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The Behavioral Approach to Linear
Parameter-Varying Systems
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Abstract—Linear parameter-varying (LPV) systems are usu-
ally described in either state-space or input–output form. When
analyzing system equivalence between different representations
it appears that the time-shifted versions of the scheduling signal
(dynamic dependence) need to be taken into account. Therefore,
representations used previously to define and specify LPV sys-
tems are not equal in terms of dynamics. In order to construct a
parametrization-free description of LPV systems that overcomes
these difficulties, a behavioral approach is introduced that serves
as a basis for specifying system theoretic properties. LPV systems
are defined as the collection of trajectories of system variables
(like inputs and outputs) and scheduling variables. LPV kernel,
input–output, and state-space system representations are intro-
duced with appropriate equivalence transformations.

Index Terms—Behavioral approach, dynamic dependence,
equivalence, linear parameter-varying (LPV).

I. INTRODUCTION

M ANY physical/chemical processes encountered in prac-
tice have nonstationary or nonlinear behavior, and often

their dynamics depend on external variables like space coordi-
nates, temperature, etc. For such processes, the theory of linear
parameter-varying (LPV) systems offers an attractive modeling
framework [1]. This class of systems is particularly suited to
deal with processes that operate in varying operating regimes.
LPV systems can be seen as an extension of the class of linear
time-invariant (LTI) systems. In LPV systems, the signal re-
lations are considered to be linear, but the parameters in the
description of these relations are assumed to be functions of
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a time-varying signal, the so-called scheduling variable . As
a result of the parameter variation concept, the LPV system
class can describe both time-varying and nonlinear phenomena.
Practical use of this framework is stimulated by the fact that
LPV control design is well developed, extending results of op-
timal and robust LTI control theory to nonlinear, time-varying
plants [1]–[9].

In a discrete-time setting, LPV systems are commonly de-
scribed in a state-space (SS) form (see [1]–[9])

(1a)

(1b)

where is the input, and is the
output, is the state vector and the system matrices

are functions of the scheduling signal ,
e.g., , where the set is the so called
“scheduling space.” It is assumed that is an external signal of
the system, i.e., is not dependent on or . An exact definition
of when this externality property holds for will be given later.

In the identification literature, LPV systems are also de-
scribed in the form of (filter-type) input–output (IO) represen-
tations [10]–[13]

(2)

where are matrix functions of . In equations (1a), (1b),
and (2), the coefficients depend on the instantaneous time value
of , which is called static-dependence. In analogy with the
LTI system theory, it is commonly assumed that representations
(1a), (1b), and (2) define the same class of LPV systems and that
conversion between these representations follows similar rules
as in the LTI case (see [14]–[16]). However, it has been observed
recently that this assumption is invalid if attention is restricted
to static dependence [17].

Example 1: To illustrate the problem, consider the following
second-order SS representation:

With simple manipulations, this system can be written in an
equivalent IO form

which can clearly not be formulated as (2).
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In order to obtain equivalence between the SS and IO rep-
resentations, it is necessary to allow for a dynamic mapping
between and the coefficients, i.e., and
should be allowed to depend on (finitely many) time-shifted in-
stances of , i.e., [17]. We
call such a dependence dynamic in the sequel. Dynamic depen-
dence has also been encountered and analyzed in terms of LPV
control synthesis (see [18] and [19]), and its need is supported as
well by LPV modeling of nonlinear/time-varying systems (see
Example 2 and [20]). Currently, it is not well understood how
to handle such dependencies in general and how to formulate
algorithms that provide transformations between the represen-
tation forms (an intermediate solution for the SISO case is given
in [17]).

The necessity of dynamic dependence clearly indicates that
representations (1a), (1b), and (2) used previously to define and
specify LPV systems are not equal in terms of dynamics. Fur-
thermore, the lack of realization/transformation theory associ-
ated with these representations hinders the use of many identi-
fication methods based on IO models, like the extension of suc-
cessful prediction error methods of the LTI case, e.g., [10] and
[11], to provide state-space models for control synthesis. The
lack of understanding of similarity transformation for (1a) and
(1b) is also a source of many pitfalls both for identification and
control synthesis in general [17]. Furthermore, the collection of
transfer functions of (1a), (1b), and (2) for each value of ,
the so-called frozen transfer functions, does not specify the be-
havior of the system for nonconstant trajectories of , which is
often overlooked in the literature; see [21]–[23]. As no global
transfer-function theory exists in the LPV case, definitions of
input–output behavior of (1a), (1b), and (2) are relevant to be
considered in terms of solutions of these difference equations
in the time domain. These arguments indicate that the classical
definitions of LPV systems and the “assumed” similarity trans-
formation connected to them are inadequate, showing that the
current LPV system theory is incomplete.

A parametrization-free definition of LPV systems and an al-
gebraic framework where the previously considered represen-
tations and concepts of LPV systems are reestablished can be
found by considering a behavioral approach to the problem. In
this paper, the behavioral framework, originally developed for
LTI systems [24], is extended to discrete-time LPV systems. In
this framework, systems are described in terms of behaviors that
corresponds to the collection of all valid signal trajectories. Our
aim is to use the behavioral concept to establish well-defined
LPV system representations as well as their interrelationships.
Our further intention is to develop a unified LPV system theory
that establishes connections between the available results.

The paper is organized as follows. In Section II, LPV systems
are defined from the behavioral point of view. In Section III, an
algebraic structure of polynomials is introduced to define pa-
rameter-varying difference equations as representations of the
system behavior. This is followed, in Section IV, by developing
kernel, IO, and SS representations of LPV systems, together
with the basic notions of IO partitions and state variables. In
Section V, it is explored when two kernel, IO, or SS represen-
tations are equivalent. In Section VI, equivalence transforma-
tions between SS and IO representations are worked out. Finally,

in Section VII, the main conclusions are summarized. We only
consider discrete-time systems, however analog results for the
continuous-time case follow in a similar way (see [20]).

