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Abstract—The problem of providing an adequate definition of
a stochastic system is addressed and motivated using examples.
A stochastic system is defined as a probability triple. The
specification of the set of events is an essential part of a
stochastic model and it is argued that for phenomena with as
outcome space a finite dimensional vector space, the framework
of classical random vectors with the Borel sigma-algebra as
events is inadequate even for elementary applications. Models
very often require a coarse event sigma-algebra. A stochastic
system is linear if the events are cylinders with fibers parallel to
a linear subspace of a vector space. We address interconnection of
stochastic systems. Two stochastic systems can be interconnected
if they are complementary. We discuss aspects of the identification
problem from this vantage point. A notion that emerges is
constrained probability, a concept that is reminiscent butdistinct
from conditional probability. We end up with a comparison of
open stochastic systems with probability kernels.

Index Terms—Stochastic system, linearity, gaussian system,
interconnection, system identification, constrained probability.

I. I NTRODUCTION

Open systems and their interconnection lie at the heart of
system theory. By an ‘open’ system we mean a model that
incorporates the influence of the environment explicitly, as
an unmodeled feature. We view interconnection as ‘variable
sharing’: before interconnection, the variables pertaining to
the interconnected subsystems regarded as independent, while
after interconnection some of subsystem variables are required
to be equal.

The aim of the present paper is to present open systems in
a stochastic setting. Our interest is mainly in systems withas
outcome spaceRn or a subset ofRn. If the corresponding
event space consists of the Borel sets, or of all subsets
of the outcome space if this space is countable, then we
call the σ -algebra of events ‘rich’ or ‘fine’, in contrast to
’coarse’ σ -algebras. As we shall see, openness of systems
requires probability spaces with a coarseσ -algebra of events,
in contrast to what we call ‘classical’ stochastic systems,
where theσ -algebra of events is assumed to be rich. The theme
developed in this paper is that theσ -algebra of events should
not be taken for granted, but is a not to be ignored feature of
the stochastic phenomenon that is modeled.

This is not a paper about the interpretation or about the
mathematical foundations of probability. The article functions
completely in the orthodox measure theoretic setting of prob-
ability with a σ -algebra of events and countable additivity,
the mathematical framework of probability theory usually
attributed to Kolmogorov [1]. The main point of the paper
is pedagogical in nature, namely that the usual emphasis in
the teaching of probability on settings whereessentiallyevery
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subset of the outcome space is an event is unduly restrictive,
even for elementary applications. We shall show that a coarse
σ -algebra of events is needed in order to study open systems
and their interconnection. Related concepts, such as linearity
and constrained probability, also function comfortably only
within the context of coarseσ -algebras.

The main original contributions of this paper are the notions
of (i) interconnection of stochastic systems (Definition 6)and
their complementarity (Definition 5), a condition requiredin
order to be able to interconnect, (ii) linearity stochasticsystem
(Definition 4), and (iii) constrained probability (Definition 7).
We feel that these notions are worthwhile additions to the
arsenal of elementary concepts of mathematical probability.

We now introduce some of the notation used in the pa-
per.N = {1,2, . . . ,k, . . .} denotes the set of natural numbers.
R,Rn,Rn×m denote the sets of real numbers,n-dimensional
real vectors, andn× m real matrices.Rn/L with L a linear
subspace ofRn, denotes the quotient spaceRn moduloL, that
is, the class of subsets ofRn consisting of the affine subspaces
{a+L | a∈Rn}. For M = M⊤ ∈Rn×n, M � 0 means thatM
is nonnegative definite, that is,x⊤Mx ≥ 0 for x ∈ Rn, while
M ≻ 0 means thatM is positive definite, that is,x⊤Mx > 0
for 0 6= x∈R

n. For M ∈R
n×m, kernel(M) denotes thekernel

of M, defined bykernel(M) := {x ∈ Rm | Mx = 0}. For a
set S,2S denotes thepower setof S, that is, the class of
all subsets ofS. For a map f : X → Y with domainX and
codomainY, image( f ) denotes theimage of f , defined by
image( f ) := {y∈ Y | there existsx∈ X such thaty= f (x)},
while f−1 : 2Y → 2X denotes theset theoretic inverseof f , that
is, forS⊆Y, f−1(S) := {x∈X | f (x)∈ S}. The set-to-set map
f−1 is called thepullbackof f .

The paper is organized as follows. In Section II the concept
of a stochastic system is introduced. A stochastic system is
simply a standard probability triple as used in mathematical
probability theory. This concept is contrasted with what we
call a ‘classical’ stochastic system when the event space
consists of the Borel sets. Our interest, however, is primarily
in systems with a coarseσ -algebra of events. We illustrate
the notion of stochastic system in Section III by means of
two examples, a noisy resistor, and the price/demand and
price/supply characteristics of an economic good. In Section
IV we formalize linearity of stochastic systems, and gaussian
systems as a special class of linear stochastic systems. In
Section V we discuss in an informal manner several ways
of combining systems, while in Section VI we formalize
interconnection of two stochastic systems. Interconnection
requires that the interconnected systems are complementary.
We illustrate interconnection by means of two examples,
the noisy resistor connected with a voltage source, and the
equilibrium price/demand/supply of an economic good. In
Section VII we study interconnection and complementarity



of linear stochastic systems. In Section VIII we argue that
classical stochastic systems are basically closed systems, since
complementarity of stochastic systems requires a coarse event
σ -algebra. In Section IX we discuss some of the implications
to system identification of the view of stochastic systems and
their interconnection put forward in the previous sections. In
Section X we introduce the notion of the stochastic system
with outcomes constrained to be in a subset of the outcome
space. Constraining, while reminiscent of conditioning, is
quite different from it. In fact, conditioning requires that
the conditioning set is an event, while constraining basically
requires that the constraining set is not an event. Constraining
is effective only in the context of coarse eventσ -algebras. In
Section XI we show how to construct the stochastic system
induced by a map with the outcome space as domain. One way
of obtaining open stochastic systems is as a family of classical
probability measures on the output space, parameterized by
an input. Such families of probability measures go under the
name of ‘probability kernels’. In Section XII we discuss, for
a binary channel, the relation between probability kernelsand
our notion of stochastic system combined with constraining.

Finally, a brief reminder of the most important probabilistic
concepts used in the paper. We add these well known no-
tions here for easy reference and in order to introduce the
nomenclature and notation. More details about these notions
may be found in Wikipedia and in any book on mathematical
probability theory.

A class of subsetsF of a setF is said to be analgebraonF
if (i) F ∈ F , (ii) F ∈ F implies Fcomplement∈ F (Fcomplement

denotes the complement ofF with respect toF), and (iii)
F1,F2 ∈F impliesF1∪F2 ∈F . If (iii) is strengthened to (iii)’
Fk ∈ F for k ∈N implies

⋃

k∈N
Fk ∈ F , thenF is said to be a

σ -algebraon F. For any class of subsetsF of F, there is a
smallestσ -algebra of subsets ofF that containsF . This σ -
algebra is called theσ -algebragenerated byF . A measurable
spaceis a pair(F,F ) with F a σ -algebra onF. Let (F,F )
and (D,D) be measurable spaces. A mapf : F → D is said
to be measurablewith respect to(F,F ) and (D,D) if the
inverse image underf of a measurable set is measurable, that
is, if D ∈ D implies f−1(D) ∈ F .

A probability spaceis a triple(Ω,A ,P) consisting of a non-
empty setΩ, called thebasic space, a σ -algebraA of subsets
of Ω (elements ofA are calledmeasurable), and a map
P : A → [0,1] called theprobability measure) or simply the
probability. A probability measureP must satisfy (i)P(Ω) = 1
and (ii) P(

⋃

k∈N
Ak) = ∑

k∈N
P(Ak) for setsAk ∈A , k∈N, that are

disjoint (i.e.,Ak′ ∩Ak′′ = /0 for k′ 6= k′′). Property (ii) is called
countable additivityof P.

Let A ′ be an algebra of subsets ofΩ andP′ : A ′ → [0,1]
a map that satisfies (i)P′(Ω) = 1 and (ii) finite additivity:
P′(A′

1 ∪A′
2) = P′(A′

1) +P′(A′
2) for disjoint setsA′

1,A
′
2 ∈ A ′.

The Hahn-Kolmogorov extension theoremstates that there
exists a unique probability measureP on A , the σ -algebra
generated byA ′, such thatP(A′) = P′(A′) for all A′ ∈ A ′.

Let (Ω,A ,P) be a probability space. A subset of a set
with probability zero is called anull set. (Ω,A ,P) is said
to be completeif every null set is measurable. If(Ω,A ,P)

is a probability space, then the class of subsets ofΩ of
the form A∪N, with A ∈ A and N a null set, forms aσ -
algebraA ′. Define P′ : A ′ → [0,1] by P′(A∪N) := P(A).
Then (Ω,A ′,P′) is a complete probability space, called the
completionof (Ω,A ,P). Two probability spaces(Ω,A ,P)
and(Ω,A ′,P′) are said to beequivalentif they have the same
completion. Equivalence means that the measurable sets in
both spaces correspond up to sets of probability zero.

We denote theσ -algebra onRn generated by the open
sets with respect to the norm topology byB(Rn). Elements
of B(Rn) are calledBorel measurableor simply Borel. A
probability measure onB(Rn) is called aBorel probability
on Rn. The support of a Borel probabilityP, denoted by
support(P), is the smallest closed setS ⊆ R

n such that
P(S) = 1.

