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1 Introduction

Probability is one of the success stories of applied mathiemadt is universally used,
from statistical physics to quantum mechanics, from ecataos to financial math-
ematics, from information theory to control, from psyctgaand social sciences to
medicine. Unfortunately, in many applications of probiilvery little attention is
paid to the modeling aspect. That is, the interpretatiorhefrobability used in the
model is seldom discussed, and it is rarely explained howconees to the numeri-
cal values of the distributions of the random variables usdtlie model. The aim of
this communication is to put forward some remarks relatatiéaise of probability in
Systems and Control.

2 Interpretations of probability

One of the main difficulties both in using probabilistic mtgand in criticizing their

use, is that there are widely diverging interpretations batyprobability means. Li-
braries full of books have been written on the topic on intetgtion of probability,

starting at the time of Pascal and continuing to the presant 8ee [2] for a compre-
hensive treatise, and [5] for some remarks and references.

Two main views have emerged, among an uncountable numbatesfriediate nu-
ances.

1. Probability as a subjective notion, @egyree of belief.

2. Probability as an objective notion, agative frequency.

The distinction between these two interpretations cangtibted by considering coin
tossing. To the questioiWhat is the probability of heads?', the subjectivist answers
% because there is no reason to believe that tails are moteg ttk@n heads, or vice-
versa. The subjectivist does not claim to predict what wélppen when the coin is
actually flipped. The answer quantifies the person’s indigidelief. The objectivist
on the other hand argues that the probability of heac%sb'ecause it is claimed to be
a physical law that in a repeated experiment with the numbgrsses going teo, the
average number of heads will l%e

This example is perhaps atypical because it could be ardna¢dite subjectivist ar-
gues% because he or she believes that the objectivist's relatdegncy of a repeated
toss will turn out to be%. For repeatable experiments there is some agreement be-
tween both views. But in other situations, the distinctismriore striking. If a sports
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commentator states that the probability of the Dutch teanmimg the World Cup in

South Africa is 01, then it is difficult to interpret this statement as anyghbut the

commentator’s subjective belief. On the other hand, if diciaf of the registry of

motor vehicles with knowledge of the prices of the automezbgold in a country last
year states that the probability of the price being beis 0.5, then this is obviously
a relative frequency.

For ease of exposition, we left out a third interpretaticamely
3. Probability agpropensity.

The propensity interpretation, due to Karl Popper, broweglugical foundation to the
single-event probability required in the physical proltiahc interpretation of the wave
function in Quantum Mechanics.

3 Probability in Systems and Control

At least three main areas of Systems and Control are dondibgterobability: filter-
ing, system identification, and stochastic control. It vebtake us too far to analyze the
use of probability in each of these areas. We therefore bonitremarks to filtering.

In continuous time, and over an infinite interval, the filtgrproblem may be formu-
lated as follows. Given two (vector-valued) signhalsR — RZ?, the to-be-estimated sig-
nal, andy: R — RY, the observed signal, construct a filkethat takey into Z: R — R=,
the estimate of. F is thus a map that takes (a suitable subseR&fyalued functions
on R into R*-valued functions oR. A basic restriction is thaF should be non-
anticipating, that ig1(t) = y»(t) fort < T should implyF (y1)(t) = F(y2)(t) fort <T.
Filtering is a very well-motivated problem, and numerouglegations of it can imme-
diately be seen. But, in order to set up an algorithm to cansk, we must clarify
howz andy are related, so thagtcontains information allowing to obtain a reasonable
estimatez”

3.1 Wiener and Kalman filtering

Wiener masterly solved this problem by assuming that) is a realization of a stochas-

tic vector process and taking faft] = F(y)(t) = &[z(t)|y(t’) for t’ <t]. The problem

thus became a precise mathematical one, formulas invabgagtral factorization were
derived for the filter- in the stationary Gaussian case, and a research field was born
that is very succesful up to the present day. The Kalman filtleiresses in essence
the same problem as Wiener did, but, by taking a very connénépresentation of the
stochastic procesg,y), a filter algorithm was obtained that is far superior and much
more easily generalizable.

The problem with the stochastic formulation of the filteripgpblem is that it re-
quires to mode(z,y) probabilistically. Presumably, in the case that we use guiee-
tist interpretation, this should be done (in the zero-meansSian stationary case) by
obtaining the autocorrelation function (£ y) using statistical methods. But statistics



typically assumes a probabilistic framework to begin wéthd therefore it assumes the
implied existence and persistence of the limits requiredefine relative frequencies.
But where would, for a physical signal, this regularity (@fy) come from? Surely,
there are some applications wheéry) can indeed be modeled well as a stochastic
process, but these are, in my opinion, few and far betweerat\Mysical laws ensure
that outcomes of a real physical signal is a realization ebel&stic process in the fre-
guentist sense? If, on the other hand, we use a subjectempiptation of probability,
then it should be explained where the detailed numericalesgsbf the degree of belief
required for the autocorrelation function @y) come from.