II. LPV SYSTEMS AND BEHAVIORS

The reason why the LPV framework has become popular
in practical applications is that it represents an attractive
intermediate case between LTI and nonlinear/time-varying
descriptions. Driven by the need to address the control of com-
plicated plant dynamics in a linear framework, LPV systems
were invented to “embed” nonlinear behaviors into a linear
structure enabling the use of convex control synthesis and
simple stability analysis as extensions of well-worked-out LTI
results. However, what makes all this possible is a particular
concept behind the scheduling variable . In order to give a
formal definition of LPV systems, we first need to clarify the
role of and its so called externality property.

Assume that we are given a discrete-time system , depicted
in Fig. 1(a), which describes the (possibly nonlinear) dynam-
ical relation between the signals , where is a
given set. Let ( stands for all maps from to

) containing all trajectories of that are compatible with .
Then, we call the behavior of the system . A common prac-
tice in LPV modeling is to introduce an auxiliary variable ,
with range , and reformulate as shown in Fig. 1(b), where
it holds true that if the loop is disconnected and is assumed
to be a known signal, then the “remaining” relations of are
linear. Applying this reformulation with a disconnected and
assuming that all trajectories of are allowed, i.e., is a free
variable with , the possible trajectories of this reformu-
lated system will form a behavior , which will contain as
visualized in Fig. 1(c). This concept of formulating a linear but

-dependent description of enables the use of simple stability
analysis and convex controller synthesis, which will always be
conservative w.r.t. , but computationally more attractive and
robust than other approaches directly addressing . The sched-
uling variable can appear in many different relations w.r.t. the
original variables . If is a free variable w.r.t. , then we can
speak about a true parameter-varying system without conser-
vativeness. However, it often happens that depends on other
signals. In the latter case, the resulting system is often referred
as a quasi parameter-varying system. To decrease conservative-
ness of LPV controller synthesis or modeling w.r.t. such situ-
ations, very often the possible trajectories of are restricted,
for instance by supposing (boundary) restrictions on first- and
higher-order derivatives/differences of or by excluding spe-
cific trajectories due to physical constraints. In this way, ap-
pears to be a free variable of the system, but with certain “ex-
ternal” restrictions, hence to express this property, we will call

an external variable in the sequel. Based on these concepts,
the class of parameter-varying (PV) systems can be defined as
follows.

Definition 1 (Parameter-Varying Dynamical System):
A parameter-varying system is defined as a quadruple

, where is called the time axis,
denotes the scheduling set (i.e., ), is the
signal space, and is the behavior.
Furthermore, the set of allowed scheduling trajectories
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Fig. 1. Concept of LPV modeling. (a) Original plant. (b) Characterization of
. (c) Relation of the resulting behaviors.

satisfies
the externality property in the sense that there exists a behavior

with being a free variable, i.e., ,
and such that for each it holds that

. In other words
implies that .

The set defines the time-axis of the system, describing con-
tinuous-time (CT), , and discrete-time (DT), , sys-
tems alike, while gives the range of the system signals . The
behavior is the set of all signal and scheduling
trajectories that are compatible with the system. Note that there
is no prior distinction between inputs and outputs in this setting.

The scheduling set is usually a closed subset of a vector
space. The set of admissible scheduling trajectories of , defined
as the projected scheduling behavior

(3)

describes all possible scheduling trajectories of . in terms
of Definition 1 implies that the scheduling variable is
a “structurally free” variable of , but not literally as the tra-
jectories of can be restricted in , i.e., is not necessary
equal to . A variable with such a property is called external
or semi-free. Note that this definition of the behavior allows to
include additional restrictions on the possible trajectories of ,
but keeps the independence of from the signal variables ,
which is in line with the current concepts of the LPV literature
(see Example 2)

For a given scheduling trajectory, , we define the
projected signal behavior as

(4)

describes all possible signal trajectories compatible with
. In case of a constant scheduling trajectory, with

for all where , the projected behavior
is called a frozen behavior and denoted as

with (5)

Definition 2 (Frozen System): Let be a PV
system and consider for a in . The dynamical
system is called a frozen system of .

Define as the unit forward time-shift operator, e.g.,
. With the previously introduced concepts, we can define

discrete-time LPV systems as follows.
Definition 3 (DT-LPV System): Let . The param-

eter-varying system is called LPV, if the following conditions
apply.

Fig. 2. Varying-mass connected to a spring.

• is a vector space, and is a linear subspace of
for all (linearity).

• For any and any , it holds that
, in other words

(time-invariance).
In terms of Definition 3, for a constant scheduling trajectory

, time-invariance of implies time-invariance of .
Based on this and the linearity condition of , it holds for an
LPV system that for each with in the
associated frozen system is an LTI system, which is in ac-
cordance with previous definitions of LPV systems [1]. In this
way, the projected behaviors of a given w.r.t. constant sched-
uling trajectories define a set of LTI systems.

Definition 4 (Frozen System Set): Let be
an LPV system. The set of LTI systems

with (6)

is called the frozen system set of .
Naturally, the LPV system concept is advantageous compared

to general nonlinear systems, as the relation of the signals is
linear. Definition 3 also reveals the advantage of this system
class over LTV systems: The variation of the system dynamics
is not associated directly with time, but with the variation of
an external (semi-free) signal. Thus, the LPV modeling con-
cept, compared to LTV systems, is more suitable for nonsta-
tionary/coordinate-dependent physical systems as it describes
the underlying phenomena directly.