II. STOCHASTIC SYSTEMS

In this section we introduce the central concept of a stochas-
tic system, which is nothing else than a probability space as
put forward in orthodox mathematical probability theory.
Definition 1: A stochastic systemis a triple (W,E ,P) with
◮ W a non-empty set, theoutcome spacewith elements called
outcomes,
◮ E a σ -algebra of subsets ofW with elements calledevents,
◮ P : E → [0,1] a probability measure. �

The intuitive background underlying this definition is as
follows. Assume that we have a stochastic phenomenon that
we wish to model. The phenomenon produces variables in
the outcome space. The aim of the model is to specify (i) the
subsets of the outcome space to which a probability is assigned
and (ii) the numerical value of the probability (in the senseof
relative frequency, degree of belief, or whatever interpretation
of probability is relevant in the application at hand) that the
outcomes belong to a particular subset. The set in which the
outcomes take on their value is the outcome spaceW. The set
of eventsE consists of those subsets ofW to which the model
assigns a probability. The probability that the outcomes belong
to the setE ∈ E is P(E). E is required to be aσ -algebra, and
P a probability measure.

Two important special cases are obtained as follows. We
refer to these special cases asclassicalstochastic systems.
◮ The first special case is(W,2W,P) with W a countable
set. P can then be specified by giving the probabilityp of
the individual outcomes,p : W → [0,1], and definingP by
P(E) := Σ

e∈E
p(e). In this case, every subset ofW is assumed to

be an event, andP is completely determined by the probability
of the singletons.
◮ The second special case is(Rn,B (Rn) ,P), a Borel
probability onRn. P can then be specified by a probability
distribution onRn, or, if the distribution is sufficiently smooth,
by the probability density functionp : Rn → [0,∞) leading to
P(E) =

∫

E
p(x)dx.

For a classical stochastic system ‘essentially every’ subset
of W is an event and is therefore assigned a probability.
In the countable case this is completely correct, since then
every subset ofW is in E , while in the case ofRn, this is a
consequence of the fact that every ‘reasonable’ subset ofRn



is a Borel set. Thus for classical stochastic systems, the events
are obtained from the structure (finiteness, or the topology) on
the outcome space. No probabilistic modeling enters into the
specification of the events. In Definition 1, on the other hand,
the event spaceE is very much a part of the stochastic model.

We formalize the second special case as a definition.
Definition 2: The stochastic system(Rn,B (Rn) ,P) is called
a classicaln-dimensional random vector. �

We use the term classical random vector also when the
outcome spaceW is a Borel subset ofRn, and the events
are the elements ofB (Rn) that are contained inW.

Classical stochastic systems and classical random vectors
dominate the development and the teaching of probabilistic
modeling and analysis techniques, as witnessed by the empha-
sis on notions as mean and variance, in the classical definition
of a random variable, a random vector, and a stochastic
process, in notions as marginal and conditional probabilities,
in the concept of Markov process, etc. The aim of the present
paper is to show that this emphasis on classical stochastic
systems with richσ -algebras is unduly restrictive, even for
elementary applications. In addition, we aim to demonstrate
that notions as linearity and interconnection of stochastic
systems require coarseσ -algebras and the full generality of
Definition 1. In Section VIII, we argue that Borelσ -algebras
aim solely at ‘closed’ systems, while coarseσ -algebras allow
to consider ‘open’ systems.

Deterministic systems emerge as special cases of stochastic
systems, as they should.
Definition 3: The stochastic system(W,E ,P) is said to be
deterministicif E = { /0,B,B complement,W} andP(B) = 1. B is
called thebehaviorof the deterministic system. �

Deterministic and classical stochastic systems are extremes
of a spectrum ranging from systems with very coarse to
systems with very richσ -algebras.

III. E XAMPLES

We illustrate the relevance of coarseσ -algebras by two
examples.
Example 1: A noisy resistor. Consider a 2-terminal 1-port
electrical circuit shown as a black box in Figure 1(a). The
aim is to model the relation between the voltageV and the
currentI . The outcomes are voltage/current pairs

[

V
I

]

. Hence
W= R2.

An example is an Ohmic resistor, shown in Figure 1(b),
described byV = RI with R the resistance. An Ohmic
resistor defines a deterministic system with behaviorB =
{[

V
I

]

∈R2 | V = RI
}

.

RR

(a) (b) (c)

+ + +

- - -

V V V

I I I

heat bath

Fig. 1. 2-terminal electrical circuit

As an example of a noisy circuit, consider a resistor with
thermal noise. In 1928, John Bert Johnson, an engineer at
Bell Labs, observed that a resistor in a heat bath (see 1(c))
produces current even when no voltage is applied. Harry
Nyquist explained this phenomenon as resulting from thermal
energy being transformed to electrical energy due to thermal
agitation. This is a nice example of a physical phenomenon
that can be described stochastically.

(a) (b)

dx

x

I I

V V

V = RI V = RI

strip
event E

A

Fig. 2. Events for the noisy resistor

This noisy (‘hot’) resistor is modeled as follows. Without
thermal agitation, the resistor is an Ohmic resistor, gov-
erned by the relationV = RI. With thermal agitation, the
voltage/current pair(V, I) belongs to the incremental strip
shown in 2(a) with a certain probability. Concretely, assume
that the probability thatx ≤ V − RI ≤ x+ dx is equal to
1/

√
2πσ e−x2/2σ2

dx with σ ∼
√

RT andT the temperature of
the resistor in the heat bath. More generally, the probability
of

{[

V
I

]

∈ R2 | V −RI ∈ A with A a Borel subset ofR
}

(the
shaded region of 2(b)) is thus 1/

√
2πσ

∫

A
e−x2/2σ2

dx.

The noisy resistor defines a stochastic system with outcome
spaceW = R

2 and as outcomes voltage/current vectors
[

V
I

]

.
The eventsE ∈ E are the sets of the form

E =
{[

V
I

]

∈ R
2 | V −RI ∈ A with A⊆ R Borel

}

. (1)

The eventE is illustrated in Figure 2(b). The probability ofE
is

P(E) =
1√
2πσ

∫

A

e
− x2

2σ2 dx. (2)

The parameters that specify the stochastic laws of the noisy
resistor areR andσ .

(a) (b)

R
R

εV εI

+
-

++

--

VV

II

Fig. 3. Equivalent circuits for a noisy resistor

This noisy resistor can be represented by equivalent circuits.
For example, as an Ohmic resistor in series with a random
voltage source as shown in Figure 3(a). This leads to the
following relation between the currentI through the resistor



and the voltageV across it

V = RI+ εV (3)

with R> 0 the value of the Ohmic resistor andεV the voltage
generated by the noisy voltage source. In the standard Johnson-
Nyquist model, the noiseεV is taken to be gaussian, with
zero mean and standard deviationσ . Alternatively, the noisy
resistor can also be represented as an Ohmic resistor in parallel
with a random current source as shown in Figure 3(b). This
leads to the following relation between the currentI through
the resistor and the voltageV across it

I =V/R+ εI

with R> 0 the value of the Ohmic resistor andεI the current
generated by the noisy current source. In the standard Johnson-
Nyquist model, the noiseεI is taken to be gaussian, with zero
mean and standard deviationσ/R. These equivalent circuits
are merely representations of the noisy resistor. The basic
physical phenomenon is best described by the events (1) and
their probabilities (2).

Hence, whereasεV and εI are classical random variables,
[

V
I

]

is not a classical random vector. Only cylinders with rays
parallel toV =RI (see Figure 2(a)) are events that are assigned
a probability. In particular,V and I are not classical random
variables. Indeed, the basic model of a noisy resistor does not
imply a stochastic law forV or I , in the sense that (1, 2) does
not modelV and I individually as classical random variables.
�

Example 2: Price/demand and price/supply.Important char-
acteristics of an economic good are the responsiveness of the
demand and of the supply to the price. Typical deterministic
price/demand and price/supply characteristics are shown in
Figure 4(a) and Figure 4(b). These characteristics define deter-

(a) (b)
price1 price2

demand supply

Fig. 4. Deterministic price/demand and price/supply characteristics

ministic systems withW= (0,∞)2 and behavior given by the
graph of respectively the price/demand and the price/supply
characteristics.

In order to express that the demand is influenced by
uncertain factors in addition to the price, randomness can be
added to the price/demand characteristic. This leads to models
that state that the price/demand vector lies in certain regions
like those shown in Figure 5(a) with a certain probability.
While it is viable to assign a probability to certain regions
of the price/demand plane, it is not reasonable to assume
that the price/demand is modeled as a classical 2-dimensional
random vector. Indeed, the uncertainty of the price/demand
phenomenon does not imply a probability distribution for the
price itself. No such probability distribution for the price is

implied in the deterministic case, so why should it be implied
in the stochastic case?Similarly, for the price/supply, it is
reasonable to assume for example that the price/supply vector
lies in certain regions like those shown in Figure 5(b) with a
certain probability.