3.2 Least Squares filtering

There is an interpretation of the filtering problem that dggdrobability. This is most
easily explained in the setting of the Kalman filter. Assulrat {z,y) is modeled as

d

ax:AanBw,y:anLDw,z:Hx. (1)

In words, the relation betweenandy stems from the fact that they are both outputs
of a linear system that is driven by an input R — R¥. Think of w as an underlying
latent variable that serves to modgly).

We could now solve the filtering problem as follows. In ordet to get into limit
arguments that are not germane to our purposes, assumdghfdtering interval is
[0,), instead ofR as in the previous section. The sigral[0,») — R* needs to be
estimated from the observatiops[0,) — RY, and the estimatgt) can only depend
ony(t’) for 0 <t’ <t. The observed trajectoryand the to-be-estimated trajectary
are completely determined by the corresponding impuf0, ) — R¥ and initial state
x(0). Now, in order to computg(f), use the inputv and initial statex(0) that minimize

3wx(0) = [ ) P+ xO)l @

over all (w,x(0)) that generate the observatioy($) for 0 <t’' <t. HereQ>0is a
suitable weighting matrix. The estimatg ) defined this way obviously depends on the
observationy(t) for 0 <t’ <t and on the model parametesB,C,D,H. It can be
shown that this minimization leads exactly to the Kalmarfiformulas. This result
is more or less obvious from a maximum likelihood interptietaof the Kalman filter,
and is derived in the textbook [3] (see also [4], where moferemces can be found).

This least squares interpretation of the Kalman filter usesiodel (1) in an essen-
tial way. The use of such representations was new when thaasdlilter was derived.
The least squares interpretation of the filtering algoriteadily extends to the Wiener
filtering formulas, using a similar representation as (Ljyanalogously representing
the proces$zy) as an integral of white noise, and then replacing the whitsenoy
an unknown input. But such models were not available when/ffener filter was
first derived, whereas models witlz, y) a stochastic process were very much part of
mathematics and probability. The adoption of a stochasticgss framework allowed
Wiener to pose the filtering problem in precise mathematerahs. This fact, and not
the underlying physics, was undoubtedly the main motivatio introducing stochas-
tics in the filtering problem.



Using the least squares interpretation of the Wiener anthKalfilter shifts the bur-
den of justifying the methodology from trdescriptive to the prescriptive. Using the
stochastic process interpretation makes claims regatbengiodel of reality, in other
words, stochastic assumptions are part of the physics,eofiiscriptive part of the
problem. On the other hand, using the minimization of 2 dfgecthe performance. It
is up to the designer to choose this as the prescriptive péaregroblem. The choice
of 2 as the functional to be minimized does not impose angthimthe system model.

In a sense, it is possible to interpret the least squaresitigoin terms of a sub-
jective ‘degree of belief’. But this interpretation onlygures one to state that the
(w, x(0)) which minimizes 2 is the most believable explanation of theesvations.
This interpretation is much more parsimonious than theesuive probabilistic inter-
pretation of(w,x(0)), which requires giving numerical values of the degree atlbef
many more events.

Similar least squares interpretations of many of the allgors used in system identi-
fication and in stochastic control are readily given.The@dso thes# interpretation of
the Wiener and Kalman filter, and its extensiowt filtering. Also, when the optimal
LQG controller is interpreted as minimizing th# norm of the closed loop system,
we shift again the burden of the descriptive to the presegptvhile opening up the
generalization ta7%, control. These deterministic methods of designing filterd a
controllers are, in my opinion, very much to be preferredvatbie stochastic formu-
lations, precisely because they shift the problem justificafrom the descriptive part
of the model to the prescriptive part of the design. Oftenaitggiment is put forward
that since the stochastic interpretation and the leastreguaterpretation of filtering
and system identification algorithms lead to the same foamul is pointless to argue
that one interpretation is to be preferred to another oneoDfse, this is a two-edged
sword, and cannot be used as a defense of the stochastjgréttgion. But the fact
that the same formulas are obtained does not mean that isésavivalid to suggest an
unverified structure on a model.

