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1 Introduction

Probability is one of the success stories of applied mathematics. It is universally used,
from statistical physics to quantum mechanics, from econometrics to financial math-
ematics, from information theory to control, from psychology and social sciences to
medicine. Unfortunately, in many applications of probability, very little attention is
paid to the modeling aspect. That is, the interpretation of the probability used in the
model is seldom discussed, and it is rarely explained how onecomes to the numeri-
cal values of the distributions of the random variables usedin the model. The aim of
this communication is to put forward some remarks related tothe use of probability in
Systems and Control.

2 Interpretations of probability

One of the main difficulties both in using probabilistic models and in criticizing their
use, is that there are widely diverging interpretations of what probability means. Li-
braries full of books have been written on the topic on interpretation of probability,
starting at the time of Pascal and continuing to the present day. See [2] for a compre-
hensive treatise, and [5] for some remarks and references.

Two main views have emerged, among an uncountable number of intermediate nu-
ances.

1. Probability as a subjective notion, asdegree of belief.

2. Probability as an objective notion, asrelative frequency.

The distinction between these two interpretations can be illustrated by considering coin
tossing. To the question‘What is the probability of heads?’, the subjectivist answers
1
2 because there is no reason to believe that tails are more likely than heads, or vice-
versa. The subjectivist does not claim to predict what will happen when the coin is
actually flipped. The answer quantifies the person’s individual belief. The objectivist
on the other hand argues that the probability of heads is1

2 because it is claimed to be
a physical law that in a repeated experiment with the number of tosses going to∞, the
average number of heads will be1

2.

This example is perhaps atypical because it could be argued that the subjectivist ar-
gues1

2 because he or she believes that the objectivist’s relative frequency of a repeated
toss will turn out to be1

2. For repeatable experiments there is some agreement be-
tween both views. But in other situations, the distinction is more striking. If a sports
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commentator states that the probability of the Dutch team winning the World Cup in
South Africa is 0.1, then it is difficult to interpret this statement as anything but the
commentator’s subjective belief. On the other hand, if an official of the registry of
motor vehicles with knowledge of the prices of the automobiles sold in a country last
year states that the probability of the price being belowP is 0.5, then this is obviously
a relative frequency.

For ease of exposition, we left out a third interpretation, namely

3. Probability aspropensity.

The propensity interpretation, due to Karl Popper, broughta logical foundation to the
single-event probability required in the physical probabilistic interpretation of the wave
function in Quantum Mechanics.

3 Probability in Systems and Control

At least three main areas of Systems and Control are dominated by probability: filter-
ing, system identification, and stochastic control. It would take us too far to analyze the
use of probability in each of these areas. We therefore limitour remarks to filtering.

In continuous time, and over an infinite interval, the filtering problem may be formu-
lated as follows. Given two (vector-valued) signals,z : R→R

z, the to-be-estimated sig-
nal, andy : R→R

y, the observed signal, construct a filterF that takesy into ẑ : R→R
z,

the estimate ofz. F is thus a map that takes (a suitable subset of)R
y-valued functions

on R into R
z-valued functions onR. A basic restriction is thatF should be non-

anticipating, that isy1(t) = y2(t) for t ≤ T should implyF(y1)(t) = F(y2)(t) for t ≤ T .
Filtering is a very well-motivated problem, and numerous applications of it can imme-
diately be seen. But, in order to set up an algorithm to construct F , we must clarify
how z andy are related, so thaty contains information allowing to obtain a reasonable
estimate ˆz.

3.1 Wiener and Kalman filtering

Wiener masterly solved this problem by assuming that(z,y) is a realization of a stochas-
tic vector process and taking for ˆz(t) = F(y)(t) = E [z(t)|y(t ′) for t ′ ≤ t]. The problem
thus became a precise mathematical one, formulas involvingspectral factorization were
derived for the filterF in the stationary Gaussian case, and a research field was born
that is very succesful up to the present day. The Kalman filteraddresses in essence
the same problem as Wiener did, but, by taking a very convenient representation of the
stochastic process(z,y), a filter algorithm was obtained that is far superior and much
more easily generalizable.

The problem with the stochastic formulation of the filteringproblem is that it re-
quires to model(z,y) probabilistically. Presumably, in the case that we use a frequen-
tist interpretation, this should be done (in the zero-mean Gaussian stationary case) by
obtaining the autocorrelation function of(z,y) using statistical methods. But statistics
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typically assumes a probabilistic framework to begin with,and therefore it assumes the
implied existence and persistence of the limits required todefine relative frequencies.
But where would, for a physical signal, this regularity of(z,y) come from? Surely,
there are some applications where(z,y) can indeed be modeled well as a stochastic
process, but these are, in my opinion, few and far between. What physical laws ensure
that outcomes of a real physical signal is a realization of a stochastic process in the fre-
quentist sense? If, on the other hand, we use a subjective interpretation of probability,
then it should be explained where the detailed numerical values of the degree of belief
required for the autocorrelation function of(z,y) come from.