(a) (b)
price1 price2

demand supplyevents
events

Fig. 5. Stochastic price/demand and price/supply events

One can make these examples more concrete by assuming
that the price/demand relation is for instance given byp1d= ε1

with ε1 a classical positive real random variable. The events
E of the stochastic price/demand system then consist of the
sets

E =
{[ p1

d

]

∈ (0,∞)2 | ε1 = p1d ∈ A with A⊆ (0,∞) Borel
}

and P(E) equal to the probability thatε1 ∈ A. Similarly, we
could assume that the price/supply relation is for instance
given by s= ε2p2

2 with ε2 a classical positive real random
variable. The eventsE of the stochastic price/supply system
then consist of the sets

E =
{

[ p2
s ] ∈ (0,∞)2 | ε2 = s/p2

2 ∈ A with A⊆ (0,∞) Borel
}

andP(E) equal to the probability thatε2 ∈ A. �

Many modeling problems studied in physics, economics,
and statistics aim at the stochastic relation between two real
variables (voltage versus current, price versus demand, price
versus supply, weight versus size, intelligence versus scores
on tests, age versus medical expenditures, and so forth). In
many situations, it is reasonable to assume in the deterministic
case that the relation between the two variables in questionis
given by a curve (such as Ohm’s lawV = RI for a resistor,
a price/demand characteristic, or a price/supply characteristic
as those shown in Figure 4). Arguably, when we study a
stochastic version of such a relation, we invariably end up
with a stochastic system in the sense of Definition 1 with a
coarseσ -algebra. It is unreasonable to expect that a classical
stochastic system will emerge, since it is the characteristics,
and not the variables, that become fuzzy by adding uncer-
tainty. So, we need a coarseσ -algebra in order to obtain the
deterministic case as a special situation. In order to modelthe
relation between variables, classical random vectors should be
more the exception than the rule.

IV. L INEARITY

Definition 4: The n-dimensional stochastic system(Rn,E ,P)
is said to belinear if there exists a linear subspaceL of Rn

such that the events are the Borel subsets of the quotient
spaceRn/L, and the probability is a Borel probability on
R
n/L. Note thatRn/L is a finite dimensional real vector

space, with, therefore, well-defined Borel sets. The dimension



of Rn/L is equal ton−dimension(L). L is called thefiber
anddimension(L) the number of degrees of freedomof the
linear stochastic system. The stochastic system(Rn,E ,P) is
said to begaussianif it is linear and if the Borel probability
on Rn/L has a gaussian distribution. �

We consider a probability measure that is concentrated
on a singleton to be gaussian. More generally, a gaussian
probability measure may be concentrated on a linear variety.

The idea behind Definition 4 is illustrated in Figure 6(a).
The events are cylinders inRn with rays parallel to the fiber

LL

event event

M

M

(a) (b)

Fig. 6. Events for a linear system

L. A linear stochastic system is a classical random vector if
and only if L = {0}. Hence every classical random vector
with W= Rn defines a linear stochastic system. At the other
extreme, whenL = Rn, the event setE becomes the trivial
σ -algebra{ /0,Rn}.

A concrete way of thinking about a linearn-dimensional
stochastic system is in terms of two linear subspacesL,M
of Rn that are complementary,L⊕M = Rn, and a Borel
probability PM on M. Take as events the sets of the form

E = {
⋃

w∈M

(w+L) | M a Borel subset ofM}

(see Figure 6(b)) andP(E) equal to PM(M). A linear n-
dimensional stochastic system is thus parameterized by its
linear fiberL, a linear subspaceM complementary toL, and
a Borel probability onM.

Let R ∈ Rp×n be a matrix of full row rank (that is,
rank(R) = p) andε a classicalp-dimensional random vector
with Borel probabilityPε . Consider the equation

Rw= ε (4)

describing the stochastic laws of the vectorw ∈ Rn. This
equation defines the linear stochastic systemΣ = (Rn,E ,P)
with

[[E ∈ E ]] :⇔ [[E = R−1(A) for some Borel subsetA⊆ R
p]]

and
P
(

R−1(A)
)

:= Pε(A).

R−1 denoted the pullback ofR. The fiber of this linear
stochastic system iskernel(R). The number of degrees of
freedom equalsn− p. We call (4) a kernel representation
of Σ. Every n-dimensional linear stochastic system admits a
kernel representation. Note that (4) defines a gaussian stochas-
tic system if and only ifε is gaussian. Ann-dimensional
gaussian system withn− p degrees of freedom represented

by (4) is hence parameterized by the triple(R,m,S) with
R∈ Rp×n a matrix of full row rank,m∈ Rp the mean, and
S∈Rp×p,S= S⊤ � 0, the covariance ofε. All triples (R,m,S)
that define the same gaussian system are obtained by the
transformation group

(R,m,S) 7→−→−→−→−→−→
U∈Rp×p nonsingular

(UR,Um,USU⊤). (5)

Observe that our definition of linearity involves only the
eventσ -algebra, but not the probability measure. This fact has
subtle consequences when applied to deterministic systems.
But it is easy to see that a deterministic system with behavior
B is equivalent to a linear stochastic system if and only ifB is
an affine subspace ofRn. Hence, while a deterministic system
with a linear behaviorB does not define a linear stochastic
system, it is equivalent to a linear stochastic system.

V. COMBINATION OF STOCHASTIC SYSTEMS

One of the central aspects of systems thinking is the pos-
sibility of combining systems and viewing a complex system
as an architecture of interconnected subsystems. This feature
is important in all aspects of systems theory and control,
in modeling, in analysis, and in synthesis. In [2] we have
discussed ‘tearing, zooming, and linking’ modeling procedures
for deterministic systems, while in [3] we applied these ideas
to the modeling ofRLCcircuits. In the present section we deal
with the composition of stochastic systems in an informal way.
In Section VI we formalize interconnection in detail.

w SYSTEM

Fig. 7. A system as a black box

A convenient way to visualize systems is by block diagrams.
Figure 7 shows a pictorial representation of a system as a
black box with terminals. The variablesw that are relevant
in the model are shown as associated with terminals. In
some applications (as electrical circuits, and some mechanical,
thermal, and hydraulic systems) these terminals can be taken
literally, while for other applications they should be thought
of as virtual terminals. For example, ifw ∈ Rn, we may
think of each of the terminals as corresponding to one of the
components of the vectorw= (w1,w2, . . . ,wn). The black box
indicates that the variables on the terminals are interrelated,
for example through the laws of a stochastic system.

We consider several ways in which systems can be com-
bined. The first way is juxtaposition. We start with two systems
with variablesw1 andw2 (Figure 8(a)) respectively, and obtain
a new system with variablesw= (w1,w2) (Figure 8(b)).

A second way of combining systems is by interconnection.
We start again with two systems with variablesw1 andw2 (Fig-
ure 9(a)) respectively, and obtain a new system with variables
w (Figure 9(b)). The interconnection imposesw1 = w2 = w.
Interconnection can also be viewed as an operation on the
terminal variables of a single system. We start with a system
with variablesw1 and w2 (Figure 10(a)), and obtain a new



replacements

(a) (b)

w1w1

w

w2w2

SYSTEM 1SYSTEM 1

SYSTEM 2 SYSTEM 2

Fig. 8. Juxtaposition of systems

(a)

(b)

w

w1w2

SYSTEM 1

SYSTEM 1

SYSTEM 2

SYSTEM 2

Fig. 9. Interconnection of systems

system with variablesw by settingw=w1 =w2 (Figure 10(b)).
The situations of Figures 9 and 10 are not really different,

(a)

(b)

w

w1 w2

SYSTEM

SYSTEM

Fig. 10. Interconnection of terminals

since by combining juxtaposition of Figure 8 with terminal
interconnection of Figures 10 applied to a single system, we
obtain system interconnection as in Figure 9.

The basic idea of interconnection isvariable sharing, in
the sense explained in [2] and [3] for deterministic systems.
Series, parallel, and feedback interconnections are readily seen
to be special cases. We formalize interconnection of stochastic
systems in Section VI.

(a) (b)

w1 w2 wSYSTEM SYSTEM

Fig. 11. Elimination of variables

A third way of obtaining a system from another one is by
elimination of variables. We start with a system with variables
w1 and w2 (Figure 11(a)) and obtain a new system with
variablesw by settingw= w1 (Figure 11(b)). In other words,
the variablesw2 are eliminated. Elimination of variables of
stochastic systems is discussed briefly in Section XI.

(a)

(b)

SYSTEM 1

SYSTEM 1 SYSTEM 2

SYSTEM 2

Fig. 12. Interconnection and elimination

By combining the operations explained above, it is possi-
ble to obtain complex interconnected systems from simpler
subsystems. For example, by combining juxtaposition, inter-
connection, and elimination we can deal with the situation
illustrated in Figure 12.

We have discussed so far the combination of two systems.
These operations are of course readily extended sequentially to
more than two systems, and therefore to complex architectures
of interconnected systems.

VI. I NTERCONNECTION

In this section we formalize interconnection. We start by
considering the situation discussed in Figure 9 with the
assumption that the two to-be-interconnected systems are
stochastically independent. Note that interconnection comes
down to imposing two distinct probabilistic laws on the same
set of variables. The question is:Is it possible to define
one law which respects both laws?As we shall see, this
is indeed possible, provided a regularity condition, called
‘complementarity’, is satisfied.
Definition 5: Two σ -algebrasE1 andE2 on a setW are said to
becomplementaryif for all nonempty setsE1,E′

1 ∈E1,E2,E′
2 ∈

E2 there holds

[[E1∩E2 = E′
1∩E′

2]]⇒ [[E1 = E′
1 andE2 = E′

2]].

The stochastic systemsΣ1 = (W,E1,P1) andΣ2 = (W,E2,P2)
are said to becomplementaryif for all E1,E′

1 ∈ E1 andE2,E′
2 ∈



E2 there holds

[[E1∩E2 = E′
1∩E′

2]]⇒ [[P1(E1)P2(E2) = P1(E
′
1)P2(E

′
2)]]. �

In words, complementarity of stochastic systems requires
that the intersection of two events, one from each of the
σ -algebras, determines the product of the probabilities of
the intersecting events uniquely, while complementarity of
the σ -algebras requires that the intersection of two sets, one
from each of theσ -algebras, determines the intersecting sets
uniquely.

