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Dissipative Dynamical Systems

Jan C. Willems
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Dissipative systems provide a strong link biiween
physics, system theory, and control engineering. Dis-
sipativity is first explained in the classical setting oJ
inputlstateloutput systems. In the context of linear
systems with quadratic supply rates, the construction of
(t storage leads to a linear matrix inequality ( LMI). It
is in this context that LMI's first emerged in the

field. Next, we phrase dissipativity in the setting of
behavioral systems, and present the construction of two
canonical storages, the available storqge and the
required supply. This leads to a new notion of
dissipativity, purely in terms of boundedness of the

free supply that can be extracted from a system. The
storage is then introduced as a latent variable
associated with the supply rate as the manifest variable.
The equivalence of dissipativity with the existence of a
non-negative storage is proven. Finally, we deal with
supply rates that are given as quadratic dffirential

forms and state several results that relate the existence
of a (non-negative) storage to the two-variable
polynomial matrix that defines the quadratic dffir-
ential form. In the ECC presentation, we mainly
discuss distributed dissipative systems described by
constqnt coefficient linear PDE's. In this setting, the
construction of storage functions leads to Hilbert's l7-
th problem on the representation of non-negative
polynomials as a sum of squares.
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1. Introduction

The purpose of this paper is to present a tutorial and
somewhat informal introduction to the notion of dis-
sipativity of dynamical systems. In the classical setting,
the dissipation inequality involves an input/state/
output system, with a supply rate (a function of the
input and output variables), and with a storage (a state
function). Together these are required to satisfy the
dissipation inequality, which states that the increase in
storage over a time interval cannot exceed the supply
delivered to the system during this time-interval. This
classical definition is reviewed in Section 4. For closed
systems (flows on manifolds), isolated from their
environment, it is natural to assume that the supply
rate is zero. In this case the dissipation inequality
reduces to the requirement that the storage is a
Lyapunov function. Motivated by this, we, start this
paper in Section 3 by a briefintroduction to Lyapunov
theory. Given the central importance of Lyapunov
theory in systems and control, one should expect dis-
sipativity to play also an important role in the field.

Given a system in input/state/output form and a
supply rate, the question emerges if there exists a sto-
rage such that the dissipation inequality is satisfied. If a
non-negative storage exists, we call the system dis-
sipative with respect to the supply rate. The problem of
constructing a (non-negative) storage has been studied
very extensively, both for general systems and, espe-
cially, for linear systems with a supply rate that is a
quadratic function of the input and output variables.
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Under suitable conditions (controllability, etc.), there
are two "canonical" storage functions, the available
storage and the required supply (see Section 6). The set
ofstorages is convex, and is bounded from below by the
available storage and from above by the required
supply. Hence under the appropriate conditions, the
set ofstorages, obviously a partially ordered set, attains
its infimum and its supremum. In the case of linear
systems with quadratic supply rates, discussed in
Section 5 in the input/state/output setting, there exists a
storage that is a quadratic function ofthe state, ifthere
exists a storage at all. In fact, both the available storage
and the required supply are then quadratic in the state.
In this case, the dissipation inequality becomes a linear
matrix inequality (LMD. It is this problem that
brought LMI's to central stage in the field.

The concept of dissipative system and the dissipation
inequality was introduced as a concept of its own in [8].
During its short history, it has been applied to many
areas in the freld, for example, to stability of inter-
connected systems, stabilization by adding dissipation,
robustness and model reduction, information and
entropy flow, to oscillator design and synchronization,
etc. Dissipativity is a system theoretic concept that
aims directly at the analysis and synthesis of physical
systems. It is one of the rare concepts in the freld which
by its very nature also applies to and aims at physical
reality. There are indeed immediate applications to
electrical circuit theory, to the analysis of viscoelastic
materials, to the theory of mechanical systems, to
thermodynamics, etc. A nice example illustrating this
relevance is the recent book [6].

Dissipativity is a property of open systems that is
relevant for analysis as well as synthesis. On the level
of analysis, we can ask under what conditions on the
model parameters and in what sense a system is dis-
sipative. Or deduce stability robustness by viewing a
system as an interconnection of dissipative sub-
systems. On the synthesis level, it can be used to design
controllers that add dissipation or that achieve
robustness by making the controlled system dis-
sipative when viewed from the terminals of the
uncertain part of the system. The interplay of analysis
and synthesis through the dissipation inequality is
perhaps most apparent in the context of electrical
circuits. This has been developed in [1], for example,
and will be discussed a bit throughout this paper.

We will discuss three running examples in this paper.
The first are general electrical one-ports. The second
example consists of a vessel that exchanges heat with its
environment. The third is a heated rod. We set up the
dynamical equations of these examples in Section 2.

Input/state/output systems form often an aftilrcial
approach to the modeling of physical systems. It is
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easy to generalize the classical notion of dissipativity
to behavioral state systems. We explain this in Section
6. Also the a priori assumption that the storage is a
state function is another, more subtle, shortcoming of
the classical dehnition of dissipativity. Indeed, the fact
that the storage is a state function is something that
one wishes to prove, not assume. This is discussed in
Sections 7 and ll . We illustrate these issues further in
the context ofcircuit synthesis in Section 12.

These drawbacks lead to a new definition of dis-
sipativity, in which the behavior simply consists of the
possible supply trajectories. This is discussed in
Section 8, following the recent paper [13]. The storage
is now viewed as a latent variable that is associated
with the supply rate as the manifest variable, such that
they jointly satisfy the dissipation inequality. We
prove that a system is dissipative if and only if there
exists an associated storage that is non-negative. The
proof relies on the fact that a system is dissipative if
and only if the 'free' supply is bounded.

In Section 9, we study a special, but very useful
family of supply rates, namely supply rates that are
given as the image of a quadratic differential form
(QDF) acting on a free variable. It can be shown that
controllable linear systems with quadratic supply
rates can be represented this way. For such supply
rates, we derive several results on dissipativity and on
the existence of a storage in terms of the two-variable
polynomial matrix that parametrizes the QDF. It
turns out that the storage function is itselfoften also a

QDF. In this case, the construction of the storage
function becomes again an LMI in the space of two-
variable polynomial matrices. The question emerges
whether this storage is a state function. This is
discussed in Section I l.

Finally, in Section 13, we mention the general-
ization to distributed parameter systems. In this case,
the construction of the storage function leads to
Hilbert's l7-th problem on the representation of
positive polynomials as a sum-of-squares. Of interest
in this context of PDE's is the non-observability of the
storage function. Because of space limitations, we
refer to [8] for a detailed exposition of the general-
ization to PDE's. In the ECC presentation, PDE's with
quadratic supply rates will be discussed in some detail.

A few words about notation. We use standard
symbols for the sets 1R,C, etc. We use 1R', 1R"', etc.
for vectors and matrices over IR, and analogously over
other sets. When the number of rows andlor columns
is immaterial, we use the notation 1R.', 1R"', etc.
Of course, when we then add or multiply vectors or
matrices, we assume that the dimensions are compa-
tible. Rl{] denotes the set of polynomials with real
coeff,tcients in the indeterminate {, and IR ({) denotes
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the set of real rational functions in the indeterminate
(. C- (R, 1R.") denotes the set of infinitely differentiable
functions from lR to JRn. D-(JR,1R") denotes the set of
inf,rnitely differentiable functions from lR to lRn with
compact support.

2. Examples

We will frequently return to the following three
examples of dissipative systems.

2.1. Electrical Circuits

Electrical circuits are the paradigmatic examples of
interconnected dynamical systems: the constitutive
equations of the subsystems are clearly defrned
(at least for lumped linear time-invariant elements),
and so are the interconnection constraints by which
these elements are interconnected (Kirchhoff s cUrrent
and voltage laws). We view an electrical circuit as a
device with terminals (wires) connecting it to its
environment (see Fig. 1). Assume that the circuit
contains the classical circuit elements: resistors,
inductors, capacitors, transformers, and gyrators. The
most appropriate way of describing the external
dynamic behavior of electrical circuits is in terms of
the potentials and currents on the external terminals.
In this paper, we only deal with 2-terminal circuits. In
this case, it can be shown that the terminals behave as
a port. In other words, only the difference of the
terminal potentials enters in the behavioral equations,
and the sum of the currents going into the terminals
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equals zero. We may therefore as well consider the
port voltage and current as the external variables
(see the middle part of Fig. 1).

