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1. Introduction

The basis of nearly all state space methods in network synthe-
sis [1,2] are some particular realizations of linear time-invariant
dynamical systems

d
dt

x = Ax + Bu, y = Cx + Du (1)

with equal input and output dimensions. The essential property
that has to be fulfilled is internal passivity, that is[
A⊤

+ A B − C⊤

B⊤
− C −D − D⊤

]
≤ 0. (2)

On the other hand, in the reciprocal case, thematrices have to have
the special block structure

A =

[
A11 A12

−A⊤

12 A22

]
, B =

[
B11 B12
B21 B22

]
,

C =


B⊤

11 −B⊤

21

−B⊤

12 B⊤

22


, D =

[
D11 D12

−D⊤

12 D22

]
,

(3)

∗ Corresponding author.
E-mail addresses: timo.reis@tu-harburg.de (T. Reis),

Jan.Willems@esat.kuleuven.be (J.C. Willems).

0167-6911/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2010.10.009
which is called internal reciprocity. Based on a realization with the
properties (2) and (3), a circuitwith ideal transformers and positive
resistances, capacitances and inductances that captures the
input–output behavior of the dynamical system (1) can be readily
constructed [1]. Hereby, there is the following correspondence
between the numbers of circuit elements and properties of the
matrices A, B, C , D as in (2) and (3). The partition of the state
yields the numbers of capacitances and inductances, the input
(output) partition corresponds to the numbers of the ports driven
by voltages and currents, and, finally, the rank of the matrix (2) is
the number of required resistances.

Whereas the construction of either internally passive or inter-
nally reciprocal realizations can be done without any great diffi-
culties, the realization of a jointly internally passive and internally
reciprocal system is a challenging task and was first treated in
a state space setting in [1,3]. It is shown in these works that a real-
ization with these properties exists if and only if its transfer func-
tion is positive real and symmetric with respect to the signature
matrix corresponding to the partition of the Dmatrix in (3).

In this article we give a novel and constructive approach to
the construction of realizations fulfilling (2) and (3). Starting
with a dynamical system (1) with sign symmetric and positive
real transfer function, our approach is based on positive real
balancing [4,5].We show that all positive real balanced realizations
are internally passive. On the other hand, we prove that among
all positive real balanced realizations there exists at least one
that is internally reciprocal. This realization can be constructed by
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a rather simple state space transformation of the systemby ablock-
diagonal orthogonal symmetric matrix.

This article is organized as follows. After introducing the
notation and required fundamentals of linear systems theory in
Section 2, we consider each reciprocal and passive systems in
Sections 3 and 4. In particular, we consider both properties from
a time- and frequency-domain point of view. In Section 5, we
collect the basic facts of positive real balanced realizations and
present results about their connection to reciprocal and passive
systems. In the main result, we show that each sign symmetric
and positive real transfer function has a realizationwhich is jointly
positive real balanced, internally reciprocal and internally passive.
This article concludes with the illustration of the results by means
of two examples.

2. Preliminaries

Throughout the paper, Rn,m and R(s)n,m denote the spaces
of n × m matrices with entries consisting of real numbers and,
respectively, rational functions in the indeterminate s. We use the
symbol Gℓn(R) for the group of invertible real n × n matrices and
δij is the Kronecker delta. The open complex right half-plane is
denoted by C+ and the complex conjugate of a number s ∈ C
by s. The matrix A⊤ stands for the transpose of A and we write
A−⊤

= (A−1)⊤. An identity matrix of order n is denoted by In or
simply by I . The zero n×mmatrix is denoted by 0n,m or simply by 0.
The symbol ‖ · ‖ stands for the Euclidean vector norm in the vector
case and for themaximal singular value if the argument is amatrix.
For Hermitian matrices P,Q ∈ Cn,n we write P > Q (P ≥ Q ) if
P −Q is positive (semi)definite. We call S ∈ Rn,n a signature matrix
if it is diagonal and involutive, i.e., S2 = In.

In the following we introduce some basics from linear systems
theory.

Definition 1. The behavior of the system (1) by

B =


(u(·), x(·), y(·)) | u(·) : R → Rm, y(·) :

R → Rpare continuous, x(·) : R → Rn

is differentiable and
d
dt

x = Ax + Bu, y = Cx + Du

 .

Definition 2. The dynamical system (1) is said to beminimal if it is
both controllable and observable.