Note that

[[E1,E2 complementary]]⇒ [[E1∩E2 = { /0,W}]]

and

[[E1,E2 complementary,E1 ∈ E1,E2 ∈ E2,

andE1∩E2 = /0]]⇒ [[E1 = /0 or E2 = /0]].

Indeed, S ∈ E1 ∩ E2 implies S∩ S = S∩W. Therefore, if
E1,E2 are also complementary, thenS= /0 or S= W. Fur-
ther, E1 ∩ E2 = /0 implies E1 ∩ Ecomplement

2 = E1 = E1 ∩W.
Hence, if E1,E2 are also complementary, then eitherE1 = /0,
or Ecomplement

2 =W, that is,E2 = /0.
Complementarity of systems is a refinement of comple-

mentarity of σ -algebras in order to accommodate for zero
probability events that may violate the complementarity of
σ -algebras. It is easy to construct examples involving zero
probability events that show that complementarity of two
stochastic systems does not imply complementarity of the as-
sociatedσ -algebras. Complementarity of the eventσ -algebras
is a more primitive condition that is convenient for proving
complementarity of stochastic systems.

Complementarity of two stochastic systems is indeed im-
plied by complementarity of the associatedσ -algebras. In
order to see this, letE1,E′

1 ∈ E1,E2,E′
2 ∈ E2. On the one

hand, if the setsE1,E′
1,E2,E′

2 are all non-empty andE1,E2

are complementary, thenE1 ∩ E2 = E′
1 ∩ E′

2 implies E1 =
E′

1 andE2 =E′
2, and, therefore,P1(E1)P2(E2) =P1(E′

1)P2(E′
2).

On the other hand, assume that at least one of the sets
E1,E′

1,E2,E′
2, sayE1, is empty. ThenE1∩E2 =E′

1∩E′
2 implies

E′
1∩E′

2 = /0. By what we proved in the previous paragraph,
complementarity ofE1,E2 therefore implies that eitherE′

1 = /0,
or E′

2 = /0. Consequently, also in this caseE1∩E2 = E′
1∩E′

2
implies P1(E1)P2(E2) = 0= P1(E′

1)P2(E′
2).

Definition 6: Let Σ1 = (W,E1,P1) and Σ2 = (W,E2,P2) be
complementary stochastic systems. Then theinterconnection
of Σ1 andΣ2, assumed stochastically independent, denoted by
Σ1∧Σ2, is defined as the stochastic system

Σ1∧Σ2 := (W,E ,P).

Theσ -algebraE and the probabilityP are defined as follows.
E is the σ -algebra generated byE1∪E2, while P is defined
on the ‘rectangles’{E1∩E2 | E1 ∈ E1,E2 ∈ E2} by

P(E1∩E2) := P1(E1)P2(E2) for E1 ∈ E1,E2 ∈ E2,

and extended to all ofE by the Hahn-Kolmogorov extension
theorem. �

Note that the definition of the probabilityP for rectangles
uses complementarity in an essential way.E , the σ -algebra
generated byE1∪E2, is in fact also theσ -algebra generated
by these rectangles. It is readily seen that the class of subsets
of W that consist of the union of a finite number of disjoint
rectangles forms an algebra of subsets ofW (it is closed
under taking the complement, intersection, and union). The
probability of rectangles defines the probability on the subsets
of W that consist of a union of a finite number of disjoint
rectangles. By the Hahn-Kolmogorov extension theorem, this
leads to a unique probability measureP on E , the σ -algebra
generated by the rectangles. This construction of theσ -algebra
E and of the probability measureP is completely analogous
to the construction of a product measure in measure theory.

The notions of interconnection of stochastic systems and
of complementarity of stochastic systems andσ -algebras
constitute the main original concepts of this paper, viewed
as a contribution to mathematical probability theory.

Obviously, there holdsE1,E2 ⊆ E . Also, for E1 ∈ E1 and
E2 ∈ E2, we haveP(E1) = P1(E1) andP(E2) = P2(E2). Hence
interconnection refines the eventσ -algebrasE1 and E2 and
the probabilitiesP1 and P2 . This implies in particular that
Σ1 and Σ2 are unfalsified byΣ1∧Σ2. The stochastic system
(W,E ,P) is said to beunfalsified by (W,E ′,P′) if for all
E∈E ∩E ′ there holdsP(E)=P′(E). Note that forE1 ∈ E1 and
E2 ∈ E2, P(E1∩E2) =P1(E1)P2(E2) = P(E1∩W)P(W∩E2) =
P(E1)P(E2). HenceE1 andE2 are stochastically independent
sub-σ -algebras ofE . This expresses thatΣ1 and Σ2 model
phenomena that are stochastically independent.

The deterministic systems(W,E1,P1) and (W,E2,P2) with
behaviorB1 andB2 respectively, are complementary if either
B1 =W, or B2 =W, or if B1 andB2 are both strict subsets
of W andB1∩B2 6= /0. Their interconnection is equivalent to
the deterministic system(W,E ,P) with behaviorB1∩B2.

We illustrate interconnection by our two examples.
Example 3: The noisy resistor, interconnected.Consider
the interconnection of a noisy resistor and a voltage source
with an internal resistance and thermal noise. In terms of the
equivalent circuits with a random voltage source, this leads to

RR′
ε ′V

εVV0
+
-

+

-

+
- V

I

I

V
V = RI

V = V0−R′I

event ∈ E1

event ∈ E2

event ∈ E

(a) (b)

Fig. 13. Interconnection of noisy circuits

the configuration shown in Figure 13(a). System 1 corresponds
to the noisy resistor described by (1, 2). System 2 correspond
to the voltage source, and is described by equationV =V0−
R′I + ε ′V with V0 a constant voltage,R′ the internal resistance,
and ε ′V a random variable independent ofεV . Assume that
ε ′V is gaussian, with zero mean and standard deviationσ ′. A
rectangular event of the interconnection is shown in Figure



13(b). It is easily seen that the correspondingσ -algebras are
complementary if and only ifR+R′ 6= 0. Theσ -algebra of the
interconnected system is then the Borelσ -algebra onR2, and
[

V
I

]

is the classical 2-dimensional random vector governed by
[

V
I

]

=
1

R+R′

[

R′ R
−1 1

][

εV

ε ′V +V0

]

,

with εV as in equation (3).
�

Example 4: Equilibrium price/demand/supply. Consider
first the deterministic price/demand and price/supply character-
istics of an economic good shown in Figure 4. Assuming that
these characteristics pertain to the same good is expressedby
price1=price2, while equilibrium implies demand = supply. We

price

demand supply

equilibrium

Fig. 14. Deterministic equilibrium price/demand/supply

view imposing the equilibrium conditions as interconnection.
It is readily verified that the interconnection of the determin-
istic price/demand and price/supply systems yields the deter-
ministic system with equilibrium behavior the intersection of
the price/demand and price/supply characteristics as illustrated
in Figure 14.

In the stochastic case, we start with the stochastic system
Σ1 = ((0,∞)2,E1,P1) that models the price/demand, andΣ2 =
((0,∞)2,E2,P2) that models the price/supply. The elements of
E1 andE2 are those to which a probability is assigned (see the
discussion of Example 2 in Section II). Interconnection ofΣ1

andΣ2 meansp1 = p2 = p (expressing that the prices pertain
to the same good), andd = s (expressing the equilibrium
condition demand = supply).

price

demand supply

event ∈ E1 event ∈ E2

event ∈E

Fig. 15. Price/demand/supply event

Under reasonable conditions (related, for example, to the
cardinality, shape, and monotonity of the price/demand and
price/supply events) the associatedσ -algebrasE1 andE2 are
complementary, and the interconnectionσ -algebra consists
of the Borel subsets of(0,∞)2. A rectangular event for the
interconnected stochastic system is shown in Figure 15. The

probability for the interconnected stochastic system follows
the construction of Definition 6. The specific case discussed
in Example 2 leads to the following equations for the inter-
connected system

p= 3

√

ε1

ε2
, d = s=

3
√

ε2
1ε2. �

For the interconnection of the stochastic systemΣ1 =
(W,E1,P1) with the deterministic systemΣ2 =(W,E2,P2) with
behaviorB, stochastic independence is trivially satisfied.Σ1

andΣ2 are then complementary if and only if

[[E1,E
′
1 ∈ E1, andE1∩B= E′

1∩B]]⇒ [[P1(E1) = P1(E
′
1)]].

Assuming this complementarity, interconnection leads to the
stochastic system that is equivalent to(W,E ,P) with E =
EB ∪{Bcomplement,W}, whereEB = {E1∩B | E1 ∈ E1}. The
probabilityP of the interconnection is given byP(E) =P1(E1)
with E1 any element ofE1 such thatE = E1∩B. This implies
thatP(B) = 1, and the probability in the interconnected system
is therefore concentrated onB.

We now consider the interconnection of terminals as shown
in Figure 10. Before interconnection, we have the stochastic
systemΣ = (W×W,E ,P) with variables(w1,w2). Both w1

andw2 have their outcomes inW, and the laws governing these
outcomes are coupled throughE and P. The interconnection
imposesw1 = w2 and we wish to consider the stochastic
system that governsw = w1 = w2. This stochastic system a
special case of the interconnection with a deterministic system
discussed in the previous paragraph with the behavior givenby
B= {(w1,w2)∈W×W | w1 =w2}. Complementarity requires
that

[[E1,E2 ∈ E andE1∩B= E2∩B]]⇒ [[P(E1) = P(E2)]].