3.2 Least Squares filtering

There is an interpretation of the filtering problem that avoids probability. This is most
easily explained in the setting of the Kalman filter. Assume that(z,y) is modeled as

d
dt

x = Ax + Bw,y = Cx + Dw,z = Hx. (1)

In words, the relation betweenz andy stems from the fact that they are both outputs
of a linear system that is driven by an inputw : R → R

w. Think of w as an underlying
latent variable that serves to model(z,y).

We could now solve the filtering problem as follows. In order not to get into limit
arguments that are not germane to our purposes, assume that the filtering interval is
[0,∞), instead ofR as in the previous section. The signalz : [0,∞) → R

z needs to be
estimated from the observationsy : [0,∞) → R

y, and the estimate ˆz(t) can only depend
on y(t ′) for 0 ≤ t ′ ≤ t. The observed trajectoryy and the to-be-estimated trajectoryz
are completely determined by the corresponding inputw : [0,∞) → R

w and initial state
x(0). Now, in order to compute ˆz(t), use the inputw and initial statex(0) that minimize

J(w,x(0)) =
∫ t

0
||w(t ′)||2 dt ′ + ||x(0)||Q (2)

over all (w,x(0)) that generate the observationsy(t) for 0 ≤ t ′ ≤ t. HereQ ≥ 0 is a
suitable weighting matrix.The estimate ˆz(t) defined this way obviously depends on the
observationsy(t) for 0 ≤ t ′ ≤ t and on the model parametersA,B,C,D,H. It can be
shown that this minimization leads exactly to the Kalman filter formulas. This result
is more or less obvious from a maximum likelihood interpretation of the Kalman filter,
and is derived in the textbook [3] (see also [4], where more references can be found).

This least squares interpretation of the Kalman filter uses the model (1) in an essen-
tial way. The use of such representations was new when the Kalman filter was derived.
The least squares interpretation of the filtering algorithmreadily extends to the Wiener
filtering formulas, using a similar representation as (1), or by analogously representing
the process(z,y) as an integral of white noise, and then replacing the white noise by
an unknown input. But such models were not available when theWiener filter was
first derived, whereas models with(z,y) a stochastic process were very much part of
mathematics and probability. The adoption of a stochastic process framework allowed
Wiener to pose the filtering problem in precise mathematicalterms. This fact, and not
the underlying physics, was undoubtedly the main motivation for introducing stochas-
tics in the filtering problem.

3



Using the least squares interpretation of the Wiener and Kalman filter shifts the bur-
den of justifying the methodology from thedescriptive to theprescriptive. Using the
stochastic process interpretation makes claims regardingthe model of reality, in other
words, stochastic assumptions are part of the physics, of the descriptive part of the
problem. On the other hand, using the minimization of 2 specifies the performance. It
is up to the designer to choose this as the prescriptive part of the problem. The choice
of 2 as the functional to be minimized does not impose anything on the system model.

In a sense, it is possible to interpret the least squares algorithm in terms of a sub-
jective ‘degree of belief’. But this interpretation only requires one to state that the
(w,x(0)) which minimizes 2 is the most believable explanation of the observations.
This interpretation is much more parsimonious than the subjective probabilistic inter-
pretation of(w,x(0)), which requires giving numerical values of the degree of belief of
many more events.

Similar least squares interpretations of many of the algorithms used in system identi-
fication and in stochastic control are readily given.There is also theH2 interpretation of
the Wiener and Kalman filter, and its extension toH∞ filtering. Also, when the optimal
LQG controller is interpreted as minimizing theH2 norm of the closed loop system,
we shift again the burden of the descriptive to the prescriptive, while opening up the
generalization toH∞ control. These deterministic methods of designing filters and
controllers are, in my opinion, very much to be preferred above the stochastic formu-
lations, precisely because they shift the problem justification from the descriptive part
of the model to the prescriptive part of the design. Often theargument is put forward
that since the stochastic interpretation and the least squares interpretation of filtering
and system identification algorithms lead to the same formulas, it is pointless to argue
that one interpretation is to be preferred to another one. Ofcourse, this is a two-edged
sword, and cannot be used as a defense of the stochastic interpretation. But the fact
that the same formulas are obtained does not mean that it is wise or valid to suggest an
unverified structure on a model.