Example 2: To emphasize the advantage of LPV systems, we
investigate the modeling of the motion of a varying mass con-
nected to a spring (see Fig. 2). This problem is one of the typical
phenomena occurring in systems with time-varying masses like
in motion control (robotics, rotating crankshafts, rockets, etc.).
Denote by the position of the varying mass . Let
be the spring constant, introduce as the force acting on the
mass, and assume that there is no damping. By Newton’s second
law of motion, the following equation holds:

(7)

Using an Euler type of discretization with step size , a
DT approximation of (7) is

(8)
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It is immediate that by taking as a scheduling variable, the
behavior of this process can be described as an LPV system,
preserving the physical insight of Newton’s second law. Note
that is a free variable in (7), hence the resulting LPV system
with describes the behavior of (7) without conservative-
ness. On the other hand, viewing as a time-varying param-
eter, whose trajectory is fixed and known in time, results in an
LTV system. Such a system would explain the behavior of the
process for only a fixed trajectory of the mass. Furthermore, in
an application it might be advantageous to restrict the possible
trajectories of to a subset of , as for example during oper-
ation of the system it is known that .
This restriction of the behavior can be exploited to decrease the
conservativeness of the LPV description and focus the control
synthesis on the interesting operating regime later on. However,
with such a restriction, would not be a free variable any-
more, but it would still be external.

In the sequel, we restrict our attention to DT systems with
and with a subset of . In fact, we consider

LPV systems described by finite-order linear difference equa-
tions with parameter-varying effects in the coefficients.

III. ALGEBRAIC PRELIMINARIES

In order to reestablish the concept of LPV-IO and SS rep-
resentations, we introduce difference equations with varying
coefficients as the representation of the behavior . These dif-
ference equations are described by polynomials of an algebraic
ring where equivalence of representations and other system
theoretic concepts can be characterized by simple algebraic
manipulations.

A. Coefficient Functions

First, we define the set of functional dependencies considered
in the sequel.

Definition 5 (Real-Meromorphic Function [25]): A
real-meromorphic function , is a function

, where , are holomorphic (analytic)
functions and .

Meromorphic functions consist of all rational, polynomial,
trigonometric expressions, rational exponential functions, etc.
Thus, this class contains the common functional dependencies
that result during LPV modeling of physical systems. Next, we
establish an algebraic field of a wide class of multivariable
real-meromorphic functions from which the -dependent co-
efficients of the representations will follow. Variables of these
functions will be associated with the elements of the scheduling
variable and their time-shifts in order to represent dynamic de-
pendencies. However, to uniquely define these dependencies (to
establish a field), it must be ensured that in terms of an ordering,
the “last” variable have a role in the considered functions. For
instance, should be excluded from the consid-
ered set as only is need to express this functional
dependence. To ensure this property, we introduce operators
and to exclude nonunique functional dependencies in the
construction of .

Let denote the field of real-meromorphic functions with
variables. Denote the variables of a as . Also

define an operator on with such that

(9)

Note that projects a meromorphic function to a lower dimen-
sional domain. Introduce

(10)

It is clear that consist of all functions in which the vari-
able has a nonzero contribution, i.e., it plays a role in the
function. Also define the operator ,
which associates a given with a , , i.e.,

, such that
for all , and is minimal. In this
way, reduces the variables of a function till cannot be
left out from the expression because it has a nonzero contri-
bution to the value of the function. Now define the collection
of all real-meromorphic functions with finite many variables as
follows:

with (11)

The function class will be used as the collection of coefficient
functions [like and in (1a), (1b), and (2)]
for the representations, giving the basic building block of PV
difference equations. These functions are not only used to ex-
press dependence over multidimensional but also to enable a
distinction between dynamic scheduling dependence of the co-
efficients and the dynamic relation between the signals of the
system. The following lemma is important.

Lemma 1 (Field Property of ): The set is a field.
To prove Lemma 1, the addition and multiplication operators

on are defined as follows.
Definition 6 (Addition/Multiplication Operator on ): Let
, such that and with , .

If , there exists a unique function such that
. Let . In case , and are defined

respectively on . Then

(12)

where and are the Euclidean addition and multiplication
operators of (or ).

Based upon and , the proof of Lemma 1 is straightfor-
ward and can be found in [20]. In the following, if it is not neces-
sary to emphasize the difference between the Euclidian addition
and , we use to denote both operators in order to improve
readability. The same abuse of notation is introduced for .

B. Representing Scheduling Dependence

The next step is to associate the variables of the coefficient
functions with elements of and its time-shifts, which will pro-
vide the characterization of dynamic dependencies in the rep-
resentations. Naturally, this association is dependent on the di-
mension of the scheduling space considered.

In case of a scalar , i.e., , we can associate
each variable of a given with

in order to express a given dynamic coef-
ficient dependency. For example, the dependence
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Fig. 3. Variable assignment by the functions and in Definition 7.

can be expressed in this way by a unique given as
.

Now, we can consider the general case. For a given with
dimension and , label the variables of according to
the following ordering:

For a given scheduling signal , associate the variable with
. For this association we introduce the operator

defined by

The value of a ( -dependent) coefficient in an LPV system rep-
resentation is now given by an operation .

Example 3 (Coefficient Function): Let with
. Consider the real-meromorphic coefficient func-

tion , defined as .
Then, for a scheduling signal ,

. On the other hand, if ,

then , showing that the
operator implicitly depends on .

In the sequel, the (time-varying) coefficient sequence
will be used to operate on a signal [like in (2)], giving
the varying coefficient sequence of the representations. In this
respect, an important property is that multiplication of the op-
eration with the shift operator is not commutative—in other
words, . To handle this multiplication, for

we define the shift operations , .
Definition 7 (Shift Operators): Let . For a given

scheduling dimension , denote the variables of as
based on the previously introduced labeling. The forward-shift
and backward-shift operators on are defined as

(13)

where denotes function composition, , ,
and assigns each variable to , while assigns
each to as depicted in Fig. 3.

In other words, if is dependent on and , then is the
“same” function (disregarding the number of variables) except

is dependent on and . With these notions, we can
write and , corresponding to

on the signal level.