Assuming complementarity, interconnection yields the sto-
chastic systemΣ′ = (W,E ′,P′) with

[[E′ ∈ E
′]]⇔ [[ ∃ E ∈ E such thatE′ = {(w,w) | (w,w) ∈ E}]]

and
P′(E′) = P(E).

System interconnection (see Figure 9) and terminal in-
terconnection (see Figure 10) are closely related. However,
terminal interconnection is more general, since it also deals
with interconnection of systems that are not stochastically
independent.

VII. I NTERCONNECTION OF LINEAR SYSTEMS

Theorem 1: Consider the linearn-dimensional stochastic
systemsΣ1 =(Rn,E1,P1) andΣ2 =(Rn,E2,P2) with associated
fibersL1 andL2. Theσ -algebrasE1 andE2 are complementary
if and only if

L1+L2 = R
n.

If this relation is satisfied, then the interconnected system
Σ1∧Σ2 is again a linearn-dimensional stochastic system. Its
fiber is L1 ∩L2. HenceΣ1 ∧Σ2 is a classicaln-dimensional
random vector if and only if

L1⊕L2 = R
n.



If Σ1 andΣ2 are gaussian, so isΣ1∧Σ2. �

The straightforward proof is omitted.

VIII. O PEN VERSUS CLOSED SYSTEMS

As a general principle, it is best to aim for models that are
opensystems, and a mathematical theory of modeling should
reflect this aspect from the very beginning. Models usually
leave some of the individual variables free, unexplained, and
merely express what one can conclude about a coupled set
of variables. A model should incorporate the influence of the
environment, but should leave the environment as unmodeled.
The gas law does not explain the pressure all by itself, but
it explains what one can conclude about the simultaneous
occurrence of the pressure, the temperature, the volume, and
the quantity of a gas. Which value of these variables actually
occurs as the result of an experiment depends on both the
system and the environment. A model of the environment is
not part of the gas law. Newton’s second law does not explain
the position of a pointmass all by itself, but it explains it in
combination with the force acting on it. The way the force
is generated is not part of Newton’s second law. Maxwell’s
equations do not explain the magnetic field, the current, and
the charge density, but they explain them in combination with
the electric field.

As an illustration of what we mean by ‘open’ versus ‘closed’
stochastic systems, consider the noisy resistor. Figure 1(c) and
Equation (3) describe an open system, since knowledge of
the system parameterR and the value of the internal noisy
voltage sourceεV do not suffice to decide whatV and I
will be. The actual value ofV and I depends in addition on
some environmental conditions. Figure 13(a) is an example
of a closed system, since knowledge of the system parameters
R,R′,V0 and of the values of the internal noisy voltage sources
εV and ε ′V suffices to decide whatV and I are. Analogously,
the price/demand characteristic of Figure 5(a) describes an
open system. So does the price/supply characteristic of Figure
5(b). On the other hand, the equilibrium situation of Figure
15 describes a closed stochastic system, assuming that the
interconnectionσ -algebra consists of the Borel subsets of
(0,∞)2. In the former case, the actual price, demand, and
supply depend on environmental conditions in addition the
characteristics and the randomness, while in the latter case,
the characteristics and the randomness determine the price,
demand, and supply.

Consider the classical notion of ann-dimensional stochastic
vector process as a family of measurable mapsft : Ω→Rn, t ∈
T (T denotes the time-set), from a basic probability spaceΩ
with σ -algebraA , to R

n with σ -algebraB(Rn). This is
very much a closed systems view, since once the uncertain
parameterω ∈ Ω has been realized, the complete trajectory
t ∈T 7→ ft (ω)∈Rn is determined. Such models leave no room
for the influence of the environment and this is, in our view,
a shortcoming. Stochastic systems with a coarseσ -algebra do
allow to incorporate the unexplained environment. Definition
6 shows that if stochastic systems are complementary, it is
possible to interconnect them. This feature shows the open
nature of stochastic systems with coarseσ -algebras.

Another way of looking at ‘open’ versus ‘closed’ is by
considering interconnection. An open stochastic system can
be interconnected with other systems, a closed system cannot
be interconnected (or, more accurately, it can only be intercon-
nected with a trivial stochastic system). We now illustratethat
coarseness of theσ -algebras is essential for complementarity.
Assume thatΣ1 = (Rn,B(Rn),P) is a classical random vector
and thatΣ′ = (Rn,E ′,P′) is a stochastic system withE ′ ⊆
B(Rn). Then theσ -algebras associated withΣ1 and Σ2 can
only be complementary ifE ′ is trivial, that is, ifE ′ = { /0,Rn}.
More generally, if the stochastic systemsΣ andΣ′ are comple-
mentary then forE∈ E ′, we haveE∩Rn =E∩E=Rn∩E, and
henceP(E) = P(E)P′(E) = P′(E). Therefore the following
zero-one law must hold:

[[E ∈ E
′]]⇒ [[P(E) = P′(E) = 0 or P(E) = P′(E) = 1]].

This is a very restrictive condition onΣ′. For example, if
support(P) = Rn, then E ′ cannot contain setsE such that
both E andEcomplementhave a non-empty interior.

We conclude thatclassical random vectors are models of
closed systems. These systems cannot be interconnected with
non-trivial systems. Open systems require a coarseσ -algebra.
This shows a serious limitation of the classical stochastic
framework, since interconnection ought to be one of the basic
tenets of model building.

IX. I DENTIFICATION

In this section we discuss some implications to the problem
of building models from data of the view of stochastic systems
and their interconnection that emerges from the previous
sections. The question we deal with is system identification:
how can we recover the laws that govern a stochastic system
from measurements?

Consider the stochastic systemΣ = (W,E ,P). Assume
that outcomes, realizations of the variablesw ∈ W, of the
phenomenon that is modeled byΣ are observed. The aim is to
identify the model, that isE andP, from these observations. In
order to generate these observations, experimental conditions
need to be set up during the data collection process. The
data do not emerge from the stochastic system all by itself,
but from observingΣ in interaction with an environment (see
Figure 16). One of the questions that arises is whether it is

System Environment

Fig. 16. Data collection

possible to disentangle from the data the laws of the stochastic
system from the laws of the environment. There is a clear
distinction between modeling a stochastic system from data
and obtaining the statistical features of a random vector from



samples. The latter problem consists of inferring the statistical
laws by sampling a random vector in an experimental set-up,
while the former problem requires in addition disentangling
the laws of the system from the laws of the environment that
was active while sampling.

Let us illustrate this issue by means of the noisy resistor
of Figure 1(c). The variables

[

V
I

]

are governed by Equations
(1, 2) and the identification problem consists in deducing the
parameters of the model, that isR and σ , from measured
voltage/current pairs. These measurements may be generated
in various ways. One possibility is to fix the current by driving
the noisy resistor by a constant current source and measure
various realizations of the voltage. Another possibility is to
fix the voltage by putting a constant voltage source across the
noisy resistor and measure various realizations of the current.
A third possibility is to terminate the noisy resistor by a
voltage source with internal resistance and thermal noise as
shown in Figure 13, and measure various realizations of the
voltage/current pair. These terminations of the noisy resistor
give rise to three data clouds, each with completely different
statistical features, and from each of these data clouds we may
attempt to deduce the parametersR andσ .

For the noisy resistor it may be reasonable to assume that
the experimenter can control the environmental conditions
that are active during data collection. On the other hand,
in many situations, for instance in economics, in the social
sciences, or in biology, the data are collected in a passive
way, in vivo, so to speak. The problem of disentangling the
laws of the system from the laws of the environment then
becomes imperative. As an example, assume that we wish to
identify the stochastic system that governs the price/demand
of an economic good. We could attempt to deduce the laws
of this stochastic system from observing various realizations
of the variables(p,d). If these measurements are obtained
under the equilibrium condition demand = supply, then, as
shown in Section VI, under reasonable conditions, the data
are realizations of a classical 2-dimensional random vector,
and then the probability distribution of the vector

[ p
d

]

depends
not only on the stochastic price/demand system, but also on
the stochastic price/supply system. The stochastic laws ofthe
price/supply may also be unknown.Is it nevertheless possible
to identify the stochastic price/demand system from the data?

In this paper we discuss only a very special case of the
identification problem. We assume that the system to be
identified is ann-dimensional gaussian stochastic system. We
further assume that the data are collected while the system is
interconnected with anothern-dimensional gaussian stochastic
system that is stochastically independent and complementary
to the system to be identified, and such that the interconnected
system is a classical random vector. As we have seen in
Section VII, this classical random vector is also gaussian and
we assume that from sampling, its mean and covariance matrix
have been deduced. We assume therefore that the data consist
of the mean and covariance of the probability distribution of
the outcomes in the interconnected system.

Let L ⊆ Rn be the fiber of the gaussian systemΣ =
(Rn,E ,P) to be identified and letRw= ε be a kernel rep-
resentations ofΣ. R ∈ Rp×n is a matrix of full row rank

and L = kernel(R). Since Σ is assumed to be gaussian,
ε is a classical gaussianp-dimensional random vector. Let
m∈Rp be the mean andS∈Rp×p,S= S⊤ � 0, the covariance
of ε. Let L′ ⊆ Rn denote the fiber of the gaussian system
Σ′ = (Rn,E ′,P′) that is interconnected withΣ during data
collection. Assume thatΣ andΣ′ are stochastically independent
and thatL⊕L′ = Rn. Then, as shown in Section VII, theσ -
algebras ofΣ andΣ′ are complementary and the interconnected
systemΣobserved=Σ∧Σ′ is a classicaln-dimensional stochastic
system(Rn,B(Rn),Pobserved) with Pobserveda gaussian proba-
bility distribution on Rn. Let µ ∈ Rn be its the mean and
Γ ∈ Rn×n,Γ = Γ⊤ � 0, its covariance.