The transfer function of the dynamical system (1) is given by
G(s) = D + C(sI − A)−1B ∈ Rp,m(s). We also refer to (1) as a
realization of G(s). Instead of (1) we also use the notation [A, B,
C,D].

Lemma 1 ([1,6]). Let [A1, B1, C1,D1] and [A2, B2, C2,D2] be two
minimal realizations of the transfer function G(s). Then D1 = D2 and
there exists a matrix Q ∈ Rn,n such that

A1Q = QA2, C1Q = C2, B1 = QB2.

The matrix Q with these properties is unique and invertible.

3. Passivity

In this section, we consider passivitywhich is a special property
of square systems, i.e., the input and output dimensions coincide.
By modeling the net flow of energy out of the system by the L2
inner product of input and output, the concept of passivity means
that the system cannot produce energy.

Definition 3. Let a square system (1) be given and let B be its
behavior. Then (1) is called passive if for all t ∈ [0, ∞) and (u(·),
x(·), y(·)) ∈ B with x(0) = 0, there holds∫ t

0
u⊤(τ )y(τ )dτ ≥ 0.

Theorem 2 ([3,6]). A necessary and sufficient condition for passivity
of (1) is the positive realness of the transfer function G(s) ∈ R(s)m,m,
i.e., G(s) has no poles in C+ and G(λ) + G⊤(λ) ≥ 0 for all λ ∈ C+.

A sufficient criterion for passivity is the existence of a storage [3]
which is a function V : Rn

→ [0, ∞)with the properties V (0) = 0
and

V (x(t)) − V (x(0)) ≤

∫ t

0
u⊤(τ )y(τ )dτ

∀t ∈ [0, ∞), (u(·), x(·), y(·)) ∈ B.

If the function V (x) =
1
2‖x‖

2 is a storage, then (1) is called inter-
nally passive.

The set of quadratic storage functions can be nicely charac-
terized in terms of the Kalman–Yacubovich–Popov lemma (or also
called positive real lemma) [1,6,7]. This result states that for a min-
imal system, passivity is equivalent to the solvability of the linear
matrix inequality (LMI)
A⊤X + XA XB − C⊤

B⊤X − C −D − D⊤


≤ 0, X = X⊤ > 0. (4)

It can be verified that (4) is equivalent to

d
dt

1
2
x⊤(t)Xx(t) ≤ u⊤(t)y(t)

∀t ∈ R, (u(·), x(·), y(·)) ∈ B.

There is a one-to-one correspondence between the solutions of
(4) and the quadratic storage functions via the relation V (x) =
1
2x

⊤Xx. In particular, we can conclude that (1) is internally passive
if and only if (4) is fulfilled for X = In. Since X is a solution of
(4) if and only if T⊤XT solves the LMI corresponding to the
realization [T−1AT , T−1B, CT ,D], we can set up the Algorithm 1 for
computing an internally passive realization.Wenowbriefly review

Algorithm 1 Construction of an internally passive realization
Given a minimal realization [A, B, C,D] of the transfer function
G(s) ∈ R(s)m,m that is sign symmetric with respect to the sig-
nature matrix Sext, compute an internally reciprocal realization
[Ap, Bp, Cp,D] of G(s).

1. Solve the LMI (4) for some symmetric X ∈ Rn,n.
2. Perform a factorization X−1

= TT⊤ for some
T ∈ Rn,n.

3. Define Ap = T−1AT , Bp = T−1B and Cp = CT .

the properties of the solution set of the LMI (4).

Proposition 3 ([7,1,3]). Let a passive minimal system (1) be given.
Then the set

SPRL = {X ∈ Rn,n
: X = X⊤and (4) holds true}

is convex and compact. Moreover, there exist some Xmin, Xmax ∈ SPRL
such that for all X ∈ SPRL, there holds

0 < Xmin ≤ X ≤ Xmax.

The extremal solutions Xmin, Xmax are characterized by

Sa(x0) = x⊤

0 Xminx0, Sr(x0) = x⊤

0 Xmaxx0 (5)
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where

Sa(x0) = lim
t→∞

sup

−

∫ t

0
u⊤(τ )y(τ )dτ ,where

(u(·), x(·), y(·)) ∈ B, x(0) = x0

 ,

Sr(x0) = lim
t→−∞

inf


∫ t

0
u⊤(τ )y(τ )dτ ,where

(u(·), x(·), y(·)) ∈ B, x(0) = x0

 .