In fact, we will mainly deal with the specific circuit
shown on the right hand side of this figure. It can be
shown (see [7, pages I l-12]) that the following
differential equation describes exactly the behavior of
the port variables of this circuit. In other words,
(V(.),\.)): lR --+ lR.2 can occur as port voltage and
curxent history if and only if it satisfies this ODE.
For CR6 # LlRr, the behavioral equation is

while for CR6 : LlRt, it becomes instead

(*. ('.ff) ,o,*+cn,ftfl)v
: ('*.o"*) (' *f,*e)o"r

(ff-' ro.*) n: ('+ cn,fi)na

These behavioral equations are
sense that after elimination of I
the above equations) to

ri
Rr l t lL l ly :  l / ,

I t
d

Vc] CRclVc: V,
dt

V-V.
!L:1.

R6.

equivalent (in the
and vg, we obtain

( l )

2.2. Thermal Vessel

The second example is extensively studied in [1a].
Consider the vessel shown in Fig. 2. It contains a
material at temperature T and heat is brought into to
the vessel atrate Q' and temperature 7. Assume that
the relations among these variables are as follows
(p accounts for the specific heat of the material).

d

oir :  Q"
combined with

[(Q' > 0) and (T > T)l

OI

[(Q' < 0) and (1 < z)]

(2)

| .?)

The inequalities express that it is impossible to
transport heat from cold to hot, a consequence ofthe
second law of thermodynamics. Assume that the units
are chosen such that p: 1.Fig. 1. Electrical circuit



Dis sipative D ynamic al S y s tems

Fig. 2. Thermal vessel

Fig. 3. Heated bar.

2.3. Heated Bar

The third example is also extensively studied in [14].
Consider the heated bar shown in Fig. 3. Assume that
the length of the bar is I and that there is no* heat
transport  at  the ends. Let T(x, t ) ,q(x, t ) , t  €R.,
0 S x ( Z denote the temperature of the bar and the
rate ofheat absorbed by the bar. Fourier's law ofheat
conduction leads to the behavioral equations

aA2
p*T:1jT + q.' ot dx'

with boundary conditions

an
-- 

r (  ,0)  :  .  r ( . .  L)  :0.
ox ox

The coefficient p accounts for the specific heat of the
material of the bar, and 7 for the heat diffusion
coefficient. We assume that the units are chosen so
that p:  l ,^ t :  l ,L:  l .

3. Lyapunov Functions

Since we view dissipativity and the dissipation
inequality as a natural generalization to open systems
of the notion of Lyapunov functions, we first discuss
these briefly.

One of the most effective ways of obtaining stability
results is by means of Lyapunov functions. Consider
the 'classical' dynamical system, theflow,

" : , f (*) ,
(r)

with x the state, X the state space, x e X, and / the
vectorfield. For simplicity of exposition, we assume
that X e IR'. Then /: X -* lR'. We view / as a
map which assigns the 'velocity' by i:/(x) e JR.'
when the state is at x € X. The vectorfield soverns
the motion.
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The behavior BFof (F\ is defined as the set of
solutions,

Bf :: {x : IR ---+ 1R'l

x is absolutely continuous, and
d

ar*@ 
: 

"f(*(t)) for almost all I e JR)

Assume that for all x e X, there exists a unique
x € B" such that x(0) : x. In many applications, it
suffices to consider solutions x on [0,oo), but we do
not aim at generality in this respect.

The real-valued function Z: X ---+ lR is said to be a
Lyapunov function for (f) 1f it is non-increasing along
solutions. Hence if

v(x( t2))  < V(x(t1))

Yx e B" and V/1, t2 € R, with t2 ) t1.

This condition on V can be checked without explicit
knowledge of BF .It can be verified directly from the
vectorf,reld/and the function V.Indeed, Z, assumed
differentiable, is a Lyapunov function for (f) if and
only if

f  : :YV./sat isfres f  6)  <0 Vx e X,

where

denotes the gradient of Z.
Lyapunov functions have found numerous appli-

cations in the theory of differential equations and in
applied mathematics. For example, under reasonable
smoothness conditions on X, / and V, it can be shown
that all bounded x € BF approach. as t + oo, the
largest F-invariant set contained in {x e Xl

f 6) :0). under appropriate positivity and growth

conditions on V and definiteness conditions on I/ ,
this often allows to conclude global stability:

ffx eBrl + ["(4-- 0 as l---+ oo]. Note that we do
not require a Lyapunov function to be non-negative.
In fact, there are applications where this is not useful,
for example when applying Lyapunov methods to
obtain instability results one needs Lyapunov func-
tions that are unbounded from below.

An important problem that emerges is the con-
struction of Lyapunov functions. Usually, this refers
to the construction of a function Z: X ---+ lR from
which global stability may be deduced. More gen-
erally, for a given T, one may want to classify all
Lyapunov functions Z, possibly with non-negativity

vv:: r . t (y.9.  )
\0xl ox2 /

q(x,t)
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of V added as an additional requirement. This theory
is very well established for linear flows:

*.: Ax, with x € IR' and ,4 € JR'"',

and quadratic Lyapunov functions

V(") : *'Q*, with e: gr € JR"'.

The conditionthat V is a Lyapunov function leads
Io lhe Lyapunov equation

,q'e + eA<o.

If Q > 0, this proves stability. If, in addition,
(A, A'Q + QA) is observable, we obtain asymptotic
stability. If Q h0, there is no asymptotic stability.
Combined with the observability condition, instability
follows. This equation has been studied in great detail in
linear algebra and in the control and systems literature.

The examples given in Section 2 readlly lead to
Lyapunov functions. Consider the electrical circuit.
Of course, this is not a flow. It becomes a flow when
subjected to suitable terminations. The short circuit
(V :0) equations are

fi,':-7,,,frr": - jrn,
The energy stored in the circuit, iClL+\fP, is a
Lyapunov function. Its derivative equals -V"rln"-
R1Pr, the heat dissipated in the resistors. The open
circuit (1: 0) equations are

d, -  Rc*Rr,  ,1, ,
dt t t : -  L 

rLt ivc-

d, ,  l ,

dr '  '  
:  

Vtr '

Again the energy stored in the circuit,+CVL++LPL
is a Lyapunov equation. Its derivative equals
-fir l n" - RrFr. In the case that all the elements are
positive(C > 0, L ) 0, R6 ) 0, R; ) 0), this proves
asymptotic stability of both the closed and open cir-
cuit behavior. But when C andlor L are negative and
R6 ) 0, R; ) 0, this leads to instability.

In the case of the thermal vessel, we obtain a flow by
isolating it from its environment and taking Q' :0,
leading to * f : O for the dynamic equations.
Obviously Z is a Lyapunov function, leading to
'neutral' stability. Note that every function of 7, in
particular the negative of the entropy' - ln Z, is a
Lyapunov function. The heated bar becomes an
infinite-dimensional flow by assuming 4: 0, leading
to the equation

aA2
^ T: 

-7.
dt dxz
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This yields the Lyapunov functions Ii f@,.)dx, the

energy, and - fttnr1x,.)dx, the negative of the
entropy. The derivative of f, 7(x,.)dr is zero, and
no stability can be concluded on the basis of it. The
derivative of - .6 t" Z(x, .)dx equats - f: F@j
(&r|,.))'d" From here, it can be shown thaI" T
converges to a uniform temperature T* :

f; r1", o;a'.
Lyapunov functions were hrst introduced by

Aleksandr Mikhailovich Lyapunov (1857-1918) in
his doctoral dissertation in 1892. They play a
remarkably central role in applied mathematics in
general, and in systems and control in particular.

4. Dissipative Systems in an
Input/State/Output Setting

Flows are examples of 'closed' dynamical systems.
Each trajectory is determined by the initial conditions.
The trajectory is autonomous and driven purely by the
vectorfield, by the internal dynamics of the system.
The environment has no influence on the motion.

'Open' dynamical systems, on the other hand, take
the influence of the environment explicitly into con-
sideration. They are a much more logical and richer
starting point for a theory of dynamics. In the state
space models that have become in vogue in systems
and control since the 1960s, this interaction with the
environment is formalized through inputs and out-
puts. The environment acts on the system by imposing
inputs, and the system reacts through the outputs.
This leads to models of the form

i :  f (x,u),  /  :  / r (x,  u), (r)

with u the input value, [I the input space, u f U, y the
output value, Y the output space, y € Y, and x the
state, X the state space, x € X. For simplicity of
exposition, we assume again X C 1R'. The map
/: X x U -* lR' is called the (controlled) vectorfield,
and h: X x U 

- 
Y is called the read-out. Thus the

vectorfreld assigns to (x, u) e X x [J the state
'velocity' i :,f(X, u) e IR', and the read-out assigns to
(x, u) e X x [J, the output value y : h(x,u) e Y.
As part of the system specification, there is also a
space of admissible inputs, /,/ C UR. Assume thaltl is
shift-invariant and closed under concatenation. Shift-
invariant means otU : U for all r € IR, with ot the shift
operatorl, or acting on/: IR. --+ lF is defined as the map
from lR to f dehned by otf(t ')::f(tt + l). Closed
under concatenation means [u1,u2 € Z.1 and I e ]Rl
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+[u1 \u2€Ul,  wi th nr concatenat ion at  / .  For

ft,fz tT ---+ JF, and I € 'll, the concatenation f1 \f2, is
def,rned as the mapfi Nfz : T ---+ JF, with

. f t  A,fz(t ')  -- {rtel 
for t '  < I

t tz( t ' )  for l>r

The behavior 6t of (X) is

BD , :  { (u,y,x)  :JR 
-  

( [J x Y x X) l

u e U,x absolutely continuous, and
Au

i .A) 
: f(x(t). u(t)), for almost all I e IR.,

y( t )  :  h(x( t ) , rz(r))Vr e R.)

