates a non-trivial stochastic system is the mapile the inputu; leads to outpuy; with probability p; and
[Y} — V — RI which generates a classical gaussian randam outputyg with probability 1— p;. If po = p1 = p, then we
variable with mean zero and standard deviatinn call the channesymmetri¢ while if pg # p1, then we call the

A common way in which probability enters into a systenthannelasymmetric The symmetric binary channel is shown
is that some of the variables are modeled as random andn Figure 18(a), while the asymmetric binary channel is show
influence other related variableg, for example byf (w,w') = in Figure 18(b).

0, and the aim is to describe the stochastic behavior of theFormally, denote the input alphabet®s= {up,u;} and the
related variablesv. As a typical example think of modeling output alphabet a¥ = {yo,y1}. The channel is specified as
the terminal current/voltage behavior of an electricatwir two classical stochastic systems,

that contains stochastic sources. We explained how to wamnst - v

the stochastic laws governing from the stochastic laws of 2y = (Y,Z ,Puo) and 2y, = (Y,Z ’Pul) ;

w whenw andw are related by (8). The definition of the
w-events from thewv-events is more involved and in generaYv
not easy to sort out whew andw are related by a general Py ({Yo}) = po, P ({y1}) = 1— po,

implicit equation asf (w,w') = 0. _1_ _

While the stochastic systef’,&’,P’) on W’ induced by Pa(¥0}) = 1= P, P ((2}) = Pu-

(W,&,P) and f : W — W is a well-defined notion, a great The pair of systems3,,,%,,) is an example of a probability
deal of information may be lost when passing fr¢#i,&,P)  kernel.

and f : W — W to (W,&",P’). The problem is that” as

constru_cted by (9) may contain very few events and certa\n the symmetric binary channel

properties and operations of¥V,&,P) may be lost when

ith the probabilities given by

passing to(W’, &’ P'). We shall see an example of such a v
situation involving constraining in the next section. Eo
Y1 il @9
« B
Yo Yo s ‘/ B R 4
XIl. PROBABILITY KERNELS “ = AR
U U
Open stochastic systems are often thought of as classical ”"(a)ul ”"(b)”l ”"(C)ul

stochastic systems with ‘inputs’, that is, as a family ofjge
bility measures on an output space, parameterized by anh in&?'
Such families of probability measures go under the name of N
probability kernels The main distinction between probability we nhow show hovx_/ to approa_qh the symmetrlc binary
kernels and our approach consists in the input/output view %hannel using constrained probability. Start with the esyst
open systems that underlies probability kernels. Whilaiiap Sspe= (U x Y, &,P).

and outputs definitely have their place in modeling, esfigcia

in signal processing and in feedback control, the inpupfeut Thus the outcome space, shown in Figure 19(al) isY. The
view has many drawbacks when modeling open physicaent set ist’ = {0,Eo,E;, U x Y}. with

systems, as argued for example in [2] for the deterministic

case. With input/output thinking one cannot get off the gubu Bo = {(Uo,¥0) (tr, Y1)}, Br = {{Uo,y), (U1, Yo)}
when modeling, for example, simple electrical circuits B (see Figure 19(b)). Note that £ 2UV*Y. HenceZgpc is not a

19. Events for the symmetric binary channel

paradigmatic examples of interconnected systems. classical stochastic system. The probabiftyis determined
Developing the themes of the present article using probiay
bility kernels in their full generality lies beyond the se&opf P(Eg)=p, P(E)=1-p.

the present article. We merely explain some of the connestio _ _ ) _
between our notion of stochastic system on the one hand, anlow considerZsyc with outcomes constrained to be in
probability kernels on the other hand, by means of an example So = {(uy) | u=uo} andS; = {(u,y) | u=uy},

that is important in applications, namely, thimary channel
respectively. The sef§ andS; are illustrated in Figure 19(c).

U1 5 Y1 1 Y1 It is easily verified that the regularity condition of Defioit 5
1-p 1=po is satisfied for bott$y andS;. The resulting stochastic systems
1-p m 1-p are Zspds, = (Y,2Y,P|s,) and Zspds, = (Y,2Y,P|s,) with
Uo Yo Uo Yo
@ (b) Pls,({Yo}) = p, Pls,({y1}) =1-p,

Fig. 18. Binary channel Pls,({Yo}) =1—p, Pls,({y1})=p.



Observe thakspds, = 2y, andXspds, = Zy, yield preciselythe ui}. The setsSp and S; are illustrated in Figure 20(c). It

systems>,,, and,, that specify the channel as a probabilitys easily verified that the regularity condition of Definitio

kernel. 7 is satisfied for botl§y andS;. The constrained stochastic
Note that the symmetric binary channel can be viewesystems are denoted IBfs, andX|s, respectively and given

as a linear stochastic system. Identify bdthand Y with by Z|s, = (Y X E,&s,, Pls,) with &|s, generated by

GF(2), the Galois field{0,1}. SetW = U x Y = GF(2).