The quadratic functionals Sa(·), Sr(·) are called the available storage
and required supply, respectively [3]. The first functional expresses
the maximal energy that can be extracted from the system (1)
initialized at x0. The latter one stands for the minimal energy that
has to be put into the system to steer from 0 to the final state x0. It
is known that the extremal solutions minimize the rank of (4) [8].
Since positive realness of G(s) is equivalent to the positive realness
of G(s)⊤, an analogous statement holds true for the LMI
AY + YA⊤ YC⊤

− B

CY − B⊤
−D − D⊤


≤ 0. (6)

It immediately follows that X ∈ SPRL if and only if Y = X−1 solves
(6). As a consequence, the extremal solutions of (6) satisfy

Xmin = Y−1
max, Xmax = Y−1

min.

4. Reciprocity

In this partwe collect some facts about reciprocal systems. Reci-
procity of a system is equivalently characterized by the symmetry
of the product of the transfer function with some signaturematrix.

Definition 4. Let Sext = diag(s1, . . . , sm) be a signature matrix.
Then (1) is said to be reciprocal with (external) signature Sext, if
for all i, j ∈ {1, . . . ,m}, the inputs with respective components
ũk(t) = δkiv(t) and ˜̃uk(t) = δkjv(t) of the system with zero initial
condition results in outputs ỹ(t) and ˜̃y(t)whose components fulfill
sjỹj = si ˜̃yi. The components of u (y) corresponding to the +1
entries in S are called inputs (outputs) with even parity and those
corresponding to the −1 entries are called inputs (outputs) with
odd parity.

For further characterizations of reciprocity in terms of adjoints and
time reversals of linear systems, we refer to [9].

Theorem 4 ([6]). A square system (1) is reciprocal with respect to
the signature matrix Sext if and only if its transfer function G(s) is
sign symmetric with respect to Sext, i.e., the transfer function G(s) ∈

R(s)m,m fulfills SextG(s) = G(s)⊤Sext.

Having a minimal realization [A, B, C,D] of G(s), it can be easily
verified from SextG(s) = G(s)⊤Sext that [A⊤, C⊤Sext, SextB⊤,
SextD⊤Sext] is an alternative minimal realization of G(s). Lemma 1
then implies the existence of Q ∈ Rn,n, such that

AQ = QA⊤, B = QC⊤Sext, CQ = SextB⊤. (7)

Performing a transpose of the above equations, we see that (7)
is also fulfilled if Q is replaced by Q⊤. The uniqueness of the
solution of (7) then implies the symmetry of Q . This leads us to
the equivalence of (7) to the slightly simpler equations

AQ = QA⊤, B = QC⊤Sext, Q = Q⊤. (8)

Of particular interest are realizations in which Q = S for some
signature matrix S. These systems are called internally reciprocal
and S is called internal signature matrix. In the case where the
diagonal elements of the internal signaturematrix are ordered, the
matrices A, B, C and D are structured as in (3).

An internally reciprocal realization of G(s) can be constructed
from aminimal realization [A, B, C,D] of a sign symmetric transfer
function via Algorithm 2. The second step of Algorithm 2 consists

Algorithm 2 Construction of an internally reciprocal realization
Given a minimal realization [A, B, C,D] of the transfer function
G(s) ∈ R(s)m,m that is sign symmetric with respect to the sig-
nature matrix Sext, compute an internally reciprocal realization
[Ar , Br , Cr ,D] of G(s).

1. Solve equation (8) for some Q ∈ Rn,n.
2. Compute T ∈ Rn,n such that Q = TST⊤ for some signature

matrix S ∈ Rn,n.
3. Define Ar = T−1AT , Br = T−1B and Cr = CT .

of an application of Sylvester’s law of inertia. It is straightforward
to verify that A⊤

r S = SAr and SBr = C⊤
r Sext, i.e., the realization

[Ar , Br , Cr ,D] is internally reciprocal. As a consequence, we have
that any transfer function G(s) which is symmetric with respect to
some external signature matrix S has a minimal realization which
is internally reciprocal.