Example 4: Consider the coefficient function given in Ex-
ample 3 with . Then, is a function , given
by . For a

scheduling trajectory , it holds that
.

The considered operator can straightforwardly be extended
to matrix functions where the operation is ap-
plied to each scalar entry of the matrix.

C. Polynomials Over

Next, we define the algebraic structure of the representations
we use to describe LPV systems. Introduce as all polyno-
mials in the indeterminate and with coefficients in . is
a ring as it is a general property of polynomial spaces over a
field, that they define a ring. Also introduce , the set of
matrix polynomial functions with elements in . Using
and the operator , we are now able to define a PV difference
equation.

Definition 8 (PV Difference Equation): Consider
and .

(14)

is called a PV difference equation with order .
In this notation, the shift operator operates on the signal
, while the operation takes care of the time/scheduling-de-

pendent coefficient sequence. Since the indeterminate is as-
sociated with , multiplication with is noncommutative on

, i.e., and .
In the following, we only consider scheduling trajectories for

which the coefficients of are bounded, so the set of
solutions associated with is well defined. PV difference
equations in the form of (14) are used to define the class of
DT-LPV systems we consider in this paper. It will be shown that
this class contains all the popular definitions of LPV-SS and IO
models.

Example 5 (PV Difference Equation): Consider Example 2.
Let with scheduling space and let

. Then, the difference (8), which defines the possible
signal trajectories of the DT approximation of the mass-spring
system, can be written in the form of (14) with , ,

(15)

where , ,
.

Due to its algebraic structure, it easily follows that is a
domain, i.e., for all , it holds that

. Then, with the above defined
noncommutative multiplicative rules, defines an Ore al-
gebra [26] and it is a left and right Euclidian domain [27]. The
latter implies that there exists division by remainder. This means
that if , with and ,
then there exist unique polynomials , such that

where .
Due to the fact that is a domain, the rank of a polynomial

is well defined [28]. Denote by
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and the subspace spanned by the rows (columns)
of , viewed as a linear space of polynomial vector
functions with coefficients in . Then, it can be shown that

(16)

The notion of unimodular matrices, essential to characterize
equivalent representations, is also introduced.

Definition 9 (Unimodular Matrix): Let .
is called unimodular if there exists a such that

and .
Any unimodular matrix operator in is equivalent

to the product of finite many elementary row and column
operations [27].

1) Interchange row (column) and row (column) .
2) Multiply a row (column) on the left (right) by a ,

.
3) For , add to row (column) row (column) multiplied

by , .
Example 6 (Unimodular Matrix): The matrix polynomials
, , defined as

are unimodular as . Note that
due to the noncommutativity of the multiplication by

on .
Another important property of is the existence of a

Jacobson form (generalization of the Smith form).
Theorem 1 (Jacobson Form [27]): Let with

and . Then, there exist unimodular matrices
and such that

(17)

where with monic nonzero
. Furthermore, there exist such that

for .
Due to the algebraic structure of , the proof of

Theorem 1 similarly follows as in [27].
Example 7 (Jacobson Form): Consider

where is a meromorphic function and . Then, the
Jacobson form of is

Now it is possible to show that there exists a duality between
the solution spaces of PV difference equations and the poly-
nomial modules in associated with them, which is im-
plied by a so-called injective cogenerator property. This prop-
erty makes it possible to use the developed algebraic structure to
characterize behaviors and manipulations on them. Originally,
the injective cogenerator property has been shown for the so-
lution spaces of the polynomial ring over in [29]. In the
Appendix, this proof is extended to .

IV. SYSTEM REPRESENTATIONS

A. Kernel Representation

Using the developed concepts, we introduce kernel represen-
tation (KR) of an LPV system in the form of (14).

Definition 10 (DT-KR-LPV Representation): The parameter
varying difference (14) is called a discrete-time kernel repre-
sentation, denoted by , of the LPV dynamical system

with scheduling vector and signals ,
if

(18)

It is obvious that the behavior associated with (14) always
corresponds to a LPV system in terms of Definition 3. It is also
important, that the allowed trajectories of in terms of (18) are
not restricted by (14) (only those are excluded
for which a coefficient is unbounded). This is in accor-
dance with the classical concept of being an external vari-
able of the system. One can also include further restrictions on

, like bounding the first- or higher-order differences
of , etc. However, to preserve the generality of the developed
framework, we do not consider such restrictions in terms of rep-
resentations.

Based on the concept of rank, the following theorem holds.
Theorem 2 (Full Row Rank KR Representation): Let be

given with a KR representation (14). Then, can also be rep-
resented by a with full row rank.

The proof of this theorem is given in the Appendix.

B. IO Representation

Partitioning of the signals into input signals
and output signals , i.e., , is often con-
sidered convenient. Such a partitioning is called an IO partition
[24].

Definition 11 (IO Partition of an LPV System): Let
be an LPV system. The partitioning of the

signal space as and parti-
tioning of correspondingly with and

is called an IO partition of , if the following con-
ditions apply:

1) is free, i.e., for all and , there exists
a such that ;

2) does not contain any further free component, i.e., given
, none of the components of can be chosen freely for

every (maximally free).
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An IO partition implies the existence of matrix-polynomial
functions and with full
row rank, such that (14) can be written as

(19)

with and the corresponding behavior is

with and . An IO partition defines a causal
mapping in case the solutions of (19) are restricted to have left
compact support. Otherwise, initial conditions also matter [30].
Similar to the LTI case, LPV systems with no free variables are
called autonomous.1 Now, it is possible to introduce IO repre-
sentations of DT-LPV systems.

Definition 12 (LPV-IO Representation): The discrete-time
IO representation of an LPV system

with IO partition and scheduling vector
is denoted by and defined as a parameter-varying

difference-equation system with order

(20)

where and with and
are the meromorphic parameter-varying coefficients of

the matrix polynomials and full row rank
with .