Σ is unfalsified byΣobservedif and only if

Rµ = m and RΓR⊤ = S. (6)

The disentanglement question becomes:Is it possible to
deduce from equations (6) the stochastic systemΣ, that is
(R,m,S) up to the equivalence (5), from the observed system
Σobserved, that is from(µ ,Γ)?

Let R′w= ε ′ be a kernel representation ofΣ′. R′ ∈R(n−p)×n

is a matrix of full row rank with kernel(R′) = L′. Let
m′ ∈ R(n−p) be the mean andS′ ∈ R(n−p)×(n−p),S′ = S′⊤ � 0,
the covariance ofε ′. Since Σ and Σ′ are assumed to be
stochastically independent,ε and ε ′ are independent.L⊕
L
′ = kernel(R)⊕ kernel(R′) = R

n implies that the matrix
[

R
R′
]

∈ Rn×n is nonsingular. Hence
[

R
R′
]

w=
[ ε

ε ′
]

is a kernel representation ofΣobserved=Σ∧Σ′. The meanµ and
covarianceΓ of Σobserved= Σ∧Σ′ are related to the parameters
R,m,S,R′,m′,S′ of Σ andΣ′ by

[

R
R′
]

µ = [ m
m′ ]

[

R
R′
]

Γ
[

R
R′
]⊤

=
[ S Op×(n−p)

O(n−p)×p S′

]

. (7)

The following theorem shows the extent to which it is
possible to deduce the parametersR,m,S,R′,m′,S′ of Σ and
Σ′ from the parametersµ ,Γ of Σobserved= Σ∧Σ′.

Theorem 2: Let µ ∈R
n andΓ ∈R

n×n,Γ = Γ⊤ � 0, be given.
For everyR′ ∈ R(n−p)×n of full row rank, there exist

1) R∈ Rp×n with
[

R
R′
]

∈ Rn×n nonsingular,
2) m∈ Rp andm′ ∈ Rn−p,
3) S∈ Rp×p,S= S⊤ � 0, andS′ ∈ R(n−p)×(n−p),S′ = S′⊤ �

0,
such that (7) holds. IfR′ΓR′⊤ ≻ 0, thenR,m,S are uniquely
determined by (7), up to the equivalence (5). �

Proof: By choosing a suitable bases in the domain and co-
domain ofR′, we can assume that

R′ = [ O(n−p)×p I(n−p)×(n−p) ].

Choose R = [ Ip×p − L ] with L ∈ Rp×(n−p) to be
determined. Clearly

[

R
R′
]

∈ Rn×n is nonsingular. Partitionµ
andΓ conformably toR′, as

µ =
[ µ1

µ2

]

and Γ =
[

Γ1,1 Γ1,2
Γ2,1 Γ2,2

]

.

Equations (7) become

m= µ1+Lµ2, m′ = µ2,



S= Γ1,1−Γ1,2L⊤−LΓ2,1+LΓ2,2L⊤, S′ = Γ2,2, Γ1,2 = LΓ2,2.

These equations definem,m′,S,S′, provided there existsL
such thatΓ1,2 = LΓ2,2. Γ � 0 implies thatkernel(Γ2,2) ⊆
kernel(Γ1,2). Hence there indeed exists anL such that
Γ1,2 = LΓ2,2. Hence there exist thenL,m,S,m′,S′ such that
(7) holds.

SinceR′ΓR′⊤ ≻ 0 corresponds toΓ2,2 ≻ 0, this implies that
the solutionL is unique and given byL = Γ1,2Γ−1

2,2. Hence
there then exist uniqueL,m,S,m′,S′ such that (7) holds. �

The above theorem obviously also holds with the roles of
Σ and Σ′ reversed. The theorem shows that without further
assumptions onΣ or Σ′, it is not possible to deduce the laws
of Σ from the laws ofΣobserved. In fact,Σ being unfalsified from
Σobservedleaves the fiber ofΣ completely unspecified. So, not
only is Σ unidentifiable fromΣobserved, but the deterministic
part of Σ, governed byRw= 0, is left completely arbitrary.
Without further structural information on the system or on the
environment, it is not possible to recover the parameters ofΣ
from sampling. The theorem also implies that the parameters
µ ,Γ of Σobservedtogether with the fiberL′ of Σ′ specifyΣ and
Σ′ uniquely, providedR′ΓR′⊤ ≻ 0. The conditionR′ΓR′⊤ ≻ 0
is calledsufficiency of excitation. It requires that there is an
adequate variety of experiments generated by the environment.

For the economic example the full complexity of the
identifiability question emerges. Sampling under equilibrium
conditions does not lead to identification of the price/demand
elasticity. A more elaborate controlled experiment is needed
to entangle the price/demand and price/supply systems.

There are many applications in statistics in which one
attempts to identify the stochastic laws governing a phe-
nomenon involving two real variables. As we remarked, such
a law invariably leads to a coarseσ -algebra. The important
observation here is that data generation through sampling
requires interconnection with another system, and therefore
data collection involvestwo distinct random systems. One
of these stochastic systems expresses the intrinsic random
laws one is after, while the other expresses the features
of the environment that happens to be acting during the
data collection experiment. Disentangling these laws requires
further structural assumptions on the experimental set-up.

X. CONSTRAINED PROBABILITY

Consider the stochastic system(W,E ,P). Let S be a
nonempty subset ofW. In this section we discuss the meaning
of the stochastic system induced by(W,E ,P) with outcomes
constrained to be inS. We shall see that this is indeed a
sensible concept.

Before entering into the mathematical development, we
illustrate the concept which we will introduce in this section
by means of some examples.
Example 5: The noisy resistor with constraints.Consider
the noisy resistor described by Equations (1, 2). Now impose
the constraintI = 1 amp.What is the probability distribution
of the resulting voltage?From an equation point of view, the
answer is easy. The noisy resistor is described by equation
(3). When I = 1 amp, thenV is then equal toR+ εV , a
gaussian random variable with meanR and standard deviation

σ . The problem is to deduce this result from the events and
the probability associated with the noisy resistor. Note that
V = R+ εV is not the result from conditioning the random
vector

[

V
I

]

by I = 1 amp, since{
[

V
I

]

∈ R2 | I = 1 amp} is
not an event. Similarly, we want to deduce that imposingV =
10 volt, leads toI = 10/R−εV/R, a gaussian random variable
with mean 10/R and standard deviationσ/R.
Example 6: Price/demand and price/supply with con-
straints. Consider the stochastic price/demand system dis-
cussed in Example 2. Impose the condition price1 = 1e as il-
lustrated in Figure 17(a).What is the resulting probability dis-
tribution of the demand?Similarly, consider the price/supply
system and impose the condition price2 = 1e as illustrated in
Figure 17(b).What is the resulting probability distribution of
the supply?It is readily seen that these are sensible questions
which for the specific cases discussed in Example 2 lead to
d = ε1 ands= ε2.

(a) (b)

price11e 1e price2

demand supply

Fig. 17. Stochastic price/demand and price/supply events

The problem is to deduce these probability distributions
from theσ -algebras and the probabilities associated with the
stochastic systems that describe the noisy resistor and the
price/demand and price/supply characterisitics.
Definition 7: Let Σ = (W,E ,P) be a stochastic system and
S⊆W. Assume that the regularity condition

[[E1,E2 ∈ E andE1∩S= E2∩S]]⇒ [[P(E1) = P(E2)]]

holds. Then the stochastic system

Σ|S := (S,E |S,P|S)

with

E |S := {E′ ∈ E | E′ = E∩S for someE ∈ E },

and

P|S(E′) := P(E) with E ∈ E such thatE′ = E∩S,

is calledthe stochastic systemΣ with outcomes constrained to
be in S. �

Constraining corresponds to interconnecting with the de-
terministic system(W,{ /0,S,Scomplement,W},P) and regularity
corresponds to complementarity. The regularity conditionba-
sically impliesS /∈ E . In fact, if S∈ E , then regularity holds if
and only ifP(S) = 1. In order to see this, observe first thatS∩
S=W∩S. HenceS∈E and regularity yieldP(S)=P(W)= 1.
Conversely, assume thatS ∈ E and P(S) = 1. Then E ∈ E

implies P(E) = P(E∩W) = P(E∩S)+P(E∩S
complement) =

P(E ∩ S). ThereforeE1,E2 ∈ E andE1 ∩ S = E2 ∩ S imply



P(E1) = P(E1 ∩ S) = P(E2 ∩ S) = P(E2). Hence regularity
holds. It follows that constraining is interesting whenS /∈ E .

The notion ofthe stochastic systemΣ with outcomes con-
strained to be inS, while reminiscent of the notion ofthe
stochastic systemΣ conditioned on outcomes inS, is quite
different from it. The former basically requiresS /∈ E , while
the latter requiresS ∈ E . Secondly, constraining associates
with the eventE ∈ E of Σ, the eventE ∩ S of Σ|S with
probabilityP(E), while conditioning associates with the event
E ∈ E of Σ the eventE ∩ S, also in E , with probability
P(E ∩ S)/P(S). So, constraining pulls the probability ofE
‘globally’ into E ∩ S, while conditioning associates withE
‘locally’ the probability ofE∩S, renormalized by dividing by
P(S).