It is easy to see that shift-invariance ofU and the fact
that the controlled vectorfield and read-out do not
depend on time explicitly, imply that Bt is also shift-
invariant.

The notion of a dissipative system involves -

(i) a dynamical system X,
(ii) a real-valued functions: {J x Y --+ ]R, called the

supply rate, and
(iii) a real-valued function V: X * lR, called the

storage.

Definition 1. The system X is said to satisfy the dis-
sipation inequality with respect to the supply rate s
and the storaee Z if

v(x(t2)) - v(x(t1))

holds for all (u,y,x) e Bu ard t1,/2 € IR, with t2 > h.

As in the case of a Lyapunov function, the
dissipation inequality can be checked without explicit
knowledge of Bo.It can be verified directly from the
vectorfield f, the supply rate s, and the storage
Z. Assume that Vu QU,1u€.U such that a(0):  u,
and that for all x € X and u €U, there exists
a (u,y,x) e BD such that r(0) : x. Assume also
Ihat V is differentiable. Then (Disslneq) holds if and
only if

f  : :vV.f

sat isf ies V" (x.u) < s(u. l (x,  u))

VxeXandVueU.

The dissipation inequality expresses the following.
We have an open dynamical system X. It interacts
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with its environment through the input and output
variables. A certain function ofthese variables, s(u, y),
has the meaning of the rate at which a relevant
quantity (mass flow, power, entropy flow, heat flow)
flows in and out of the system (s is counted positive
when it flows into the system). Some of the supply is
stored, some of it is dissipated. It is assumed that the
amount stored is a function, V(x), of the state of the
system. The difference of what is supplied and what is
stored, is dissipated. The dissipation inequality states
that the dissipation is non-negative.

Let us apply this def,rnition to our examples of
Section 2. Our definition requires considering state
equations as (1) for the circut. It is readily seen that
there holds

d / t  ^  |  . \  (v-v"\2
] l "cv ' r=.Ln l :  vt  - \ '  - '  ( t  -  R,IL
d/\z '  2 " /  Rg

Whence the dissipation inequality holds with storage

icvL+lrft6ne stored energy) and supply rate VI,
the electrical power delivered to the circuit by the
environment. The difference of the increase of the
storage and the supply equals -RrPr - V - V,)'I
R6', the negative of the heat dissipated in the resistors.

For the thermal vessel, we obtain *f : Q' .Hence
the dissipation inequality holds with equality with
storage T and supply rate Qt. This corresponds to
conservation of energy. We also have $ln T > Q' lT,
leading to the dissipation inequality with storage
-7nT, the negative of the entropy, and supply rate
-Q' lT . Their difference, Q' (l f T - | lT) corresponds
to entropy production. We will later return to the fact
that the combination of Eq. (2) and the inequality (3)
does not def,rne an input/state/output system.

For the heated bar, we obtain

q(x. . )dx

< I s(r.r(r),y(t)) dr

(DissIneq)

* lo' 'r*, )o.: I:
and

Arl
:  /  tn i " (x, . )dx
ot Jo

f ts6, . )  f t /  I  a-  \2.: 
J, ffio* * Jo (rt". ra"- r(x^') ) 

dx

f  r  a(  x- . \> J, ,\,.)o'
with similar interpretations.

Note that in the dissipation inequality, we did not
require the storage to be non-negative. It is to some
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extent a matter of taste whether one wants to add this
requirement in the definition of dissipativity, and
there are arguments for and against adding non-
negativity as a universal requirement. But in this
paper, we will reserve the term 'dissipative system, to
systems with a non-negative storage.

Definition 2. (X) is said to be dissipativewith respect to
the supply rate r : [J x Y -* ]R if there exists a non-
negative storage Z: X -* IR such that the dissipation
inequality (Disslneq) holds. X is said to be cyclo-
dissipative with respect to the supply rate
s : U x Y -- jR if there exists any storage Z: X ---+ lR
such that the dissipation inequality (Disslneq) holds.

Both dissipativity and cyclo-dissipativity are rele-
vant in physical applications. For electrical circuits
and ordinary mechanical systems, with the supply
delivered electrical or mechanical power and the sto-
rage internal energy, it is natural to assume that the
storage is non-negative (or, what basically amou4ts to
be same thing, bounded from below, since the dis-
sipation inequality remains satisfied after we add a
constant to the storage). Indeed, if we want to be able
to conclude that the future integral of the supply that
can be extracted from a system is bounded, then we
need non-negativity of the storage. We do not con-
sider the nomenclature 'dissipative, appropriate in
situations in which the storage that can be extracted is
infinite. This implies in particular that for dis-
s ipat iv i ty,  we need C> 0,  L>0,R6 )  0,R1 > 0 in
the circuit example. Moreover, for the thermal vessel
and the heated bar, it is only the conservation of
energy that leads to a dissipative system. In other
applications, for example in thermodynamics or in
the mechanics of a planet orbiting .the sun, cyclo-
dissipativity is the more relevant concept, since in this
case the stored energy is neither bounded from below
nor from above. Similarly, as we have seen, the
entropy often contains a logarithms, leading to a
function that is also neither bounded from below nor
from above. The nomenclature'cyclo-dissipative'
stems from the fact that (u,y,x) e BD and x periodic
imply

the system dissipates supply when operated in a peri-
odic regime. So, in particular the entropy production
in the thermal vessel and the heated bar lead to cyclo-
dissipativity.

Definition 2 was introduced as a concept of its own
in 1973 [11], building on earlier work of Brockett,
Kalman, Yacubovich, Popov, and others. When a
system is isolated from its environment. then it is
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natural to assume that the supply rate is zero: s : 0. In
this case, the dissipation inequality reduces to the
requirement that the storage V is a Lyapunov func-
tion. The notion of a dissipative system is hence a
nattral generalization to open systems of the notion
of a Lyapunov function. Dissipativity has Lyapunov
theory as a special case, but it can be used to analyze
issues that have no analogue for closed systems (for
example, the minimum phase property, see [a]. In
view of the central importance of Lyapunov functions,
and the fact that open systems form a much more
logical starting point for a theory of dynamics than
flows are, one should expect dissipative systems to
play a central role in the field.

5. LQ Dissipative Systems

The question emerges whether, for a given system X
and a given supply rate s : [J x Y 

- 
]R, there ensts a

(non-negative) storage Z: X ---+ lR such that the dis-
sipation inequality holds. And, if a storage exists, how
the family of storages looks like. These issues have
been studied very extensively, both for general sys-
tems, but especially for linear systems with a quadratic
supply rate. One of the salient facts is the following.
Under reasonable conditions, having to do with the
existence of an equilibrium state and controllability,
one can define two functions, the available storage,
Zuu : X ---+ R, and lhe required supply, Z."o : X --+ IR..
We will review their construction in Section 6. The
system is cyclo-dissipative if and only if Vuu and V,"o
are bounded, in which case both are storages them-
selves. Moreover, the set of storages is convex, and
each storage (suitably normalized by an additive
constant) is bounded from below by V* and from
above by Vr"r. The somewhat surprising fact is that
under mild conditions the set of storages, obviously a
partially ordered set, thus attains its infimum and
supremum.