ThenZgpc is a linear stochastic over the field G with fiber Er={(yo,e1)}, E2={(Yo,€2)},

L ={(0,0),(1,1)} and probabilitie({(0,0),(1,1)}) = pand Es={(y1.&)}, Ea={(y1.&4)},
P{(0,1),(1,0})=1-p. andP|g, defined by

B. The asymmetric binary channel Plso(E1) = po(1—pa), Plso(E2) = popa,

We now show how to approach the asymmetric binary Pls,(E3) = (1—po)(1—p1), Pls,(E4) = (1—po)p1.
channel using probability kernels. Start with the stoahast and s, = (Y x E, &ls,), Pls, ) with &]s, generated by

system
2=(UxYxE,é&,P), Ei={(Yo.81)}, E2={(y1.&2)},

with E = {e1,es,€3,e4}. Thus the outcome space, shown in Ez={(Yo.&)}, Ea={(y1,€)},
Figure 20(a), is the Cartesian product@fx Y andE. The andP|s, defined by
spaceR is introduced in order to generate the uncertainty in S1

the channel. The event consist of theo-algebra generated  Pls, (E1) = po(1— p1), Pls, (E2) = pops,

by the pairs Pls, (Es) = (1~ po)(1—p1). Pls, (Ea) = (1~ po)pr
E1= {(Uo.Yo.€1), (U, Yo, &1)}, Observe that after elimination of, that is, the marginal
E; = {(uo,Yo,€2), (U1,y1,€)}, probability fory, Z|s, and Z|s, yield preciselythe systems
Ez = {(Uo,Yy1,€3), (U1,Yo,€3)}, 2y, and2,, that specify the channel as a probability kernel.
Es = {(Uo, Y1, €4), (Us,Y1, 1)) The introduction ofE and = shows that the asymmetric

binary channel as a probability kernel can be interpreted in
Note that theo-algebra generated b{E;,Ez, E3,Es} is not a as constrained stochastic systems. The probability kerne
equal to 2*¥*E So3 is not a classical stochastic system(z,,5, ) can also be interpreted in terms of conditional
The probabilityP is determined by probabilities. Define, form € (0,1) the stochastic system
B _ U,2Y,R,) by Py({up}) = mand P,({u1}) = 1 — . We then
P(E1) = po(1—p), P(E2) = popy, E)btain th)e familf/{of };)tochastic syét{em}s)
P(E3) = (1 - po)(1—p1), P(E4)=(1— po)ps.

The generating set fof is shown in Figure 20(b).
B B with

So— (U X Y, 2U%Y Pn)

e —Ey Py

e & ({(u0,¥0)}) = port
o o I Pr({(Uo,y1)}) = (1 —po),
. B I ey D = Pr({(u1,y0)}) = (1—p1)(1— ),
— Pr({(u1,y1)}) = pa(1—m).

Uy . Uy For each of these systems,, and %, are the conditional
(uo,Yo) (U, Y1) (U1, Yo) (Ur. Y1) (Uo,Yo) (U, Y1) (uz,Yo) (Uz,Y2) probabilities ofy given u. Since the interpretation of a prob-
(@) . So s, (b) ability kernel as conditional probabilities requires minuig
VA — the environment, that is, interpreting the inpuas a classical
i ________ random variable, we feel that the interpretation in terms of
constrained probability is a more satisfactory one congajyt
Our treatment of the asymmetric binary channel is based
_____ &t on choosing the auxiliary outcomes fhand identifying the
S i eventsEy, E, Es, E4 with the associated probabilities such that
e -1 constraining bySp and S; gives the channel probabilities
(Uoryo) (Uoys) (Ge.yo) (Uryn) after eliminating the variableg. Note that if we would
(c) have eliminated thee's immediately from the systenk,
Fig. 20. Events for the asymmetric binary channel equivalently, apply the projectiofu,y,e) — (u,y), then, as
shown in Section XI, we obtain the stochastic systEm=
Now consider the stochastic systeéfrwith outcomes con- (U x Y,{0,U x Y},P’) with the trivial o-algebra{0,U x Y}.
strained to be it$o = {(u,y,€) | u=Up} and the stochastic sys-Constraining bySy and S; then becomes ineffective. This

tem X with outcomes constrained to be$ha = {(u,y,e) | u= shows that in this example projection blends out a great deal

L




of information. What is needed to correct this is allowing thhave not all Borel sets as events and to work with coarse
projected atom&s, Ey, E3, E4 tO algebras is essential even for elementary applications.