5. Positive real balanced realizations

Definition 5. A dynamical system (1) is called positive real
balanced if the minimal solutions of (4) and (6) satisfy Xmin =

Ymin = Σ = diag(σ1In1 , . . . , σkInk) with σ1 > · · · > σk > 0.
The numbers σj are called the passivity characteristic values and the
numbers nj are the respectivemultiplicities.

It can be seen that, by a state space transformation [T−1AT , T−1B,
CT ,D], the minimal solutions Xmin, Ymin of (4) and (6) trans-
form to T⊤XminT , T−1YminT−⊤. By (T⊤Xmin)(T−1YminT−T ) =

T⊤(XminYmin)(T⊤)−1, we see that the spectrum of XminYmin is in-
variant with respect to state space transformations. In particular,
the squares of passivity characteristic values are the eigenvalues
of XminYmin. Hence, passivity characteristic values as well as their
respective multiplicities are input–output-invariants of the system,
i.e., they do not depend on the particular realization of a given pos-
itive real G(s) ∈ R(s)m,m.

To constructively obtain a positive real balanced realization
from another realization of a positive real transfer function, we can
apply square-root balancing. In order to see that the realization

Algorithm 3 Square-root balancing [4]
Given a minimal realization [A, B, C,D] of the positive real
transfer function G(s) ∈ R(s)m,m, compute a balanced realization
[Ab, Bb, Cb,D] of G(s).

1. Solve the LMIs (4) and (6) for minimal solutions Xmin and Ymin.
2. Compute matrices L, R ∈ Rn,n with Xmin = L⊤L and Ymin =

R⊤R.
3. Perform a singular value decomposition

LR⊤
= UΣV⊤ (9)

for some orthogonal matrices U, V ∈ Rn,n and

Σ = diag(σ1In1 , . . . , σkInk)

with decreasing and disjoint numbers σ1, . . . , σk.
4. For T = R⊤VΣ−1/2, define Ab = T−1AT , Bb = T−1B and

Cb = CT .

[Ab, Bb, Cb,D] constructed by Algorithm 3 is really positive real
balanced, we make use of the relation T−1

= Σ−1/2U⊤L and
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T⊤XminT = T⊤L⊤LT
= Σ−1/2V⊤RL⊤LR⊤VΣ−1/2

= Σ−1/2V⊤VΣU⊤UΣV⊤VΣ−1/2

= Σ,

T−1YminT−⊤
= T−1R⊤RT−⊤

= Σ−1/2U⊤LR⊤RL⊤UΣ−1/2

= Σ−1/2U⊤UΣV⊤VΣU⊤UΣ−1/2

= Σ .

The most popular application of balanced realizations is in model
order reduction [4].

Definition 6. Let [A, B, C,D] be a positive real balanced realiza-
tion. Let σ1 > · · · > σk > 0 be the passivity characteristic val-
ues, nj be the respective multiplicities. Let ℓ < k, r =

∑ℓ
j=1 nj and

consider the partition

A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C = [C1 C2]

with A11 ∈ Rr,r , B1 ∈ Rr,m, C1 ∈ Rm,r . Then [A11, B1, C1,D] is called
a positive real truncated balanced realization.

Passivity of the realization [A11, B1, C1,D] directly follows from
Σ1 = diag(σ1In1 , . . . , σℓInℓ

) being the minimal solution of the LMI
(4) corresponding to the truncated model.

Taking a closer look to the energetic interpretation (5) of the
minimal solutions, balanced truncation means an elimination of
states x ∈ Rn that have the following two properties:
– a large amount of energy is required to steer to x;
– only a small amount of energy can be extracted from the system

which is initialized with x.
One can readily infer that states with these two properties do

not contribute significantly to the input–output behavior of the
system and can therefore be eliminated from the system without
significant change in the system behavior. For error bounds of
positive real balanced truncation, we refer to [10] and its
bibliography.

6. Passive and reciprocal realizations via positive real balancing

Each of the constructions of an internally passive and an
internally reciprocal realization can be simply performed by Al-
gorithms 1 and 2, respectively. However, neither of these proce-
dures produces in general a realization that is jointly internally
passive and reciprocal. We now show that realizations with both
these properties can be constructed by positive real balancing.
More precisely, we prove the existence of realizations which are
positive real balanced, internally passive and internally reciprocal.
By further characterizing how two positive real balanced realiza-
tions are related, we derive a constructive way to obtain realiza-
tions with the desired properties.
First we present two auxiliary results required for the proof of the
main theorems.