In the linear-quadratic case, the system is assumed
to be linear, and the supply rale a quadratic form.
However, since the exact expression of the output in
terms of the input and the state is immaterial, we may
as well assume that the supply rate is quadratic in
(u, x), yielding

i :  Axl  Bt t ,

s(u, x) : urRu + 2urSx + xr-Lx,

with R : Rr , L : Lr .Inthis Le-case it can be shown
that there exists a storage if and only if there exists one
that is a quadratic functional of the state. In fact, Vuu
and Vr"r, if bounded, are quadratic functionals of the

)X!, fr '  ' ru(t) 'Y(t))d' t  > o:
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state. The dissipation inequality with Z(x) : xr Qx
becomes

This is easier to comprehend, but equivalent to the
following matrix inequality which is explicit in the
system and supply rate parameters (,4, B, R, S, L)

-L

Q: Qr.(L}/lI)

If we are looking for a non-negative storage, we
should augment (LMI) with Q : Qr>0. Henceyin the
LQ-case cyclo-dissipativity requires the solvability of
(LMD for Q: Qr, with Q: Q'>0 added for dis-
sipativity. Under suitable conditions (controllability,
etc.), a storage exists if and only lf Vuu and Vr", are
bounded, and these extreme storages are quadratic.
Hence a non-negative storage exists if and only if Zr"o,
the supremal storage function, is non-negative. This
implies that under appropriate conditions the set of
solutions Q to (LMI) is convex and attains its supre-
mum and its infimum (in the partial ordering of
symmetric matrices by non-negative definiteness of
the difference).

The inequalities (LMD are special cases of
inequalities of the type

arMr I  azMz I  . . .  I  arMr2j ,

with the My's reaT symmetric matrices, deduced
from the system and supply rate parameter matrices
(A, B, R, S, Z), and the op's real numbers that lead to

Q. This type of inequality (with the M's given, and the
o's unknown) is called a linear matrix inequality
(LMD. LMI's are very much like linear programming
inequalities, and have been studied very deeply. In
fact, it is the problem of the existence of a storage in
the LQ-case that brought us to the acronym LMI.
With its relation to the algebraic Riccati equation and
inequality, and to semi-definite programming, and to
robustness, the applications became seemingly
unbounded.

Let us apply this to the electrical circuit example
introduced in Section 2.1. -fhe Eq (1) describe the
port behavior, with the current through the inductor
and the voltage across the capacitor as state variables.
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We have already seen that this system is dissipative if
all the elements are positive: C > 0, L > 0,
R6 ) 0, Rr > 0. If, in addition, CRg I Lf Ry, then
this state system is state controllable and state obser-
vable. In this case the associated (LMI\ has a convex
compact set of solutions Q : Q' > 0. that moreover
attains its infimum and supremum. In the case
Rc : Rr : I,C : l, L : l, the port equations
become

A

] .er-vc):-(rL-vc).
OI

I :V+(Ir_Vc).

The system is uncontrollable (both in the state and
behavioral sense we explain^later what we mean by
this). In this case QQr - Vg)' is a quadratic storage
function if and only if Q> l12.In particular, the set
of quadratic storages does not attain its supremum.

6. Behavioral Systems

As we have argued extensively elsewhere, the partition
of external variables into inputs and outputs is often
very awkward, especially in the context of physical
systems. For example, in the case of the electrical
circuits, it cannot be decided beforehand if a circuit
viewed from a port is voltage or current driven, and
this may very well depend on the specifrc system
parameters. Consider the thermal vessel discussed in
Section 2.2. The behavior of the external variables
(Q',7) is described by the combination of (2, 3).
Obviously, in these equations neither Q' not T are
free variables, and hence, viewing this as an input/
state/output system is not appropriate. Later, we
shall discuss why the input/output setting is proble-
matic for general thermodynamic systems.

These considerations motivated the development of
the behavioral approach, in which a dynamical system
is characterizedby its behavior. The behavior is the set
of trajectories which meet the dynamical laws of the
system. Formally, a dynamical system is defined by
X : (T,W,6), with 1l C lR the time-set, W the signal
space, and 6 c Wlf the behavior. X is said to be linear
if W is a vector space, and B a linear subspace of WR.
It is said to be time-invqriant if 1l is closed under
addition, and otB c B Vt € 11. In the continuous-time
setting lf : lR, pursued here, the behavior of a dyna-
mical system is typically defined as the set of all
solutions to a system of differential(-algebraic) equa-
tions. Note that the notion of behavior involves open
systems, but avoids the input/output partition of the
variables. Input/output systems are covered by taking

fh+": A.+8")f
* fffi".0" 

< ur Ru + 2ur sx+ "'r"]l

5rArQ+ QA
B,Q- S

B_
-R

O
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W: U x Y, but usually the use of the input/output
nomenclature implies in addition issues of non-
anticipation and causality. These concepts are often
tenuous and irrelevant, and are avoided in the beha-
vioral approach.

A linear time-invariant dffirential dynamical
system (R, R', B) is a system with behavior

B : {w: IR - lR' lR f+) rr ,  :  o}
\d/,/

for some R e lRl{]"'. The precise dehnition of when
w : lR ---+ lR' is a solution of this differential equation is
often of secondary importance. For the purposes of
the present paper, it is convenient to consider solu-
tions in C-(R,R'). Since 6 is the kernel of the dif-
ferential . op.erator R(*a) ,C*(R,pcoldim(R); -*
c-(R,u"*o':l^,), we often irite B - kernel(R(*o)),
and call n("3)r:0 a kernel representatton'of--the
associated linear time-invariant differential system.
We denote the set of differential systems
(JR,lR.,kernel(R($))) for some R e lRl(]" ', or their
behaviors, by L', or by L* when the number of vari-
ables is w. While linear time-invariant differential
systems are defined as kernels of linear constant
coefficient differential operators, they ate often
represented in other ways. State space systems, or,
more generally, systems described by constant coeffi-
cient linear differential equations with latent vari-
ables, systems defined by transfer functions, etc. are
all representations of elements of l'.

An important property of a dynamical system is
controllability. In the behavioral setting, this notion
takes the following appealing form. X: (1f,W,6),
with 1l : lR. or Z and assumed time-invariant, is said
to be controllable if for all w1,w2 € 6, there exists
Z ) 0 and w € B, such that

(  *r( , )  lor  r  0
wlt l  :  <

l r r j -n forr  T.

Informally, controllability means'patchability' of
elements of the behavior.

Observability pertains to systems in which the
variables form a product space, with w1, zrt 'observed'
variable, andw2, to be deduced from the observations
and the laws of the system. Consider X :
(T, Wr x W2,6). We call w2 observable from w1 in E
if [f (w1, *'r),(rr,wj) e n]l 

" 
firi : yi]1, i.e. if there

exists a map F: (W1)'* (Wz)' such that
(* t , rz)  e 6 impl ies wz: F(wt) .

Details and conditions for controllability and
observability may be found in [7].

A latent variable dynamical system is a refinement
of the notion of a dynamical system, in which the
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behavior is represented with the aid of auxiliary
variables, calIed latent variables. Formally, a latent
variable dynamical system is defined by
tz : (11, W,.C,861) with 1l C IR the time-set, W the
signal space, f;the space of latent variables, and
Bn;il C (W x 4) " the full behayior.61x consists of the
trajectories (w,l):11-- W x f, which are compatible
with the laws of the system. These involve both the
manifest variables w and the latent variables l. X;
induces the dynamical system t: (11,W,6) with
manifest behavior

B: {w: 1f -+ \{137 :T ---+ f,such that (w,(.) e B,,,rn}.

The motivation for latent variable systems is that in
first principles models, the behavioral equations
invariably contain auxiliary ('latent') variables (state
variables being the best known examples, but inter-
connection variables the most prevalent ones) in
addition to the ('manifest') variables the model aims
aI. Latent variables should be an essenti al part of any
theory of dynamical systems.

A state system is a special case of a latent variable
system. Dy: (lf,W,X,Bru) is said to be a state
system if the full behavior has a concatenability
property, requiring that

[ ( r r ,  
" r  ) ,  ( rz,  *r)  € Bnr,  t  € T,  x1(t)  :  x2(t) l

+ [(rr, x1) A1(w2,x2) € B6x].

An example of a state system is provided by (X), under
the assumption that U is closed under concatenation.
It is easy to prove that (lR,U x Y,X,6D) defines a
state system. More generally. assume X e IR.'. Then
any system defined by behavioral equations of the
form

(w, x, i) e JE

with ts a subset of W x X x lR'defines a state system.
In words: a system is a state system if it is described
by differential equations that are zero-th order in
the manifest and first order in the latent variables.
Of course, D is such an example, and so are the rela-
tions (2, 3).

It is easy to see that for an input/state/output
system, controllability of the (a, x)-behavior of X, is
equivalent to the classical notion of state controll-
ability. Similarly, the classical notion of state obser-
vability corresponds to observability of x ftom (u,y)
in X. Informally, we call a latent variable system
observable if in 61'n the latent variable is observable
from the manifest one.
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The input/output structure turns out to be
completely unimportant in the defrnition of the dis-
sipation inequality, and hence for the notion of a
(cyclo-)dissipative system. The analogue definition of
the dissipation inequality involves

(i) a state system (R,W,X,6ru), with 66 shift-
invariant,

(ii) the supply rate s : \[ ---+ IR, and
(iii) the storage Z: X ---+ lR..