Constraining allows to deduce probability distributions on
the outcome space beyond those that are obtained during
the identification process. Assume that the stochastic system
Σ = (Rn,E ,P) is interconnected withΣ′ = (Rn,E ′,P′) during
data collection and thatΣ∧Σ′ = Σobserved= (Rn,B(Rn),P′′)
is a classicaln-dimensional system. Assume further thatΣ
is identified by samplingΣobservedand disentanglingΣ from
Σ′, in the manner discussed in Section IX. The question
is to determine the probability distribution of the outcomes
on a subsetS ⊆ Rn. In its present form, this question is
ambiguous. Analyzing the outcomes inS in the experimental
set-up to leads to the conditional probabilityP′′ conditioned
by w∈ S. A more relevant interpretation of the above question
is that we want the probability associated with the stochastic
system(W,E ,P) with outcomes constrained to be inS. Both
the conditional and constrained probability may be deduced
from the identified system after sampling. The former requires
deducingP′′ from the samples andΣobserved, while the latter
requires first disentanglingΣ from Σ′, assuming thatΣ is
identifiable fromΣobserved, and subsequently constraining the
outcomes to be inS. In general, these two probabilities are
quite different.

In order to make this difference more concrete, consider the
noisy resistor (1, 2). We can deduce the parametersR andσ
by sampling for example under the experimental conditions
I = 1 amp. The conditional distribution ofI conditioned by
V = 10 volt in the interconnected system is the point measure
concentrated atI = 1 amp. The distribution ofI with outcomes
constrained to satisfyV = 10 volts is gaussian with mean
10/R and standard deviationσ/R. Thus constraining allows
to obtain probability distributions beyond the experimental set-
up used to identify the model parameters. In this and similar
examples, constraining appears a more relevant notion than
conditioning, because of the prevalence of coarseσ -algebras.

The notion of the stochastic systemΣ constrained byw∈ S

appears to be an interesting and useful addition to the list
of elementary concepts in mathematical probability. It is a
concept that is effective for stochastic systems with a coarse
σ -algebra.

XI. FUNCTIONS ON THE OUTCOME SPACE

In this section we discuss functions on the outcome space
of a stochastic system. Consider the equation

w′ = f (w) (8)

with w∈W governed by the stochastic system(W,E ,P) and
f a map fromW into W′. We want to construct the stochastic
system(W′,E ′,P′) that governs the outcomes of the variables
w′ ∈ W′. A special case of (8) of particular interest is the
projection(w1,w2) 7→w1, which in Section V we have referred
to as ‘elimination’.

In classical probability theory with, for example,W = Rn

and W′ = Rn′ , the assumption is usually made that theσ -
algebrasE and E ′ are given, for example as the Borelσ -
algebras, and thatf is measurable, for example continuous,
leading to the definition ofP′ asP′(E′) =P

(

f−1 (E′)
)

. In this
case the eventsE andE ′ are obtained from the (topological)
structure of the outcome spacesW andW′ and therefore the
construction ofE and E ′ does not involve the probabilistic
laws. The main theme of the present article is that the events
are an essential part of a stochastic model and must therefore
be constructed in accordance to the sets to which the model
assigns a probability. When the variablew′ is generated by (8),
the question therefore emerges how to chooseE ′ andP′ from
E ,P, and f , with E ′ the class of subsets ofW′ to which a
probability can be assigned. This situation has already been set
up by Kolmogorov in his original book on probability theory
[1, III §1]

We start with some facts aboutσ -algebras and pullbacks of
maps. Letf : W→W′. The pullbackf−1 satisfies

f−1(E′complement) = ( f−1(E′))complementand

f−1( ∪
k∈N

E′
k

)

= ∪
k∈N

( f−1(E′
k

)

).

These relations show thatf−1 takes σ -algebras intoσ -
algebras, in both directions. More concretely, ifE is a σ -
algebra of subsets ofW, then the class of subsetsE ′ of W′

defined by
[[E′ ∈ E

′]] :⇔ [[ f−1(E′) ∈ E ]] (9)

is also aσ -algebra of subsets ofW′. Conversely, ifE ′ is a
σ -algebra of subsets ofW′, then the class of subsetsE of W
defined by

[[E ∈ E ]] :⇔ [[E = f−1(E′) for someE′ ∈ E
′]]

is a sub-σ -algebra ofE .
Let (W,E ,P) be a stochastic system andf : W → W′.

DefineE ′ by (9). Thenf :W→W′ is measurable with respect
to the measurable spaces(W,E ) and(W′,E ′), leading to the
probability

P′(E′) := P
(

f−1(E′)
)

for E′ ∈ E
′. (10)

Definition 8: The stochastic system(W′,E ′,P′) with E ′

defined by (9) andP′ defined by (10) is called thestochastic
system onW′ induced by(W,E ,P) and f : W→W′. �

The construction ofE ′ defined by (9) leads to the largest
class of subsets ofW′ for which the probability can be defined
from the probability of events inE .

When f : Rn → Rm is linear, then Definition 8 associates
with a linear stochastic system another linear stochastic sys-
tem. The fiberL′ ⊆R

m in the co-domain is related to the fiber
L in the domain byL′ = f (L).



For the noisy resistor withR 6= 0, the maps
[

V
I

]

7→ V
and

[

V
I

]

7→ I both generate the trivial stochastic system
(R,{ /0,R},P′). The variablesV and I are hence not classical
random variables. The only non-zero real linear functionalon
R2 that generates a non-trivial stochastic system is the map
[

V
I

]

7→ V −RI which generates a classical gaussian random
variable with mean zero and standard deviationσ .

A common way in which probability enters into a system
is that some of the variablesw are modeled as random and
influence other related variablesw′, for example byf (w,w′) =
0, and the aim is to describe the stochastic behavior of the
related variablesw′. As a typical example think of modeling
the terminal current/voltage behavior of an electrical circuit
that contains stochastic sources. We explained how to construct
the stochastic laws governingw′ from the stochastic laws of
w when w and w′ are related by (8). The definition of the
w′-events from thew-events is more involved and in general
not easy to sort out whenw and w′ are related by a general
implicit equation asf (w,w′) = 0.

While the stochastic system(W′,E ′,P′) on W′ induced by
(W,E ,P) and f : W → W′ is a well-defined notion, a great
deal of information may be lost when passing from(W,E ,P)
and f : W → W′ to (W′,E ′,P′). The problem is thatE ′ as
constructed by (9) may contain very few events and certain
properties and operations on(W,E ,P) may be lost when
passing to(W′,E ′,P′). We shall see an example of such a
situation involving constraining in the next section.

XII. PROBABILITY KERNELS

Open stochastic systems are often thought of as classical
stochastic systems with ‘inputs’, that is, as a family of proba-
bility measures on an output space, parameterized by an input.
Such families of probability measures go under the name of
probability kernels. The main distinction between probability
kernels and our approach consists in the input/output view of
open systems that underlies probability kernels. While inputs
and outputs definitely have their place in modeling, especially
in signal processing and in feedback control, the input/output
view has many drawbacks when modeling open physical
systems, as argued for example in [2] for the deterministic
case. With input/output thinking one cannot get off the ground
when modeling, for example, simple electrical circuits [3], the
paradigmatic examples of interconnected systems.

Developing the themes of the present article using proba-
bility kernels in their full generality lies beyond the scope of
the present article. We merely explain some of the connections
between our notion of stochastic system on the one hand, and
probability kernels on the other hand, by means of an example
that is important in applications, namely, thebinary channel.

p

p

1−p

1−p
p1

p0
1−p1

1−p0

(a) (b)

u0 u0

u1 u1

y0 y0

y1 y1

Fig. 18. Binary channel

The channel functions as follows. There are two possible
inputs,u0 andu1. The channel transmits the input and produces
two possible outputs,y0 andy1. The inputu0 leads to output
y0 with probabilityp0 and to outputy1 with probability 1− p0,
while the inputu1 leads to outputy1 with probability p1 and
to outputy0 with probability 1− p1. If p0 = p1 = p, then we
call the channelsymmetric, while if p0 6= p1, then we call the
channelasymmetric. The symmetric binary channel is shown
in Figure 18(a), while the asymmetric binary channel is shown
in Figure 18(b).

Formally, denote the input alphabet asU= {u0,u1} and the
output alphabet asY = {y0,y1}. The channel is specified as
two classical stochastic systems,

Σu0 =
(

Y,2Y,Pu0

)

and Σu1 =
(

Y,2Y,Pu1

)

,

with the probabilities given by

Pu0({y0}) = p0, Pu0({y1}) = 1− p0,

Pu1({y0}) = 1− p1, Pu1({y1}) = p1.

The pair of systems
(

Σu0,Σu1

)

is an example of a probability
kernel.

A. The symmetric binary channel

(a) (b) (c)
u0 u0u0 u1 u1u1

y0 y0y0

y1y1y1

E0

E1

U UU

Y YY S0 S1

Fig. 19. Events for the symmetric binary channel

We now show how to approach the symmetric binary
channel using constrained probability. Start with the system

Σsbc= (U×Y,E ,P).

Thus the outcome space, shown in Figure 19(a), isU×Y. The
event set isE = { /0,E0,E1,U×Y}. with

E0 = {(u0,y0),(u1,y1)},E1 = {(u0,y1),(u1,y0)}

(see Figure 19(b)). Note thatE 6= 2U×Y. HenceΣsbc is not a
classical stochastic system. The probabilityP is determined
by

P(E0) = p, P(E1) = 1− p.