Lemma 5. Let M, R ∈ Rn,n be symmetricwith R > 0 andMR+RM ≤

0. Then M ≤ 0.
Proof. Let v ∈ Rn

\ {0} be such thatMv = λv. Then v⊤(MR+RM)
v ≤ 0 and v⊤(MR + RM)v = 2λv⊤Rv. Hence, for all eigenvalues
ofM , there holds λ ≤ 0 which impliesM ≤ 0. �

Lemma 6. Let [A1, B1, C1,D1], [A2, B2, C2,D2] be two minimal and
positive real balanced realizations of the positive real transfer function
G(s). Let σ1 > · · · > σk > 0 be the passivity characteristic values
and let nj be the respective multiplicities. Then D1 = D2 and there
exist orthogonal matrices Uj ∈ Rnj,nj for j = 1, . . . , k such that for
U = diag(U1, . . . ,Uk), there holds A1U = UA2, B1 = UB2 and
C2 = C1U.
Proof. Assume that for some U ∈ Gℓn(R) holds [A2, B2, C2,D2] =

[U−1A1T ,U−1B1, C1U,D1] and Σ = diag(σ1In1 , . . . , σkInk). Since
the minimal solutions of the LMIs (4) and (6) corresponding to
these two systems are related by Xmin,2 = U⊤Xmin,1U , Ymin,2 =

U−1Ymin,1U−⊤, the assumption that both systems are positive real
balanced leads to U⊤ΣU = Σ , U−1ΣU−⊤

= Σ . Thus, UΣ = ΣU ,
and partitioning U = (Uij)i,j=1,...,k for Uij ∈ Rni,nj gives rise to

σiUij = σjUij ∀i, j ∈ {1, . . . , k}.

Since σ1, . . . , σk are distinct, we have Uij = 0 whenever i ≠ j.
The orthogonality of the matrices on the block-diagonal is now
a consequence of U⊤ΣU = Σ . �

Theorem 7. Assume that the dynamical system (1) is positive real
balanced. Then (1) is internally passive.

Proof. Since (1) is positive real balanced, we have[
A⊤Σ + ΣA ΣB − C⊤

B⊤Σ − C −D − D⊤

]
≤ 0, (10)[

AΣ + ΣA⊤ ΣC⊤
− B

CΣ − B⊤
−D − D⊤

]
≤ 0.

The latter linear matrix inequality is equivalent to[
AΣ + ΣA⊤

−ΣC⊤
+ B

−CΣ + B⊤
−D − D⊤

]
≤ 0. (11)

Taking the sum of (10) and (11), we obtain

0 ≥

[
(A + A⊤)Σ + Σ(A + A⊤) Σ(B − C⊤) + (B − C⊤)

(B⊤
− C)Σ + (B⊤

− C) −2(D + D⊤)

]
=

[
A⊤

+ A B − C⊤

B⊤
− C −D − D⊤

] [
Σ 0
0 I

]
+

[
Σ 0
0 I

] [
A⊤

+ A B − C⊤

B⊤
− C −D − D⊤

]
.

Then Lemma 5 implies that[
A⊤

+ A B − C⊤

B⊤
− C −D − D⊤

]
≤ 0. �

Theorem 8. Let a passive and reciprocal dynamical system (1) with
transfer function G(s) be given. Then there exists a positive real
balanced realization of G(s) which is internally symmetric.

Proof. Since Algorithm 2 produces an internally reciprocal real-
ization, we may assume to have a minimal realization [A, B, C,D]

with the property that for some signaturematrix S holds SA⊤
= AS,

SC⊤
= BSext and SextD⊤

= DSext. We are step-by-step using Algo-
rithm 3 to construct a balanced realization that is internally recip-
rocal. Internal reciprocity implies that for Y = SXS, there holds

0 ≥

[
S 0
0 Sext

] [
A⊤X + XA XB − C⊤

B⊤X − C −D − D⊤

] [
S 0
0 Sext

]
=

[
AY + YA⊤ YC⊤

− B
CY − B −D − D⊤

]
.