The dissipation inequality becomes

f tz

v(x(t2\ - v(x(t)) 3 | s(w(t)) dt
Jtt

(DissIneq6)

for all (w,x) e B1y and t1,t2 € IR, with t2 ) t1.
The main results regarding the construction of sto-

rage arc readily generalized to the behavioral setting.
This generalization is straightforward, but nevertheless
very meaningful since the input/output partifion is
almost always artificial when applied to physical sys-
tems and their interconnections, and in view of the fact
that the theory of dissipative systems offers important
insights for the analysis of physical systems.

Consider the system I : (1R.,W,6), time-invariant
(otB:6 Vr e 1R), and assume that there exists
w* e W such that w* e B, with w* defined by
w-(r) : w* Yt e IR. w* can be viewed as an equili-
brium. Let E5: (lR,W,X,6r,l) be a state repre-
sentation of X. Assume that E5 is state observable,
meaning that for all w e B, rhere exists a unique x
such that (w,x) e B6n. This implies in particular that
there exists x* € X such that (w*,x*) € Brdt, with x*
defrned by x-(l) : x*Vl e lR. x* can be viewed as the
equilibrium state. Assume also the following reach-
ability assumption. For all x e X, there exists
(w,x) e 6ru with lc(0) : x, and x(t): x* for l l l  suf-
ficiently large, i.e. each state can be reached from and
steered to the equilibrium state.

Let s : W ---+ IR be the supply rate. Define
Vr"q, Vuu : X ---+ lR as

vnq(x) ,: inr 
l,o 

s(w(/)) dl ,

with the inhmum taken over all r < 0 and (w, x) e 611
such that (w, x)(t) : (w*, x*) for I sufhciently
small, and

with the supremum taken over all / > 0 and
(w, x) e 861 such that (w, x)(t) : (w*, x* ) for t

Vuu(x) ::r"n - 
,{ 

s(w(t')) dt' ,
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sufficiently large. It can be shown that the following
are equivalent:

(1) =V: X ---+ IR such that (Disslneq6) holds,
(ll) Vr"q ) -oo,

(iii) 2", < oo.

Moreover, if Z: X ---+ lR satisfies (Disslneq6), then
Vuu <V - V(*-) I V,"q, and if Vt,Vz ate both
storages, so is oZ1 + (l - a)V2 for 0 < a < 1.

The fact that the input/output framework is irrele-
vant and undesirable for the main results the theory of
dissipative systems shows that we may as well use the
behavioral setting, and take the supply s itself as the
manifest variable. The issue remains how to deal with
the storage. Should it be taken to be a state function,
or can one just postulate its existence and prove that it
is a state function instead of postulating that it is? We
deal with this approach in the remainder of this paper.

7. Shortcomings of the Classical
Notion of Dissipativity

The classical theory of dissipative systems as discussed
in the previous sections has a number of short-
comings. Some main ones are the following.

One of the important applications of the theory of
dissipative systems is to the stability of interconnected
systems. Under suitable conditions, the interconnec-
tion of dissipative systems is stable, with the sum of
the storages of the components functioning as a
Lyapunov function. Often, this methodology is used
to prove robust stability, with one of the components
the plant, and the other component, the uncertain
system. The theory of dissipative systems however
requires a state representation of both the plant and
the uncertain system. It is very awkward to assume
knowledge of the state space and the state dynamics of
an uncertain system.

In the classical definition of a dissipative system, the
storage is assumed to be a state function. But this is
something one would like to prove, rather than
assume. Also, a state representation is never unique,
and the question occurs if non-minimal state repre-
sentations are relevant in the theory of dissipative
systems. Indeed, they are. Consider for example the
system frx : Ax, ! : Cx, with u free. Is there a state
function such that the dissipation inequality holds
with respect to the supply rate ury? In the standard
notation, this system is given by

d

d:" 
: Ax -l 0u, y : Cx, s: (u, Y)^ 'urY.
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It is easy to see that there does not exist a Z(x) such
that the dissipation inequality holds, i.e. such that
Y V(x) ' Ax I ur Cx, Vx and u. However, if we realize
this system non-minimally as

dd_

dtt :Ax,  *z:-A 
zIC u,  ! :Cx,

then it is easy to verify that V: (z,x)^-zrx satisfies

ftrT x : uT y along solutions. So a storage such that
the dissipation inequality holds does not exist if we
require it to be a function of a given (minimal) state
representation. We must introduce an unobservable
state. There are electrical circuits where the physical
state, and hence the storage, if it is assumed to be
a state function, is unobservable from the external port
behavior. We discuss this further in the next section.

The paradigmatic examples of laws that are best
formulated in the language of dissipative systems are
the first and second law of thermodynamics. A
thermodynamic engine (see Fig. 4) is a system "that
interacts with its environment by means of work, heat
flow, and temperature. Assume that the thermo-
dynamic engine has a work 'terminal', where work is
delivered to the environment, and several, but a finite
number, nheal'terminals', along which heat is deliv-
ered to the engine at a particular temperature. A
typical thermodynamic engine usually has many work
terminals, where work is done in the form of
mechanical or electrical work, etc. However, in order
to formulate the first and second law of thermo-
dynamics, there is no need to distinguish between the
different work terminals, and so they can be lumped
into one. This lumping cannot be done for the thermal
terminals, because of the required pairing of heat-flow
with temperature. The variables of interest are hence

w(') ,  Qr( ' ) ,  7r  ( ' ) ,  Qz( ' ) ,  r r1. ; ,  .  .  .  ,  Qo(.) ,  Tn1.1,

all real-valued. The first law of thermodynamics states
that every thermodynamic engine is conservative with
respect to the supply rate li:, en(.) - W(.) and
dissipative with respect to - D?:r er(.)lrpO. We do
not dwell of the precise formulation, but we only
discuss the appropriateness of the classical input/
output setting.

A thermodynamic engine is a prime example where
input/output thinking is misplaced. It makes no sense
physically to declare some of the variables
w(),  Qt( ' ) ,  4 ( ' ) ,  Qz( ' ) ,  Tz(.) ,  .  .  . ,  Q,( . ) ,  T,( . )  input
variables, and the other output variables. A cause/
effect level of description, if useful at all, requires a
model that deals with a more detail and much lower
level of aggregation. Heat flow may happen by pres-
sures that lead to mass transport, work flow may be
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(Q,,T,}

(Q,,r,)

themal side

(Q^,'fJ

work side

Fig. 4. Thermodynamic engine.

realized by electrical voltage differences leading to
electrical power flow, or by forces leading to
mechanical work, etc. Input/output thinking is hope-
less in this example. Formulating general laws, as the
the first and second law, pertaining to any thermo-
dynamic system, in terms of input/state/output
models is unrealistic. Also the assumption that the
internal energy and entropy are state functions is
awkward. In an abstract sense, every signal can be
viewed as a function of a (non-minimal) state. But
to require these to be functions of a the state of a
minimal state representation of the behavior of
(w() ,  Qr( ' ) ,  Tr( ' )  ,  Qz( ' ) ,  Tz( ' ) ,  .  .  .  ,  Q,( . )  ,  T,( . ) )  a lso
presents problems, since usually the internal energy
and entropy are functions state variables on a lower
level of aggregation. They are obtained from viewing
the thermodynamic system as an interconnection of
thermodynamic systems, and treating the internal
energy and entropy as extensive quantities.

8. An Intrinsic Definition of a Dissipativity

We now give a 'no frills' definition of dissipativity. It
is, of course, stated in the language of behaviors, and
it is very direct. The idea is the following. We have a
dynamical system that exchanges supply (of energy, or
mass, or whatever is relevant for the situation at hand)
with its environment, expressed by a real-valued
supply rate, ,s, taken to be positive when supply flows
into the system. Modeling the dynamics leads to a
family of trajectories s : R ---+ lR. that express the pos-
sible supply histories, and to a dynamical system
t : (R,JR,6), and s : IR ---+ IR belongs to the behavior
6 if it is a possible history of the way supply flows in
and out of the system. Dissipativity simply states that
the maximum amount of supply that is ever extracted
along a particular trajectory is bounded. More pre-
cisely, iffor any trajectory, and starting at a particular
time, the net amount of supply that flows out of the
system cannot be arbitrarily large. In other words, the
'free' supply is bounded, supply cannot be produced in
infinite amount by the system. Everything that can be
extracted more than is being supplied must have been
stored at the initial time, and is therefore bounded.
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Definition 3. Let D : (lR,lR., B)be a dynamical system.
A trajectory s : lR ---+ JR., s € 6, models the rate of
supply absorbed by the system. X is said to be dis-
sipative: e

Vs e 6 and ts € lR, lK€ lR,such that
rT

-  I  s(r)dr < K lor  T) ts.
Jt"

A special case that leads to dissipativity is when

[se 6]r [ [J_*s(t ' )d/  >0Vr€R]] .  This is rele-
vant when all trajectories s € 6 have bounded support
on the left (this can be viewed as systems that start'at
rest'). More generally, dissipativity follows if for all
s  e 6thereexistss/  € 6suchthats(r)  :  s ' ( l )  for  I  )  0,
and with [ ' *s'(/1d/ ) 0 for all I e ]R.