Interconnection of stochastic systems can be defined effec-

E == E =
1= {(Uo,Yo), (U1,¥0)}, Ez2={(Uo,Yo), (U1,y1)}, tively for stochastic systems with coarse everélgebras, but

Es = {(Uo,y1), (U1,Y0)}, Ea = {(Uo,y1), (Ur,y1)}, requires suitable properties of the event space, as coneplem
with the probabilities tarity of the stochastic systems or of the associatealgebras.
BIE) — P(E) — 1_ An interesting notiqn that emerges for systems with a coarse
~( ~1) (Ex) = po(1-p), o-algebra of events is constraining the outcomes to belong to
P(Ez) = P(E2) = popu, a subset of the outcome space that is not an event.
P(E3) = P(E3) = (1—po)(1— p1). One of the urgent directions of generalization of the nation
P(Es) = P(Es) = (1— po)p1 of the present paper is to stochastic dynamical systems and

stochastic processes. We have already pointed out that the

as the specification itself of a stochastic system on theomwc ¢jassical notion of a stochastic process as a family of mea-
space(U x Y). Unfortunately, theP's do not define a prob- gyraple mapsd; : Q — R, parametrized by the time parameter
ability on the o-algebra generated by tHe's, and therefore t from a basic probability spac® with o-algebra.</ to
the (E,P)’s do not define a probability space in the orthodog with the Borel o-algebra is a closed systems view. It is
sense of the term. quite reasonable to study stochastic processes in which the

When ¢ a classical random vector, then= f(u,€) can s are not a classical random variables, even for elementary
be dealt with by considering as an input parameter whichexamples. For instance, Brownian motion is classicallyngefi
together with the random input generates the outpyt For 55 5 continuous processon [0, ) with (i) by = 0, (i) b has
example, the symmetric binary channel can be realized thigrmally distributed increments with mean zero and vaganc
way by takingU =Y = {0,1}, £ a random variable taking proportional to the time elapsed between the increments, an
values in{0, 1} with P:({0}) = p,P:({1}) =1 p, and setting (jij) the increments on non-overlapping time intervals are
independent. Our view is that condition (i) is superfluous.
This point of view implies in particular thé;’s need not a
over GK2). The asymmetric binary channel can be realizeglassical real random variables. A problem that is pregentl
by settingU =Y = {0,1}, and under investigation is to give a suitable definition of a Mark
processf without assuming that th&’s are classical random
variables.
with &, &; independent random variables both taking values in
{0,1} with P({gp =0}) = po andP({&, =1}) = ps. In terms
of the €s discussed above, we have thep<> (0,0),e <+ | thank Tzvetan Ivanov for many enlightening discussiorgarding
(0,1),e3 <> (1,0),e4 <> (1,1). this paper.

Applying the thinking in terms of stochastic kernels to th&he SCD-SISTA research of the KU Leuven is supported by the
noisy resistor, one could assume tHats an input which projects.Research Council KULGOA/11/05 Ambiorics, GOA/10/09

together withey generates the random variaMethrough (3). M.?C'/it(’)/ggf (%'3355/2?6|8§“§ncizoag%nslncEgﬂneseéivl?afoﬁgﬁgoi t
This leads t(.).an Interpret.atlon of the nOIS_y resistor in &er oc & fellowship grant’sFIemish Government: ’FWCPhD/post(ljoc
of a probablllty kernel withR (V) a gaussian real randoMgrants, projects: G0226.06 (cooperative systems and tzatiion),
variable with mearR| and standard deviatioo. There are G0321.06 (Tensors), G.0302.07 (SVM/Kernel), G.0320.08nex
several drawbacks of dealing with the noisy resistor in thidPC), G.0558.08 (Robust MHE), G.0557.08 (Glycemia2), @889

way, the main one being that it does not pundV a priori (nﬁa[aoinm-)mgcgisng'ogiiﬂeeagﬁgt%%rﬂ;r:l&nggﬁv (TV_VF?% c'scrgr?é éuNrg/I'(J\é'M
on equal footing. Our way of dealing withlf ] in terms of e, “sp671 eCopro, SBO Climags, SBO POM, 0&0-Dsquare.
a coarseo-algebra appears simpler, more general, and MQELIgian Federal Science Policy OffickJAP P6/04 (DYSCO, Dy-
satisfying conceptually. Modeling the noisy resistor wdh namical systems, control and optimization, 2007-2011BTBEU:
random voltage source or a random current source is ofRNSI; FP7-HD-MPC (INFSO-ICT-223854), COST intelliCIRF
an equivalent circuit view of a noisy resistor. Interprgtine EMBOCON (ICT-248940), FP7-SADCO ( MC ITN-264735), ERC

events (1) and the probability (2) associated with the noi%}’GHWlND (259 166). Contract ResearchAMINAL, Helmholtz:

. ) : o CERP, ACCM.
resistor as the physics of a hot resistor is simpler, cloger t
reality, and generalizes to situations where the eventsatre
cylindrical strips. Finally, it not evident how to deal withe
stochastic price/demand and price/supply character{ste REFERENCES
Figure 5) as stochastic kernels.

u+y=e¢

y=¢(l-u)+&u
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