Hence, the minimal solutions of (4) and (6) are related by Xmin =

SYminS and, consequently, L ∈ Rn,n satisfies Xmin = L⊤L if and only
if R = LS fulfills Ymin = R⊤R. Since R = LS, the singular value
decomposition (9) of the symmetric matrix LR⊤

= LSL⊤ has to be
performed. However, symmetry implies that an eigendecomposi-
tion LSL⊤

= UΛU⊤ with some orthogonal matrix U ∈ Rn,n and
a diagonal matrix Λ = diag(λ1, . . . , λn) with |λ1| ≥ · · · ≥ |λn|

is related to a singular value decomposition (9) via Σ = |Λ| and



T. Reis, J.C. Willems / Systems & Control Letters 60 (2011) 69–74 73
V = Usign(Λ), where |Λ| and sign(Λ) denote the entry-wise
modulus and, respectively, the sign function of Λ. Knowing that
the state space transformation with

T = R⊤VΣ−1/2
= SL⊤Usign(Λ)|Λ|

−1/2

yields a positive real balanced realization [Ab, Bb, Cb,D] with Ab =

T−1AT , Bb = T−1B, Cb = CT , we now show that sign(Λ) is a sig-
nature matrix. Taking into account that T−1

= |Λ|
−1/2U⊤L, we

compute

sign(Λ)Ab = sign(Λ)|Λ|
−1/2U⊤LASL⊤Usign(Λ)|Λ|

−1/2

= sign(Λ)|Λ|
−1/2U⊤LSA⊤L⊤Usign(Λ)|Λ|

−1/2

= |Λ|
−1/2sign(Λ)U⊤LSA⊤L⊤U|Λ|

−1/2sign(Λ)

= T⊤A⊤T−⊤sign(Λ) = A⊤

b sign(Λ),

sign(Λ)Bb = sign(Λ)|Λ|
−1/2U⊤LB

= |Λ|
−1/2sign(Λ)U⊤LSC⊤Sext

= T⊤C⊤Sext
= C⊤

b Sext. �

As a direct conclusion of Lemma 6, Theorems 7 and 8, we can
formulate the following result.

Corollary 9. Let a reciprocal dynamical system (1) be given that is
positive real balanced with characteristic values σ1, σ2, . . . , σk and
multiplicities n1, n2, . . . , nk. Then there exist orthogonal matrices
Uj ∈ Rnj,nj for j = 1, . . . , k such that for U = diag(U1, . . . ,Uk),
the realization [U−1AU,U−1B, CU,D] is internally reciprocal and
internally passive.

To make the above result more constructive, we observe that for a
positive real balanced realization, reciprocity of the system implies
that there exists some Q ∈ Rn,n such that (8) is fulfilled. On the
other hand, a closer look to the LMIs (4) and (6) yields that the
realization

[Q−1AQ ,Q−1B, CQ ,D] = [A⊤, C⊤Sext, SextB⊤,D]

is balanced as well. Lemma 6 then implies that Q = diag(Q1, . . . ,
Qk) for some symmetric and orthogonal Qj ∈ Rnj,nj . From the joint
symmetry and orthogonality ofQj we get the existence of an ortho-
gonal matrix Tj ∈ Rnj,nj such that Qj = TjSjT⊤

j for some signature
matrix Sj ∈ Rnj,nj . A transformation with T = diag(T1, . . . , Tk)
then finally leads to an internally reciprocal balanced realization.
This approach is summarized in Algorithm 4.

Algorithm 4 Construction of an internally passive and internally
reciprocal balanced realization
Given aminimal realization [A, B, C,D] of the positive real transfer
function G(s) ∈ R(s)m,m, compute a realization [Abr , Bbr , Cbr ,D] of
G(s) that is internally reciprocal and internally passive.

1. Run Algorithm 3 to obtain a balanced realization [Ab, Bb,
Cb,D] of G(s).

2. Partition Ab = (Aij)i,j=1,...,k, Bb = (Bi)i=1,...,k, Cb = (Cj)j=1,...,k
according to the multiplicities of the passivity characteristic
values and, for j = 1, . . . , k, solve the equations

AjjQj = QjA⊤

jj , BjSext = QjC⊤

j (12)

for some symmetric Qj ∈ Rnj,nj .
3. For j = 1, . . . , k, compute the eigenvalue decompositionQj =

TjSjT⊤

j for some signature matrix Sj ∈ Rnj,nj .
4. For T = diag(T1, . . . , Tk), define Abr = T−1AbT , Bbr = T−1Bb

and Cbr = CbT .