We now connect this dehnition with the storage.
The storage is viewed as a latent variable V that is
coupled to the supply rate s. This leads to a latent
variable system Xr : (R, R, R, B1n), such that"(s, Z)
belongs to the full behavior Bnt if the pair
Z : lR. ---+ lR, s : lR ---+ lR is a possible history for the way
supply flows in and out of the system and is stored in
the system. The dissipation inequality is stated in the
language of latent variable representations as follows.

Definit ion 4. Let X; : (1R.,R,R,6r"1) be a latent
variable dynamical system. The component s : lR -+ IR
of a trajectory (s, V) € 6ru models the rate of supply
absorbed by the system, while the component
Z: lR 

- 
lR models the supply stored. V is said to be a

storage if V (s, V) e Bnn and V le, 11 € JR , ts I i1, the
dissipation inequality
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This shows that t : (R, R,6) is dissipative
(take K: V(to) in Definition 3).
(only if : Assume that E : (1R.,IR ,6) is dissipative.
Define, for each trajectory s € B, an associated
trajectory Z: lR ---+ lR, as follows:

Obviously (take T : t in the sup), tr/ > 0. Since
t : (R, R,6) is dissipative, V(t) < a (in fact,
V(to) 3 K, with Kas in Defrnition 3). Hence, with the
(s, Z)'s so defined, we obtain a latent variable dyna-
mical system Xz: (lR.,lR.,lR,6ruu) with manifest
behavior B.
For w € B and to ) 11, there holds

f t t
: - 

J" 
s(t)dr + v(t1)'

This proves the dissipation inequality.

n
The proof is based on the simple principle that a

system is dissipative if and only if the 'free' supply is
bounded. We use the term 'free' in the sense of 'free
energy' as this is used in physics. Note that the con-
struction of V in this proof leads to a non-negative
V > 0. Moreover, if the system is time-invariant, i.e. if
otB: B for all I € lR, then the constructed full beha-
vior of (s, tr4's is also time-invariant. We do not know
a simple condition on a time-invariant system
X : (lR, 1R.,6) for the existence of any time-invariant
latent variable representation E; : (JR., JR, JR, B6n)
with any storage (not necessarily non-negative, or
what is equivalent, not necessarily bounded from
below) such that the dissipation inequality holds.

9. QDF's as Supply Rates

Definition 3 gives a clean dehnition of dissipativity. It
simply looks at the rate at which supply goes in and out
of a system, and by considering all possible supply rate
histories, comes up with a definition of dissipativity.

The main representations of dynamical systems
studied in the literature depart either from behaviors
dehned as the set ofsolutions ofdifferential equations,

v(t) : , "n{  l , '  , ( r )at l r> t } .

v(ro):r"n{ 
1,, '  

, ( ldr l7> ro}

f t r
,_ - 

J," 
s(r)dr

+,"n{- 1,, '  ,rrarlr > t,\

(DissIneq')

holds.

We now prove that dissipativity is equivalent to the
existence of a non-negative storage.

Theorem 5. t : (R, R, B) is dissipative if and only if
there exists a latent variable dynamical system
tr : (1R., R, R,61,n) with manifest behavior B such
that the latent variable component of (s, V) e B1.i1l is a
non-negative storage.

Proof. (if): Assume that X1 : (lR,lR+,IR,66n) satis-
fies (Disslneq'), has manifest behavior B, and V > 0.
Let s € B.Thet I Z: lR + lR+ such that (s, V) e Bst
and hence

V/o € IR,,

rT
- 

J,^ 
s@at < V(to) -V(T) < V(to), for T) ts.

v(tr) - v(to) < 
f,," 

,{t)dt
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or, what basically is a special case, as transfer func-
tions, or from state equations, or, more generally,
from differential equations involving latent variables.
However, there are also representations that start
from image representations. In this section, we study
such representations of supply rates.

One way to obtain a supply rate is by assuming that it
is generated by a 'local' operator that acts on a free
signal w, more precisely, a differential operator that acts
on u/ € C-(R, 1R') to generate s. A very general situation
of this type is obtained by a real polynomial in the
variables rot,w2, . . . ,ww and their derivatives, and
considering the supply rate histories that result from
letting this polynomial act on an arbitrary w e
C-(R, IR"). In this section, we examine the situation
when the supply rate is generated by a homogeneous
quadratic differential operator acting on a vector offree
C--functions and their derivatives. We call such differ-
ential operators quadratic differential forms.

Definition 6. A quadratic differential form (eDF) is a
finite sum of quadratic expressions in the components of a
vector-valued function lr € C6(1R., lR') and its derivatives:

with the Qr,k € lR'x'. Note that this dehnes a map
from C*(1R,JR.') to C-(R,R).

Denote by Rl(,4] the real polynomial matrices in
the indeterminates ( and 11. Two-variable polynomial
matrices lead to a compact notation and a convenient
calculus for QDF's. Introduce the two-variable poly-
nomial matrix Q given by

O((.1) :E,*@,. tC'0k e lR[( .?]" '

and denote the expression in Dehnition 6 by eo(w).
Hence

Qr :  C-(IR, lR')  
-  

C-( lR, lR),

wr+Qq(r,) : :
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behavior 6 defrned by a two-variable polynomial
matrix O e JR.[(, ?]"' u,

B : {t: lR -* IRI ! w e C-(JR, tR.*)

.  such that s:  eo(r) ]

Since this behavior is the image of the map eo, we
denote it by im (Q*).

The system X6:: (1R,Rim(eq)) obtained this
way is time-invariant but clearly nonlinear. At first
sight it may appear that a supply rate that is a eDF
deals with a rather special situation. But, to the con-
trary, it covers all controllable linear time-invariant
differential systems and quadratic supply rates, as
follows.

For elements of .4', it can be shown that controll-
ability is equivalent to the existence of an image
representation. More precisely, B € L' is controllable
if and only if there exists M e IR.[fl',. such that
w: M(f;)(. is a latent variable representation of 6, in
other words, if and only if B:image(M(*a)), for
some M e R[6]'11, .with M(*) viewed as a map
Ut (*), C* (R, pcoldim(I1) ; - 

CdiR, prowdim(n{ 
;.

Now assume that we have an element of B e L.,
and that we wish to investigate its dissipativity with
respect to a supply rate s : Qo (r) Supply rates often
contain derivatives of their own (e.g., in mechanical
systems, the power equals Fu *q,with Fthe force, and
q the position). Then if 6 is controllable, we can use
the image representation w : M(*)l for B e L. and
reduce the dissipativity question with r:
Qo(w), w e B, to that of r' : Qo,(/) with l. free, and
A'(e,d:  MrG)AG,r)M(r i .Hence this leads to a
pure QDF, without constraints on the time-functions
that the QDF is acting on. Basically, therefore, the
constraints made by restricting attention to-eDF's are
only: linear, time-invariant, differential, controllable
systems, and a QDF in the original system variables
for the supply rate. These situations can be reduced to
a supply rate behavior im (e.) for some O e 1R[(,q]'"'.

10. Dissipativity of QDF,s

The question which we now deal with is to give con-
ditions on the polynomial matrix O such that
Xq: (JR,R, im(Qr))  is  d issipat ive,  or ,  more gen-
erally for the existence of a storage such that the dis-
sipation inequality is satisfied. The paper Il2l
deals extensively with these questions. See also [10] for
necessary and sufficient conditions for the existence
for the existence ofa non-negative storage function in
the LQ case. The following proposition gives a
necessary condition for dissipativity.

".,- (#,)'.,,- (o$,),

".-(#,)'.,-(#,)
Call O*, defined by O*((, r) :: er (r1,O, the dual of
A; O e Rl(, a]'^' is called flsymmetric] . <+ [O : O*].
Obviously, Qo(w) : Qo.(w) : e1o*o.r(w), which
shows that in QDF's we can assume, without loss of
generality, that @ is symmetric. The eDF eq is said to
be [non - ne g ativ e] (denoted Qq > 0) : <+ [e6 ( w) (0) > 0
for all lr€C-(lR,lR')1. QDF's have been studied in
depth in [2].