Now considerΣsbc with outcomes constrained to be in

S0 = {(u,y) | u= u0} andS1 = {(u,y) | u= u1},

respectively. The setsS0 andS1 are illustrated in Figure 19(c).
It is easily verified that the regularity condition of Definition 5
is satisfied for bothS0 andS1. The resulting stochastic systems
areΣsbc|S0 = (Y,2Y,P|S0) andΣsbc|S1 = (Y,2Y,P|S1) with

P|S0({y0}) = p, P|S0({y1}) = 1− p,

P|S1({y0}) = 1− p, P|S1({y1}) = p.



Observe thatΣsbc|S0 =Σu0 andΣsbc|S1 =Σu1 yield preciselythe
systemsΣu0 andΣu1 that specify the channel as a probability
kernel.

Note that the symmetric binary channel can be viewed
as a linear stochastic system. Identify bothU and Y with
GF(2), the Galois field{0,1}. Set W = U×Y = GF(2)2.
ThenΣsbc is a linear stochastic over the field GF(2) with fiber
L= {(0,0),(1,1)} and probabilitiesP({(0,0),(1,1)})= p and
P({(0,1),(1,0)}) = 1− p.

B. The asymmetric binary channel

We now show how to approach the asymmetric binary
channel using probability kernels. Start with the stochastic
system

Σ = (U×Y×E,E ,P),

with E = {e1,e2,e3,e4}. Thus the outcome space, shown in
Figure 20(a), is the Cartesian product ofU×Y andE. The
spaceE is introduced in order to generate the uncertainty in
the channel. The eventsE consist of theσ -algebra generated
by the pairs

E1 = {(u0,y0,e1),(u1,y0,e1)},
E2 = {(u0,y0,e2),(u1,y1,e2)},
E3 = {(u0,y1,e3),(u1,y0,e3)},
E4 = {(u0,y1,e4),(u1,y1,e4)}.

Note that theσ -algebra generated by{E1,E2,E3,E4} is not
equal to 2U×Y×E. So Σ is not a classical stochastic system.
The probabilityP is determined by

P(E1) = p0(1− p1), P(E2) = p0p1,

P(E3) = (1− p0)(1− p1), P(E4) = (1− p0)p1.

The generating set forE is shown in Figure 20(b).
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Fig. 20. Events for the asymmetric binary channel

Now consider the stochastic systemΣ with outcomes con-
strained to be inS0 = {(u,y,e) | u= u0} and the stochastic sys-
tem Σ with outcomes constrained to be inS1 = {(u,y,e) | u=

u1}. The setsS0 and S1 are illustrated in Figure 20(c). It
is easily verified that the regularity condition of Definition
7 is satisfied for bothS0 and S1. The constrained stochastic
systems are denoted byΣ|S0 and Σ|S0 respectively and given
by Σ|S0 = (Y×E,E |S0,P|S0) with E |S0 generated by

E1 = {(y0,e1)}, E2 = {(y0,e2)},
E3 = {(y1,e3)}, E4 = {(y1,e4)},

andP|S0 defined by

P|S0(E1) = p0(1− p1), P|S0(E2) = p0p1,

P|S0(E3) = (1− p0)(1− p1), P|S0(E4) = (1− p0)p1,

andΣ|S1 = (Y×E,E |S1),P|S1) with E |S1 generated by

E1 = {(y0,e1)}, E2 = {(y1,e2)},
E3 = {(y0,e3)}, E4 = {(y1,e4)},

andP|S1 defined by

P|S1(E1) = p0(1− p1), P|S1(E2) = p0p1,

P|S1(E3) = (1− p0)(1− p1), P|S1(E4) = (1− p0)p1.

Observe that after elimination ofe, that is, the marginal
probability for y, Σ|S1 and Σ|S2 yield precisely the systems
Σu0 andΣu1 that specify the channel as a probability kernel.

The introduction ofE and Σ shows that the asymmetric
binary channel as a probability kernel can be interpreted in
a as constrained stochastic systems. The probability kernel
(Σu0,Σu1) can also be interpreted in terms of conditional
probabilities. Define, forπ ∈ (0,1) the stochastic system
(U,2U,Pu) by Pu({u0}) = π and Pu({u1}) = 1− π . We then
obtain the family of stochastic systems

Σπ =
(

U×Y,2U×Y,Pπ

)

with

Pπ({(u0,y0)}) = p0π ,
Pπ({(u0,y1)}) = (1− p0)π ,
Pπ({(u1,y0)}) = (1− p1)(1−π),
Pπ({(u1,y1)}) = p1(1−π).

For each of these systems,Σu0 and Σu1 are the conditional
probabilities ofy given u. Since the interpretation of a prob-
ability kernel as conditional probabilities requires modeling
the environment, that is, interpreting the inputu as a classical
random variable, we feel that the interpretation in terms of
constrained probability is a more satisfactory one conceptually.

Our treatment of the asymmetric binary channel is based
on choosing the auxiliary outcomes inE and identifying the
eventsE1,E2,E3,E4 with the associated probabilities such that
constraining byS0 and S1 gives the channel probabilities
after eliminating the variablese. Note that if we would
have eliminated thee’s immediately from the systemΣ,
equivalently, apply the projection(u,y,e) 7→ (u,y), then, as
shown in Section XI, we obtain the stochastic systemΣ′ =
(U×Y,{ /0,U×Y},P′) with the trivial σ -algebra{ /0,U×Y}.
Constraining byS0 and S1 then becomes ineffective. This
shows that in this example projection blends out a great deal



of information. What is needed to correct this is allowing the
projected atomsE1,E2,E3,E4 to

Ẽ1 = {(u0,y0),(u1,y0)}, Ẽ2 = {(u0,y0),(u1,y1)},
Ẽ3 = {(u0,y1),(u1,y0)}, Ẽ4 = {(u0,y1),(u1,y1)},

with the probabilities

P̃(Ẽ1) = P(E1) = p0(1− p1),

P̃(Ẽ2) = P(E2) = p0p1,

P̃(Ẽ3) = P(E3) = (1− p0)(1− p1),

P̃(Ẽ4) = P(E4) = (1− p0)p1

as the specification itself of a stochastic system on the outcome
space(U×Y). Unfortunately, theP̃’s do not define a prob-
ability on theσ -algebra generated by thẽE’s, and therefore
the (Ẽ, P̃)’s do not define a probability space in the orthodox
sense of the term.

When ε a classical random vector, theny = f (u,ε) can
be dealt with by consideringu as an input parameter which
together with the random inputε generates the outputy. For
example, the symmetric binary channel can be realized this
way by takingU = Y = {0,1}, ε a random variable taking
values in{0,1} with Pε({0}) = p,Pε({1}) = 1− p, and setting

u+ y= ε

over GF(2). The asymmetric binary channel can be realized
by settingU= Y= {0,1}, and

y= ε0(1−u)+ ε1u

with ε0,ε1 independent random variables both taking values in
{0,1} with P({ε0 = 0}) = p0 andP({ε1 = 1}) = p1. In terms
of the e’s discussed above, we have thene1 ↔ (0,0),e2 ↔
(0,1),e3 ↔ (1,0),e4 ↔ (1,1).

Applying the thinking in terms of stochastic kernels to the
noisy resistor, one could assume thatI is an input which
together withεV generates the random variableV through (3).
This leads to an interpretation of the noisy resistor in terms
of a probability kernel withPI (V) a gaussian real random
variable with meanRI and standard deviationσ . There are
several drawbacks of dealing with the noisy resistor in this
way, the main one being that it does not putI andV a priori
on equal footing. Our way of dealing with

[

V
I

]

in terms of
a coarseσ -algebra appears simpler, more general, and more
satisfying conceptually. Modeling the noisy resistor witha
random voltage source or a random current source is only
an equivalent circuit view of a noisy resistor. Interpreting the
events (1) and the probability (2) associated with the noisy
resistor as the physics of a hot resistor is simpler, closer to
reality, and generalizes to situations where the events arenot
cylindrical strips. Finally, it not evident how to deal withthe
stochastic price/demand and price/supply characteristic(see
Figure 5) as stochastic kernels.

XIII. C ONCLUSION

The main message of this paper is that a mathematical
specification of a stochastic system should involve the events
on an equal footing to the probability measure. The need to

have not all Borel sets as events and to work with coarseσ -
algebras is essential even for elementary applications.

Interconnection of stochastic systems can be defined effec-
tively for stochastic systems with coarse eventσ -algebras, but
requires suitable properties of the event space, as complemen-
tarity of the stochastic systems or of the associatedσ -algebras.

An interesting notion that emerges for systems with a coarse
σ -algebra of events is constraining the outcomes to belong to
a subset of the outcome space that is not an event.

One of the urgent directions of generalization of the notions
of the present paper is to stochastic dynamical systems and
stochastic processes. We have already pointed out that the
classical notion of a stochastic process as a family of mea-
surable mapsft : Ω →R, parametrized by the time parameter
t, from a basic probability spaceΩ with σ -algebraA to
R with the Borel σ -algebra is a closed systems view. It is
quite reasonable to study stochastic processes in which the
ft ’s are not a classical random variables, even for elementary
examples. For instance, Brownian motion is classically defined
as a continuous processb on [0,∞) with (i) b0 = 0, (ii) b has
normally distributed increments with mean zero and variance
proportional to the time elapsed between the increments, and
(iii) the increments on non-overlapping time intervals are
independent. Our view is that condition (i) is superfluous.
This point of view implies in particular thebt ’s need not a
classical real random variables. A problem that is presently
under investigation is to give a suitable definition of a Markov
processf without assuming that theft ’s are classical random
variables.
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