It is apparent that (20) is the “dynamic-dependent” counter-
part of (2).

Example 8 (IO Partition and Representation): In Example 5,
the sampled force variable is a free variable as it repre-
sents the inhomogeneous part of difference equation (8). Thus,
the choice of yields a valid
IO partition. With being the scheduling signal, the discrete-
time PV behavior can be represented in the form of (20) with
polynomials

which have coefficients: , ,
, . Obviously, has full row rank.

This implies that and define an IO representation
of the model with coefficients as above.

For LPV systems, the notion of transfer function or frequency
response in the classical sense has no meaningful2 interpreta-
tion. By using the approximative transfer-function calculus of
LTV systems based on a formal series approach [31], some inter-
pretation of these notions can be given for LPV systems. How-
ever, the direct extension of this approximative transfer function

1It is possible that the freedom of the components of can change for spe-
cific scheduling trajectories. In this case, the autonomous part of the behavior is
related to the scheduling dependent nature of the system.

2Some authors [21]–[23] introduce LPV transfer functions with varying pa-
rameters. As they commonly refer only to the collection of transfer functions

associated with , this notion of the LPV transfer function is misleading.

calculus to the class of systems considered here is not available
yet.

C. State-Space Representation

In the modeling of dynamical systems, auxiliary variables
(often called latent variables) are commonly used [30]. The nat-
ural counterpart of (14) to cope with such variables is

(21)

where are the latent variables and
. The set of (21) is called a latent variable repre-

sentation of the LPV latent variable system
, where the so-called full behavior of this system

is defined as

(21) holds

Additionally, is introduced as the manifest be-
havior associated with .

Example 9 (Latent Variable Representation): By considering
the DT system in Example 5 with scheduling and

, the following latent variable representation of the model
has the same manifest behavior:

(22)

This can be proved by substituting the third row of (22) into the
second row, giving

(23)

Substitution of (23) into the first row of (22) gives a PV differ-
ence equation in the variables and , which is equal to (8).

Elimination of latent variables is always possible on .
Theorem 3 (Elimination Property): Given a LPV latent vari-

able system with a signal variable
, a latent variable , and scheduling variable , there ex-

ists a that defines a LPV-KR representation
of .

For a proof, see the Appendix. Now it is possible to define the
concept of state for LPV systems.

Definition 13 (Property of State): Let
be a LPV latent variable system. Then, the latent

variable is a state if for every and ,
with it follows that

the concatenation of these signals at satisfies

(24)

Then, is called a state-space behavior, and the latent vari-
able is called the state.

To decide whether a latent variable is a state, the following
theorem is important.

Theorem 4 (State-Kernel Form): The latent variable
is a state, iff there exist matrices and ,
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such that the full behavior has the kernel
representation

(25)

The proof of this theorem is given in the Appendix. Now we
formulate the DT state-space representation, based on an IO par-
tition , as a first-order PV difference equation system.

Definition 14 (DT-LPV-SS Representation): The dis-
crete-time state-space representation of

, with scheduling vector is denoted by
and defined as a first-order parameter-varying differ-

ence equation system in the latent variable

(26a)

(26b)

where is the IO partition of , is the state vector,
is the state space

(26a)–(26b) hold

is the full behavior of (26a) and (26b), is equal to the manifest
behavior of (26a) and (26b), i.e., , and

Note that in , the latent variable trivially fulfills the
state property. It is apparent that (26a) and (26b) are the “dy-
namic-dependent” counterparts of (1a) and (1b).

Example 10 (SS Representation): Continuing Example 9,
the LPV-SS representation of the model follows by taking

as the IO partition and as the
state

By substitution of the second equation into the first one, the state
equation in the form of (26a) results, while the second equation
gives the output equation in the form of (26b). Thus, the corre-
sponding SS representation is

V. EQUIVALENCE RELATIONS

Using the behavioral framework, it is possible to consider
equivalence of kernel representations, IO representations and
state-space forms via equality of the represented behaviors.

A. Equivalent Kernel Forms

In the LTI case, two DT kernel representations are equivalent,
i.e., they define the same system, if their associated behaviors
are equal. Similar to the LTI framework, , are
expected to define an equal behavior if they are equivalent up to
multiplication by a , . However, can be a rational
function for which for some and .
The associated behavior of a kernel representation in terms of
(18) is defined to contain only those trajectories of for which
a solution exists. The latter is guaranteed by the boundedness of

. In this way, the behavior of is equal to the behavior of
except for those trajectories for which is

unbounded.
To consider equality of LPV-KR representations with this

phenomenon of singularity in mind, we define the restriction of
to as

(27)

The equivalence of LPV-KR representations can now be intro-
duced in an almost everywhere sense.

Definition 15 (Equivalent KR Representations): Two kernel
representations with polynomials , ,
and behaviors , are called equivalent if

, i.e., their behaviors are equal for all
mutually valid trajectories of .

Example 11 (Almost Everywhere Equivalence): By contin-
uing Example 5

has the same solutions as (15) except for those trajectories of
, where for some . Thus, this KR

representation and (15) are equivalent in the almost everywhere
sense.

To characterize equivalence algebraically, we introduce uni-
modular transformations just as in the LTI case [24].

Theorem 5 (Unimodular Transformation): Consider
and ,

with , unimodular. For a given , define
and . Denote the behav-

iors corresponding to , and by , and with
scheduling space and signal space . Then,

while and are
isomorphic.

The proof of this theorem is given in the Appendix. Further-
more, if is not full row rank, i.e.,

, then there exists a unimodular such
that , where is
full row rank and the corresponding behaviors are equivalent in
terms of Theorem 5.

Definition 16 (Equivalence Relation): Introduce the symbol
to denote the equivalence relation on (all poly-

nomial matrices with finite dimension) for an -dimensional
scheduling space. and with



TÓTH et al.: BEHAVIORAL APPROACH TO LINEAR PARAMETER-VARYING SYSTEMS 2507

and are called equiva-
lent, i.e., , if there exists a unimodular matrix function

such that

(28)

This implies that if , then the corresponding behav-
iors with and are equal (almost every-
where). Using we can define equivalence classes as follows.