In engineering (and prescriptive aspects of economicsanegit seems to me, also
take the following intermediate position as a justificatarthe use of stochastics. An
algorithm-based engineering device, say in signal pracgssommunication, or con-
trol, comes with a set of ‘certificates’, that guarantee thatdevice or the algorithm
will work well under certain specific circumstances. TheBeumnstances need not
be the ones under which the device will be used in practiceeyThay not even be
circumstances which can happen in the real world. Thesieatss are merely guaran-
tees of good performance under benchmark conditions. Ebesmopsuch performance
guarantees may be that an error correcting code correctecaded message that is re-
ceived with on the average not more than a certain perceofagyeors, or that a filter
generates the conditional expectation of an unobservexdlisigpm an observed one
under certain prescribed stochastic assumptions, or t@itaoller ensures robust sta-
bility if the plant is in a certain neighborhood of a nominako



4 Why resorting to fate can be wise

In [1] it is argued that in many problems in Systems and Con&dvantage can be
taken of randomization. It is difficult to argue with this. iBbmized algorithms are
used for secure communication in cryptography, they leaghtoe theoretic equilibria,
they can be effective for evaluating integrals, and so fokhsuch many of the points
made in [1] are eminently valid.

But it becomes more difficult sometimes to follow the thegifli when it comes to
control. For instance, in the discussion of Example 1, imgplied that a design that
does not lead to robust stability but that leads to stability probability Q1 is to be
preferred to a design that does not lead to robust staMilitywithout being able to
attach a value to the probability of stability. But is this?sid we want robust stability
then, by the definition of robustness, we should have stabiir all values of the
uncertain parameters, and randomization has little ta.offe

I find it difficult to sympathize with the discussion surroimgiwhat is called ‘Bayesian
approach’. To begin with, there is difficulty with the semeashere. The term ‘Bayesian’
always refers to subjective probability, that is, to degoédbelief, whereas in [1]
Bayesian probability is explained to mean ‘how often a sysbecurs as compared to
the other systems’. In other words, the term is used in theesefirelative frequency.
Forgetting about this matter of nomenclature, the controblem discussed assumes
that we have a situation in which a designer needs to desigrsioigle control algo-
rithm for a whole family of plants. The designer knows exa¢fttom measurements?)
the relative frequency of the various plants, but seems tmiable to actually measure
the unknown parameters in the actual plant. It would have Inéee to see a descrip-
tion of such a situation. | struggled to imagine a convin@ngineering example where
such a problem would come up. But could it be that once agaibgiility is used here
as a panacea for uncertainty, as a way to make the problera imathematical one,
without going back to the physics?

5 Let us get the physics right

It is my belief that modeling is the most neglected aspechebtetical engineering
in general and, more specifically, of Systems and Controls iBwery evident in ar-
eas which use probabilistic models. To begin with, the prietation of probability is
seldom explained. This would pose no problem if the integtien of a particular con-
cept is evident, but in the case of probability with its highlvergent interpretations,
this neglect to explain the interpretation is objectioealdften, it is vaguely implied
that a frequentist interpretation is used. But then, whyroaasurement inaccuracy be
modeled as an additive stochastic process? This is perhasanless acceptable to
model the effect of quantization, but what about all the owairces of measurement
uncertainty? Why should an unmeasured nuisance signastemgyidentification be a
stochastic process? Why should a communication channabeb@a0toa 1 and a 1
to a 0 with a fixed relative frequency? Where would this redgiylaf error generation
come from? | do not claim that in many circumstances, thesebahilistic methods
cannot be rationalized. What | claim is that by and large, veedming research and



teaching without bothering to explain the physics that $gadprobabilistic models.

The neglect of the physics in Systems and Control, is muctemvatespread than for
probability alone. As | have argued extensively beforeif@pplies to the input/output
thinking that is universally used for modeling open systeRIsysical systems are not
signal processors. The methods based on inputs and outpwsecially awkward
for system interconnection. Interconnection of physigatems leads to variable shar-
ing, not to output-to-input assignment. This is evidentimpe systems as electrical
circuits and mechanical devices. There is no reason whithiation should suddenly
be different for complex systems, as those found in biol&jgnal flow graphs have
their place, but as a description of the functioning of aalicbnnected physical system,
they miss the crucial point of expressing what interconinectntails.

How can such a situation have occurred? Why is the physicsoafets not more
prominently present in areas as Systems and Control? Whprabability, inputs,
outputs, and signal flow graphs used without analyzing tlysiphl situations to which
they claim to pertain? The explanation, in my opinion, lieghe sociology of science.
Normal science uses an established paradigm in which tatgpanhen a problem is
cast in an input/output setting with disturbances modetedtachastic processes, we
are operating in a clear and often sophisticated matheat&taanework, with results
that may be difficult to obtain and to prove, and that are \alyié mathematically.
The results are judged by their mathematical depth and wlifficin other words, the
explanation lies in theéure of Mathematics. There is no other explanation.
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