In engineering (and prescriptive aspects of economics) onecan, it seems to me, also
take the following intermediate position as a justificationof the use of stochastics. An
algorithm-based engineering device, say in signal processing, communication, or con-
trol, comes with a set of ‘certificates’, that guarantee thatthe device or the algorithm
will work well under certain specific circumstances. These circumstances need not
be the ones under which the device will be used in practice. They may not even be
circumstances which can happen in the real world. These certicates are merely guaran-
tees of good performance under benchmark conditions. Examples of such performance
guarantees may be that an error correcting code corrects an encoded message that is re-
ceived with on the average not more than a certain percentageof errors, or that a filter
generates the conditional expectation of an unobserved signal from an observed one
under certain prescribed stochastic assumptions, or that acontroller ensures robust sta-
bility if the plant is in a certain neighborhood of a nominal one.

4



4 Why resorting to fate can be wise

In [1] it is argued that in many problems in Systems and Control, advantage can be
taken of randomization. It is difficult to argue with this. Randomized algorithms are
used for secure communication in cryptography, they lead togame theoretic equilibria,
they can be effective for evaluating integrals, and so forth. As such many of the points
made in [1] are eminently valid.

But it becomes more difficult sometimes to follow the thesis in [1] when it comes to
control. For instance, in the discussion of Example 1, it is implied that a design that
does not lead to robust stability but that leads to stabilitywith probability 0.1 is to be
preferred to a design that does not lead to robust stability,but without being able to
attach a value to the probability of stability. But is this so? If we want robust stability
then, by the definition of robustness, we should have stability for all values of the
uncertain parameters, and randomization has little to offer.

I find it difficult to sympathize with the discussion surrounding what is called ‘Bayesian
approach’. To begin with, there is difficulty with the semantics here. The term ‘Bayesian’
always refers to subjective probability, that is, to degreeof belief, whereas in [1]
Bayesian probability is explained to mean ‘how often a system occurs as compared to
the other systems’. In other words, the term is used in the sense of relative frequency.
Forgetting about this matter of nomenclature, the control problem discussed assumes
that we have a situation in which a designer needs to design one single control algo-
rithm for a whole family of plants. The designer knows exactly (from measurements?)
the relative frequency of the various plants, but seems to beunable to actually measure
the unknown parameters in the actual plant. It would have been nice to see a descrip-
tion of such a situation. I struggled to imagine a convincingengineering example where
such a problem would come up. But could it be that once again probability is used here
as a panacea for uncertainty, as a way to make the problem intoa mathematical one,
without going back to the physics?

5 Let us get the physics right

It is my belief that modeling is the most neglected aspect of theoretical engineering
in general and, more specifically, of Systems and Control. This is very evident in ar-
eas which use probabilistic models. To begin with, the interpretation of probability is
seldom explained. This would pose no problem if the interpretation of a particular con-
cept is evident, but in the case of probability with its highly divergent interpretations,
this neglect to explain the interpretation is objectionable. Often, it is vaguely implied
that a frequentist interpretation is used. But then, why canmeasurement inaccuracy be
modeled as an additive stochastic process? This is perhaps more or less acceptable to
model the effect of quantization, but what about all the other sources of measurement
uncertainty? Why should an unmeasured nuisance signal in system identification be a
stochastic process? Why should a communication channel change a 0 to a 1 and a 1
to a 0 with a fixed relative frequency? Where would this regularity of error generation
come from? I do not claim that in many circumstances, these probabilistic methods
cannot be rationalized. What I claim is that by and large, we are doing research and

5



teaching without bothering to explain the physics that leads to probabilistic models.

The neglect of the physics in Systems and Control, is much more widespread than for
probability alone. As I have argued extensively before [6],it applies to the input/output
thinking that is universally used for modeling open systems. Physical systems are not
signal processors. The methods based on inputs and outputs are especially awkward
for system interconnection. Interconnection of physical systems leads to variable shar-
ing, not to output-to-input assignment. This is evident in simple systems as electrical
circuits and mechanical devices. There is no reason why thissituation should suddenly
be different for complex systems, as those found in biology.Signal flow graphs have
their place, but as a description of the functioning of an interconnected physical system,
they miss the crucial point of expressing what interconnection entails.

How can such a situation have occurred? Why is the physics of models not more
prominently present in areas as Systems and Control? Why areprobability, inputs,
outputs, and signal flow graphs used without analyzing the physical situations to which
they claim to pertain? The explanation, in my opinion, lies in the sociology of science.
Normal science uses an established paradigm in which to operate. When a problem is
cast in an input/output setting with disturbances modeled as stochastic processes, we
are operating in a clear and often sophisticated mathematical framework, with results
that may be difficult to obtain and to prove, and that are verifiable mathematically.
The results are judged by their mathematical depth and difficulty. In other words, the
explanation lies in theLure of Mathematics. There is no other explanation.
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