Definition 17 (Equivalence Class): For a given , the set
is called an equivalence class if it is a maximal

subset of such that for all , it holds that
.

An equivalence class defines the set of all KR representa-
tions that have equal behavior. Furthermore, it is an obvious
consequence, that all in a given have the same Jacobson
form. An important subset of an equivalence class contains the
so-called minimal representations.

Definition 18 (Minimality): Let . Then, is
called minimal if it has full row rank, i.e., .

Consider a minimal described by a full row rank
. Let where

has full column rank. Note that such form can al-
ways be obtained by the permutation of the signal variables and
it is not unique. Consider where results
from the Jacobson form (see Theorem 1) of . Assume that
is chosen w.r.t. such that is maximal. It follows from
Theorem 5 that all KR representations in the equivalence class
of have the same , hence can be called the de-
gree of these representations. It can be also shown that this de-
gree is equal to the required minimal number of state variables
in a SS realization of , hence can be considered as
the order, i.e., McMillan degree of .

Example 12 (LPV Equivalence Relation and Minimality): Let
the KR representation of an DT-LPV system with

be given by

Then, there exists a unimodular matrix

such that

From Theorem 5, it follows that . Furthermore,
implies that , hence is minimal

while is not. By computing of , the McMillan degree
of is 1.

B. Equivalent IO Forms

The introduced equivalence concept generalizes to LPV-IO
representations:

Definition 19 (Equivalence Relation, LPV-IO): Let
and be LPV-IO representations with the same input
and output dimensions . For a given scheduling di-
mension , we call and equivalent, i.e.,

, if there exists a unimodular matrix
such that

and (29)

This implies the following minimality concept of LPV-IO
representations.

Definition 20 (Minimal LPV-IO Representation): An
IO representation defined through and

is called minimal for a given scheduling
dimension , if there are no polynomials
and with such that

(30)

Using the IO equivalence relation and minimality, the defini-
tion of IO equivalence classes follows naturally.

Example 13 (LPV-IO Equivalence and Minimality): Let the
IO representation of an DT-LPV system with
be given by

Consider the unimodular matrix given by

then

This implies that and
are equivalent for in terms of Theorem 5. From
Definition 20, it follows that is not minimal as

is larger than . On the other hand,
it is trivial that defines a minimal IO representation
of . By computing the Jacobson form of , the McMillan
degree of is 1.

C. Equivalent State-Space Forms

We can also generalize the equivalence concept to LPV-SS
representations. To do so, we first have to clarify state transfor-
mations in the LPV case.

By definition, the full behavior of LPV-SS representation is
represented by a matrix and a first-order
polynomial in the form

(31)

Similar to the LTI case, left and right side multiplica-
tion of and with unimodular
and leads to ,

. In terms of Theorem 5, the
resulting polynomials and define an equivalent latent
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variable representation of , where the new latent variable is
given as . To guarantee that the resulting
latent variable representation qualifies as a SS representation,

needs to be monic and with
must be satisfied. This implies that the unimodular matrices
must have zero order, i.e., and ,
and must have a special structure in order to guarantee that

and correspond to an equivalent SS representation. In
that case, is called a state transformation

and is called the state transformation matrix resulting
in

(32)

A major difference w.r.t. LTI state transformations is that, in the
LPV case, is inherently dependent on and this dependence
is dynamic, i.e., . Additionally, it can be shown
that an invertible used as a state transformation
is always equivalent with a right- and left-side multiplication by
unimodular matrix functions yielding a valid SS representation
of the LPV system. Based on this, two SS representations are
equivalent if and only if their states can be related via an invert-
ible state transformation (32).

Consider an LPV-SS representation (26a) and (26b). Let
be an invertible matrix function and consider , given

by (32), as a new state variable. Substitution of (32) into (26a)
gives

(33)

Using that , (33) yields that the equiv-
alent LPV-SS representation is

(34)

Definition 21 (Equivalence Relation, LPV-SS): Con-
sider two LPV-SS representations with state-space ma-
trices and in where

and and . For a given
scheduling dimension , these representations are called
equivalent

(35)

if there exists an invertible such that

From the concept of LPV-SS equivalence, the concept of min-
imality directly follows.

Definition 22 (Minimal LPV-SS Representation): For a given
, an SS representation, defined through the matrix functions

, is called minimal if there exist no
with such that

Again, using the concept of the SS equivalence relation
and minimality, the definition of LPV-SS equivalence classes
follows naturally. In addition, the state dimension of a
minimal is equal to the McMillan degree of .

Example 14 (LPV-SS Equivalence and Minimality): Con-
sider the LPV-SS representation derived in Example 10. Let

be an invertible state transformation defined by

with

giving

The obtained SS representation is an equivalent minimal SS rep-
resentation of as it is in an equivalence relation with
and its state dimension is the same. Note that this realization has
only static dependence.

Based on the developed state transformations and the con-
cepts of state-observability and -reachability matrices, the clas-
sical canonical forms can also be defined (see [17] and [20]).
Furthermore, Definition 21 highlights that applying -depen-
dent state transformation or system transposition according to
the rules of the LTI theory deforms the dynamic relation. This
“common practice” leads to inequivalent system representations
with arbitrary large difference in terms of manifest behavior (see
[17] and [20] for illustrative examples).

VI. EQUIVALENCE TRANSFORMATIONS

Next, we introduce equivalence transformations between the
SS and IO representation domains. These provide algorithms
to obtain an IO (SS) realization of a given LPV-SS (IO) repre-
sentation, solving the core problem of the existing LPV system
theory, motivated in Example 1.