We now discuss supply rates defrned by eDF's.
Thus we consider the dynamical system (1R., 1R,6), with
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Proposition 7

fto : (R, R, im(Q6)) dissipative]

+ [o(r, )) + or(), ,\) > 0
V.\ € C, Re()) 2 0l

+ [o(i@, - iu) -l or (-ia,i",)20,

Vor e JR.l

In order to obtain necessary and sufficient condi-
tions for dissipativity, we need Io analyze the QDF
further. Associate with O : (D* € Rl(, T]"', O((, rl) :
E, kQ, lrC' nlk . the matrix

Oo,r
iDr,r

or,r

6 is symmet.nc, and,while infrnite, it has only Jf,rnite
number of non-zero entries. Consider the number of
its positive and negative eigenvalues and its rank and,
since they are uniquely determined by Q, denote these
by zr(O), z(O), and rank(O) : 

"(O) 
* z(O), respec-

tively. O can be factored as 6 : elp* - FIF-, with

-F, and ,F- matrices with an infinite number of col-
umns but a hnite number of rows. In fact, the number

of rows of ,F1 and F- can be taken to be equal to r(O)

and u(Q), respectively: rowdim(F1) : r.(O) and

rowdim(F-) : 
"@) 

if and only if the rows of
-  t i  I
F: |l* | are linearly independent over lR. Define

t t  I

F-(4) : F-1,* I*e r*€2 .. ]t.
F- ({) : F- [ l* r*e r*t2 . ]t.

This yields the factorization

o((, q) : rl(0r*(d - r!()r h),
with F1 € R"*[€],F e JR"*[(], yielding a decom-
position of a QDF into a sum and difference of
squares:

The (controllable) linear time-invariant differential
system with image representation

| "r*l
lf- )
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plays an important role in the sequel. The above also
holds, mutatis mutandis, for non-symmetric
A e JRI(,ql'"', by replacing O by its symmetric part

+ (O + O-). We will use the notation n.(O) :

;(+fr 1a-)), and z(o) : "(+@ + o-)) also in the
non-symmetric case.

Hence every QDF can be factored as a sum and
difference of squares:

It is easy to see that for Iq: (lR.,lR,im(Q.)) with
Q € JRI(,4]'^', we can always assume that
rank(,F) : dim(o) to begin with, in the sense that for
any iD e lRl(,T]"', there exists Q'e JR[(,4]'"' such
that im(Qo,) : im(Qo) and rank(F) : dim(o'),

let  1
leading to F: 

I O+ | 
corresponding to the factor-

L 
_J

izat ion of  Qa,(x, ' )  : lF*(*)r ' l '  - lF (  )* ' l '  into a

sum and difference of squares. Assume therefore that
rank(o) : dim(O). It can then be shown, using Pro-
position l, lhat dissipativity implies that we can
always assume that r(O) > dim(O). Of special interest
is the situation in which there is a minimum number of
positive squares: 

"(O) 
: dim(O). Then F1 is square

with det(,F1) l0.In this case, we can obtain a com-
plete characterization of dissipativity of a QDF.

Recall the dehnition of the L* and ?l- norms of
G e R({)" ' :

l lc l l r_ : :  sup{ lc(nr) l l r , r  e R},

l lc l ln_ : :  sup{ lc(s) l ls  e C,Re(s) > 0},

where | . I denotes the matrix norm induced by the
Euclidean norms. Note that llcllr_ < m if and only
if G is proper and has no poles on the imaginary
axis, and that llclhr_ ( oo if and only if G is proper
and has no poles in the closed right half of the
complex plane.

Theorem 8. Consider O : O* € 1Rl(,4]'"', with
r(O) : rank(O) : dim(O). The following are
equivalent:

(i) Xo : (R,R,im(Qo)) is dissipative,
(ii) there exists V e lRl(,?]"',Qv 2 0, such that

d

6r:Qv(r)  
(  Qor,r  Vw e C-( lR. lR-).

ea(w): &(*) *r -tF-(*),, '

Define

,:Wl . n'"*'r,.

eo(,) : '"(*) ,3 -tF-(*) ' , '

tf [q]1,
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Gii)  l *eo(r)dz> 0 yw eD (R,R*),

(iv) o(I,,1-) > o V) e C, Re()) > o,

(u) llCllx* < 1, with G defined as follows. Assume
that O is given in terms of F1,F_ e IR".[{] by
rl(Or*('i) - e!(Oe-@, with r'+ e R*iil[€],
f'- e JR'"*l{], and det(f'1) 10. Then
G ::  F-Flr .

Theorem 8 applies to all situations in which the
positive signature of O is equal to its dimension. The
following theorem deals with another such situation,
relevant to supply rates of the form w[w2, as
encountered in electrical circuits.

Theorem 9. Assume that O e lR[(, ?]"' is given by
o((, q) : FI (0rr1i, with F1, F2 € R*'*l(], and
det(F1) 10. Def ine G e 1R({)"* by G: F2f i1.- the
following are equivalent:

(i) to : (lR.,lR.,im(Qq)) is dissipative,
(ii) there exists V e lRl(,T]"',ev ) 0, such that

d

*:Q*{r)  
< Qo(r)  vw €c- (R.R)*.

( i i i )  l -Q*(r)dr>o vwe D(R,R*),

(iv) o(),.r-) + or(.1,I) > 0

V) e C, Re(I) > 0,

(v)  G is posi t ive real ,  i .e.

c(l) + c.()) > 0/or Re()) > 0.

Important in the above theorem is the equivalence
of dissipativity of a supply rate that is a QDF with the
existence of a storage that is also a QDF:

lV e lRl(, ?]'^', Qv ) 0, such that

d

6rQv(w) 
< Qo(r)  Vw e C-(R.R*).

It is easy to see (by writing this out in terms of the
matrices associated with these QDF's) that this is an
LMI in the space of two-variable polynomial matri-
ces, with O given and {r an unknown.

We refer to [10] for more details on the material in
this and the previous section.

It follows that the use of image representations
greatly facilitates the analysis of dissipativity and the
view that this question is an LMI. An obvious avenue
of generalization is to deal with general polynomials in
the vector w e C-(IR,JR'), and its derivatives, and
analyze dissipativity by SOS methods.

J-C Willems

11. The Storage as a State Function

In the classical definitions of the storage, it was
assumed to be a state function. However, this is
something one would like to prove rather than pos-
tulate. In fact, circumventing the explicit assumption
that the storage is a state function is one of the main
motivations that led to Dehnition 4. For supply rates
that are QDF's, we can indeed prove that the storage
is a state function. Assume that a behavior B e L' is
given in terms of the latent variables x by

Bw 
- 

Ax+ E{x:  o,
d1

with A, B, E e iR"' constant matrices. The variables x
are state variables. In fact, it can be shown that, for
linear time-invariant differential systems, the state
property is equivalent to the existence of such a
representation by means of a differential equation that
is frrst order in x and zero-th order in w.

The expansion 
^of Qo as

Qo(w) : lr*(*)rl '- lr_(d,4)wl2 leads t; a state
representation of a QDF, as follows. Let
Bf * Ax + Ef;x: 0 be a state representation of the
(controllable) system in image representation

Then

- f f , ' l  d .^. ,ul' i l-r Ax-t Efrr : 0.': V*l ' - lf_l '

is a state representation of Q*. In fact, by further
partitioning the variables f,, andf_ component-wise in
inputs and outputs, we arrive at the following input/
state/output representation of a QDF:

l r  1 f  p.r4r l
{_ l r -  |  _ l '  F\d/ , /  1, , ,r - l f  l - l r ' /dr l " ' '

Lr- )  L-  - \d1lJ

d lu-
-x:  Ax-tBl

Ot lu
L - ' -

I  v* ' l  f  u-
l - l :Cx+Dl
Ly- )  lu

, : l r* l r+ly* | ,

In [9] the notion of state
storage. Assume that Q*
inequality

, , ) , , )-  lu- l -  -  l / - l -

is brought to bear on the
satisfies the dissipation

*gQ*{r) 
< Qo(w) vw e c*(1R.,JR*).
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Then it can be shown that Q* is actually a memoryless
state function, i.e. there exists a matrix K e lR."' such
that
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(iv) ' Xq admits a latent variable representation with a
memoryless quadratic state function as storage,

(u) ' / lSQo(r)dr > o Yw eD (R,R*),

(vi) ' O(r",r. - i".') -f O-(--,-) > 0 Vu e lR.

The following implications have been shown: (ii)' e
(iii)' <+ (iv)' e (v)' <+ (vi)' <+ (vii)'. This
raises the question if (ii)' =+ (iii)', i.e. if assuming that
the supply rate is a QDF, the existence of a storage is
equivalent to the existence of a storage that is a QDF.
We conjecture that also this is the case.