In the following, we present two conclusions of the results
presented so far. In the first result, we specialize to the case where
all passivity characteristic values have singlemultiplicity. Since, by
Lemma 6, two balanced realizations of a system of this type are
related by a state space transformation with a signature matrix
and, on the other hand, such a transformation does not destroy
internal reciprocity, we can infer that the following holds true.

Corollary 10. Let [A, B, C,D] be a positive real balanced realization
of the positive real transfer function G(s) ∈ R(s)m,m that is sign sym-
metric with respect to the signature matrix Sext. Moreover, assume
that all passivity characteristic values have single multiplicity. Then
[A, B, C,D] is internally passive and externally reciprocal.

Our second corollary concerns truncated balanced realizations.
Since, by Corollary 9, a certain block-diagonal orthogonal transfor-
mation leads to an internally reciprocal realization, we can deduce
that even reciprocity is not lost after positive real balanced trunca-
tion.

Corollary 11. Let [A11, B1, C1,D] be a truncated positive real bal-
anced realization of the positive real transfer function that is sign sym-
metric with respect to the signature matrix Sext. Then [A11, B1, C1,D]

is internally passive and externally reciprocal. Furthermore, there ex-
ists some block-diagonal orthogonal matrix T ∈ Rr,r such that [T−1

A11T , T−1B1, C1T ,D] is internally reciprocal.

7. Example

Consider the transfer function

G(s) =
s3 + 4s2 + s + 2
s3 + 2s2 + 1

.

We can easily construct a realization of G(s) in controller form
[11, p. 288], that is

[A, B, C,D] =

 0 1 0
0 0 1

−1 0 −2


,

0
0
1


, [1 1 2], 1


.

Positive realness of G(s) follows, since it admits a real partial
fraction decomposition

G(s) = 1 +
1

s + 1
+

s
s2 + 1

,

whereas sign symmetry of G(s) is a trivial consequence of the one-
dimensionality of input and output.

Solving the positive real lemma equations for Xmin, Ymin with
Matlab r⃝, we obtain

Xmin =

1.3726 1.0000 0.0294
1.0000 4.0000 1.0000
0.0294 1.0000 1.3726


,

Ymin =

 0.5429 −0.0429 −0.4571
−0.0429 0.5429 −0.0429
−0.4571 −0.0429 0.5429


.

Performing Cholesky factorizations Xmin = LT L, Ymin = RTR and a
singular value decomposition UΣV T

= LRT , we obtain passivity
characteristic values σ1 = 1, σ2 = 0.1716 with respective multi-
plicities n1 = 2, n2 = 1. Performing a state space transformation
with T as in step 4 of Algorithm 3, we obtain a realization

[Ab, Bb, Cb,D] =

0 −1 0
1 0 0
0 0 −1


,

0.9392
0.3435

−1


,

[0.9392 0.3435 −1], 1


.

This system is internally passive but not internally reciprocal. To
additionally achieve internal reciprocity, we perform step 2 of
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Algorithm 4, i.e., we numerically solve (12). This gives us

Q1 =

[
0.3435 −0.9392

−0.9392 −0.3435

]
, Q2 = 1.

Indeed, both matrices are symmetric and orthogonal. Now per-
forming step 3 and step 4 of Algorithm 4, i.e., eigendecompositions
Q1 = T1S1T T

1 , Q2 = T1S1T T
1 and another state space transformation

with T = diag(T1, T2), we obtain the realization

[Abr , Bbr , Cbr ,D] =

0 −1 0
1 0 0
0 0 −1

 ,

 0
−1
−1

 ,

[0 −1 −1], 1

 .

It can be readily seen that this realization is reciprocal with signa-
turematrix S = diag(1, −1, −1). Internal passivity simply follows
from

[
A + A⊤ B − C⊤

B⊤
− C −D − D⊤

]
=


0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −2

 ≤ 0.

8. Conclusion

We have presented an alternative approach to the construction
of jointly internally reciprocal and internally passive realizations
of positive real and sign symmetric matrices. It is shown that
positive real balanced realizations are internally passive and,
furthermore, there exists some positive real balanced realization
that is internally reciprocal. As a consequence, we could derive
a novel method that delivers jointly internally passive and
internally reciprocal realizations. Another conclusion from the
presented results is that positive real balanced truncation not only
preserves passivity but also reciprocity of the system.
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