A. State Space to IO

As a consequence of Theorem 3, the following corollary
holds.

Corollary 1 (Latent Variable Elimination): For any latent
variable representation (31) with manifest behavior and poly-
nomial matrices and , there
exists a unimodular matrix such that

(36)
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with of full row rank. The behavior defined by
is equal (almost everywhere) with .

Due to the latent nature of the variable , such a transfor-
mation is always possible and does not change the manifest be-
havior, hence it is called an equivalence transformation. We can
use this result to establish an IO realization of a given SS repre-
sentation (26a) and (26b) by writing it in the latent form

with , , ,
and . According to Corollary 1, there
exists a unimodular matrix

(37)

which in terms of in (36) satisfies
. This yields that

and is in the
form of an output side polynomial and an
input side polynomial .

Corollary 2 (IO Equivalence Transformation): Let
be a state-space representation with manifest behavior and
system matrices where . Then, there
exists a monic polynomial with

and a with such that

(38)

Let be the greatest common left-divisor of
and such that there exist , satisfying

(39a)

(39b)

Then, the IO representation, given by
, defines a behavior equal to the manifest behavior of (26a)

and (26b), thus it is an IO representation of .
The algorithm defined by (38), (39a), and (39b) is structurally

similar to the LTI case (see [32] and [33]), but it is more compli-
cated as it involves multiplication with the time operators on the
coefficients. Thus, this transformation can result in an increased
complexity (like dynamic dependence) of the coefficient func-
tions in the equivalent IO representation.

Example 15 (IO Equivalence Transformation): Consider the
LPV-SS representation derived in Example 14. Let be the
identity function so . In terms of (38), we are looking

for a with and a monic polynomial
with . Parameterize these polynomials

as

Then, in terms of (38)

Solving this equation system, it follows that

The resulting polynomials and are left coprime, hence

After left-multiplying these polynomials with , the IO repre-
sentation in the form of (20) with and has the
coefficients

In terms of , the resulting LPV-IO representation
is equal to (15), which shows its equivalence with the LPV-SS
representation in Example 14.

B. IO to State Space

Finding an equivalent SS representation of a given IO repre-
sentation is accomplished by constructing a state mapping. This
construction can be seen as the counterpart of the latent vari-
able elimination. The aim is to introduce a latent variable into
(19) such that it satisfies the state property, i.e., it defines a SS
representation (Theorem 4). Similar to the LTI case (see [32]
and [33]), the central idea of such a state construction is the
cut-and-shift-map that acts on polyno-
mial matrices as
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This operator can be seen as an intuitive way to introduce state
variables for a kernel representation associated with , as

implies that .
Repeated use of and stacking the resulting polynomial ma-
trices gives

...
...

where denotes the backward shift operation applied on
for times. In case with , the rows

of are independent, thus it can be shown that
defines a minimal state map in the form of

(40)

In other cases (MIMO case), independent rows of are se-
lected to define a minimal , but this selection is generally not
unique. Later it is shown that a given state map implies a unique
SS representation. Before that, we characterize all possible min-
imal state maps that lead to an equivalent SS representation.

Denote the left-side multiplication of by as and
introduce as the left module in
spanned by the rows of , i.e.,

This module represents the set of equivalence classes on
. Let be a polynomial matrix

with independent rows (full row-rank) and such that

(41)

where denotes direct sum. Then, similar to the LTI case (see
[32] and [33]), it is possible to show that is a minimal state
map of the LPV system , and it defines a state variable by (40)
[20]. This way, it is possible to obtain all minimal, equivalent SS
realizations of which have a kernel representation associated
with .

The next step is to characterize these SS representations w.r.t.
an IO partition. For a given kernel representation associated with
the polynomial , a valid input–output partition

of the representation is characterized by choosing a se-
lector matrix giving and a complemen-
tary matrix giving .

Assume that a full row rank is given, which
satisfies (41). Then, and jointly lead to

(42)

On the other hand, gives

(43)

These inclusions imply that there exist unique matrix functions
in and polynomial matrix functions ,
with appropriate dimensions such that

(44a)

(44b)

Then, the resulting matrix function defines a min-
imal state representation of the LPV system . This algorithm
provides an SS realization of both LPV-IO and LPV-KR rep-
resentations. Specific choices of leads to specific canonical
forms. Note that a similar algorithm can be deduced for a real-
ization in an image type of representation, i.e., latent variable
representation (31), where .

Example 16 (SS Equivalence Transformation): Consider the
LPV-IO representation derived in Example 15:

Denote , and generate the state map

Now with and , equations (44a) and
(44b) read as

By solving these equations, it follows that
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Then, the obtained LPV-SS representation is

which through

is in equivalence relation with the LPV-SS representation of
Example 14. The latter proves that the IO representation given
by and has the same manifest behavior as .

VII. CONCLUSION

In this paper, we have extended the behavioral approach to
LPV systems in order to lay the foundations of an LPV system
theory that provides a clear understanding of this system class
and the relations of its representations. We have defined LPV
systems as the collection of signal and scheduling trajectories,
and it has been shown that representations of these systems need
dynamic dependence on the scheduling variable. By the use of
such system descriptions, it has been proven that equivalence
relations and transformations between these descriptions can be
developed, giving a common ground where model structures of
LPV system identification and concepts of LPV control can be
compared, analyzed, and further developed.

APPENDIX

A. Proof of the Injective Cogenerator Property

The concept of the proof is based on [29]. Let
and denote by all maps from to

which are essentially bounded w.r.t. , i.e.,
with except for where the
set has measure 0. The set is a real vector space for
each . Denote all for which there
exist a and such that

. Denote . is an (addi-
tive) Abelian group.

Consider a with . For a ,
means that any satisfying

(45)

for all , also satisfies
for all , where

. As has
zero measure, this means that there exists also a (bounded
solution) satisfying (45) such that

holds for all . The set given
as , is called the complete
solution space of the linear system of PV difference equations
(KR-representation) . Note that the behavior

of defined by (18), contains the set of trajectories
that satisfy and are bounded, while describes
the relationship of the trajectories containing the descriptions
of possible solutions that are excluded from due to the
singularity of the coefficients in .

Let and be unimodular
matrices such that (17) is the Jacobson form of with

. It can be shown (see [27]), that
has the same solutions as

(46)

so there is an isomorphism of solution spaces

(47a)

(47b)

where for . Introduce
as the left module in generated by

the rows of . Then

(48)

which corresponds to the so-called Malgrange isomorphism.
Explicitly, (48) assigns to each the linear map

defined by where denotes the
residue class of in , and the well definedness
of follows from

for all which also implies that
. Conversely, for a linear map

one defines , where is the -th
natural basis vector of . Then, we have

Due to (45), the above equation implies an isomorphism of left
modules

(49a)

(49b)
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Let , , be left modules in and let
and be linear maps,

i.e., left module homomorphisms. Then

(50)

is exact if . The same notion can be used
if , , are Abelian groups and , are group
homomorphisms. Then, is called an injective cogenerator if
the sequence

(51)

is exact iff the sequence

of Abelian groups is exact.
For injectivity, one needs to prove according to

[28, Corollary 3.17]: For every and every
, there exists a such that . Let

be given with . If , there
is nothing to prove. Since is a field, assume that .
Then, can be rewritten as a first-order system

(52)

where , ,
and

(53)

with . Let denote the set of singular-
ities of the meromorphic coefficients in . Note that
has measure 0. Let which has still zero
measure. Hence, is a countable union of open inter-
vals and on each it holds that and are bounded.
Therefore, there exists a bounded solution
to (52) on each . By concatenating them, one gets a solution

and thus .
For the cogenerator property, it has to be shown that if for

some , has only the zero solution, then
this implies that and . Assume the contrary and
let . Then, one can rewrite as

like in the previous part. Let ,
then on each of the intervals , the solution set of this homoge-
nous equation is an -dimensional subspace of , in
particular there exist nonzero solutions. By concatenating them,
we get a nonzero solution . If was iden-
tically zero, then would be
identically zero which leads to a contradiction.

B. Proof of Theorem 2

Consider with , , and
behavior in terms of (18). Without loss of generality, let

as the behavior can be repre-
sented by the empty matrix which is full rank by convention. Let

and be unimodular ma-
trices such that (17) is the Jacobson form of in terms of The-
orem 1 with . Partition

according to the partition of the Jacobson form.
Since is unimodular, the solution space of
is equal to the solution space of (see the
previous proof). Thus, also represents
in an almost everywhere sense, i.e., for all trajectories of
for which the coefficients of are bounded, and .

C. Proof of Theorem 3

Based on the proof of the injective cogenerator property
(Appendix-A), consider

(54)
where and defines an LPV
latent variable representation in the form of (21) with .
Then, showing that has a kernel representation is equivalent
with showing that the manifest behavior of (21) has a kernel
representation in an almost everywhere sense. Define the left
kernel of as

(55)

which is a left submodule of . Thus, it is finitely gener-
ated, i.e., there exists a such that

is equal to . Then, we
have an exact sequence

(56)

and therefore the sequence is
also exact. This signifies that

iff , i.e.,
.

D. Proof of Theorem 4

The concept of the proof is based on [32]. To simplify the
discussion, we prove only the so-called Markovian case as the
state case follows trivially from this concept due to the linearity
and time-invariance of LPV systems. We call the discrete-time
LPV system Markovian, if for all

In the following, we prove that is Markovian, iff there exist
matrices , such that has the kernel repre-
sentation: . where . The “if” part is
trivial. To show the “only if” case, assume that a KR represen-
tation of is given with for which the solu-
tions of (14) satisfy the above given connectability condition.
Without loss of generality it can be assumed that is full row
rank. Also, there exists a unimodular such that

is in a row reduced form, meaning that the
matrix formed by the coefficient functions of the highest powers
in of the rows has full row rank. Due to the fact that
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is a left-side unimodular transformation, the behaviors of and
are equivalent.

We show now that . Assume the contrary and
write in the IO form

(57)

where corresponds to an IO partition and
. The assumption that implies

that . Similarly, the assumption of
is Markovian implies that is Markovian.
Now, let , be the solutions of

for a with . Since is an IO
partition of , thus and are also solu-
tions of and in order to obtain contradiction
it suffices to prove contradiction for autonomous systems. Let

and by assumption . Introduce auxiliary
variables defined as

(58)

where . Collect these variables in a
column vector

(59)

Now consider the system with latent variable as

(60a)

(60b)

where the coefficient is determined from
the coefficients of and the definition (58). The mani-
fest behavior of (60a) is equivalent with the manifest behavior
of , which can be checked by elimination of the latent
variables of (60a) and (60b). However, the manifest behavior
cannot be Markovian as (60a) and (60b) have exactly one solu-
tion for each initial condition and scheduling tra-
jectory . This contradicts Markovianity since two so-
lutions and with ,
cannot be connected unless also ,

.

E. Proof of Theorem 5

First consider the left-side transformation. Let
and and . Based on

the proof of the injective cogenerator property, consider
and as the complete behaviors of and . Then, the
inclusion can be expressed as an exact sequence

(61)

which is equivalent to the exact sequence

(62)

Equivalently, we have or
for some . If , then

and , which shows that and

has the same rank. If additionally, and are full rank, then
this implies that , ergo and are unimodular. As
the complete behaviors are equal therefore this implies that the
behaviors of and for each commonly valid trajectories of

are equal.
Consider the right-side transformation. Based on the proof

of the injective cogenerator property, there is a homomor-
phism between the the complete behaviors of and

and also between
and . This implies that if , ergo and
are unimodular, then there exists a isomorphism between the
behaviors.
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