12. Synthesis of Passive Behaviors

We now pick up the discussion of a one-port circuit
initiated in Section 2.1. Assume that we have a two-
terminal circuit containing (a finite number of) passive
elements: positive resistors, positive capacitors, posi-
tive inductors, transformers, and gyrators. It can be
shown that the circuit acts as a port. Since all the laws
(the constitutive laws of the elements and the inter-
connection laws) are linear, time-invariant, and dif-
ferential, it follows (from what is called the
'elimination theorem') that the port behavior is also
linear, time-invariant, and differential, implying that
there exist a polynomial matrix R e JR.l(]"' such that
* : (V,1) belongs to the port behavior if and only if
n(*), : 0. From general consideration, only having
to do with linear, time-invariant, differential, it fol-
lows that we can take R to have zero. one. or two
rows. The fact thal it is the port behavior of a passive
circuit allows us to conclude that we can take
0 I R e R[€]t". More precisely, there exist
P,Q e R.[{], not both zero, such that the the behavior
is described by the kernel representation

/ , r  \  / . r  \P(: lv:e( l ) r .
\d// - \drl

P and Q need not be co-prime. In fact, the specihc
circuit of Section 2.1, with Rr : Rc : l, L : l, C : I
provides a not co-prime example. Co-primeness, in
fact, means controllability of the port behavior. There
are further conditions on (P, Q) that follow from the
fact that the kernel representation describes the port
behavior of a passive circuit. But what are these con-
ditions? Clearly, the port behavior must be dissipative
in the sense of Defrnition 3. But is this all? And what
does this mean in terms of P, Q?

In the controllable case, these questions have been
answered unequivocally. If the circuit is port con-
trollable, then its kernel representation has P, Q
co-prime. Assume that both P and Q are non-zero

f (ff ],x) satisne " "lf)

^, ll-_l : [; il]l ,l -
t -  Ax tE9x: o

ot

fQ*(r) : xr Kxl.

If Qv > 0, then K can be taken to be symmetric and
non-negative dehnite: K: Kr > 0.

Summarizing, consider the following seven state-
ments concerning the system Xo: (lR,R,im(Q6))
defined by a QDF.

(i) Ea is dissipative,
(ii) to admits a latent variable representation with a

non-negative storage,
(iii) to admits a latent variable representation with a

non-negative QDF as storage,
(iv) Xq admits a latent variable representation ivith a

non-negative memoryless state function as sto-
fage,

(v) Xo admits a latent variable representation with a
non-negative memoryless quadratic state func-
tion as storase.

-n
(v i )  J ' " -Qo(r)dr>0 Vwe 2( lR. lR") ,

(vii) The frequency domain and Pick matrix condition
of [9, condition 3 of Theorem 9.3] on O.

The following implications have been shown: (i)
<+ (iD + (i i i) 13 (iv) 1e (v) 1a (yi) '<+'

(vii) ('e ') because there are additional assump-
tions in (vii)). This raises the question if (ii) + (iii), i.e.
if, assuming that the supply rate is a QDF, the exis-
tence of a non-negative storage is equivalent to the
existence of a non-negative storage that is a QDF. We
conjecture that this is the case.

If the signature condition lr(O) : dim(O) of
Theorem 8 holds, then we have proven that all these
conditions are equivalent, in fact, with the frequency
domain condition (vii) made more precise as an 11*-
norm condition.

It is useful to contrast this with the situation in
which non-negativity of the storage is not required.
Consider the following six statements concerning the
system to : (lR , JR, im(Q6)) defined by a QDF.

(i) ' to admits a latent variable representation with
a storage,

(ii) ' to admits a latent variable representation
with a QDF as storage,

(iii) ' to admits a latent variable representation with
a memoryless state function as storage,
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(of course, P: l ,Q:0 or P:0,Q: l  are also
possible, but we ignore these degenerate cases, these
can be dealt with directly). Defrne Z :: p-1e € R(6),
called the driving point impedance of the circuit. The
port behavior allows an image representation,

with D,Ne R[(], and these may be chosen to be co-
prime. The conditions on D, Iy' for passivity are pre-
cisely those of Theorem 9, with Fy--+D,F2r--+N. ln
particular, passivity requires that the driving point
impedance is Z : P-t Q :,Atr, I is positive real. That
positive realness is necessary follows from Theorem 9.
That it is also sufficient has an even more illustrious
history: it requires synthesizing a positive real impe-
dance using passive elements.

That a positive real impedance Z(s) can be rea.lized
by means of a circuit containing positive resistors,
positive capacitors, positive inductors, and transfor-
mers is a classical result (one of the highlights of
electrical engineering) due to Brune [3]. Later, Bott
and Duffin [2] proved that transformers are not
needed. This synthesis theory is nicely explained in
[14]. But the transfer function only captures the con-
trollable part of the port behavior. These authors were
not concerned with the question of obtaining a con-
trollable port behavior with the correct impedance. In
other words, the question whether the resulting poly-
nomials P , Q in the kernel representation are also co-
prime, in addition to obeying Z : P-1 e, was not
considered. Actually, from the approach to circuit
synthesis explained in [1], we can conclude that a
positive real impedance can always be realized as the
port behavior of a port controllable RLCT circuit in
which the physical state, the inductor currents and the
capacitor voltages, is observable from the port vari-
ables. Bott-Duffin's transformerless synthesis on the
other hand usually leads to a non-controllable RLC
circuit with the correct impedance, but not with the
correct behavior if we define the behavior to be pre-
specified and controllable.

The question of which non-controllable port beha-
viors are realizable as passive RLCT circuits is an
open problem. Necessary conditions are positive
realness of the impedance P-tQ and stability of the
common factor (i.e. only roots in the closed left part of
the complex plane, and simple roots on the imaginary
axis), but what additional conditions on the non-
controllable paft must hold for realizability is
unknown. In particular, it is doubtful that for the one-
port case, realizable RLCT behaviors are always

J.C. Willems

realizable without transformers. In other words, Bott-
Duffin did not resolve the transfomerless synthesis
question in the sense of behaviors.

We emphasize that the external port behavior of
a passive circuit may or may not be controllable
(in the behavioral sense). For example, the specific
circuit of Section 2.1 is not controllable if and only
i f  CRc:Llh and R6:Rz, in which case the
circuit admits, in addition to (1), also the state repre-
sentation

A
RcCi (Ri l t  -  Vc):  - (RLIt  -  Vc)^-  dt ' - -  (4\

y:  (R112 _ Vg) + RgI,

which puts lack of controllability in evidence. Note
that this circuit has impedance R6, but that the
behavior is different from the circuit with behavioral
equation V : RcI: non-controllable modes do matter
in describing the port behavior of a physical circuit.
Also observability is an issue. But what should we
mean with observability (in the behavioral sense) of a
circuit? Of course, we could mean this to refer to the
possibility of deducing the 'physical' state, the induc-
tor currents and the capacitor voltages, from the
external port voltage and current. In this case the
specihc circuit of Section 2.I is observable if and only
if CRc # LlRr. If CRc: LlRr, then the natural
storage, the stored energy, is not observable, it is not a
function of the minimal state. For example, the state
of the system (4) is observable, Q(RyIy_ Vs72 with
Q > 0 is an observable storage, but it is not equal to
the physical stored energy. All this shows that
assuming controllability and/or observability of the
storage are far from evident assumptions.

It is instructive in this context to examine the
equations, describing the circuit of Section 2.1 when
CRc: LlRr. We started from an (unobservable)
realization with two reactive elements. However, in
the controllable case (Rr I Rd, there also exists an
(observable) realization with only one reactive ele-
ment. If, for example, R; ) R6, then this port beha-
vior can be realized as an RC-circuit consisting of a
resistor in series with a parallel connection of a resis-
tor and an RC-section consisting of a resistor in series
with a capacitor. However, in the uncontrollable case,
CRc:LlRr,Rr:Rc, i t  can be shown that the
RLCT synthesis requires two reactive elements. Rea-
lizations with only one reactive elements require
gyrators. So, reciprocal RLCT synthesis of non-
controllable behaviors may require more than the
minimal number of reactive elements, leading to a
non-observable physical storage.

I r ] -  fa(" . )1, . ,
I ,v ) -  

Ln(*)J'" '
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13. DistributedSystems

The results ofSections 9 and 10 cangeneralized to n-D
systems, in particular to systems described by linear
constant coeffrcient PDE's. Controllability, suitably
defined, is again equivalent to the existence of an
image representation. Maxwell's equations are a very
important example of a linear shift-invariant differ-
ential system that is controllable. The linear quadratic
case leads again to QDF's, now parametrized by real
polynomials in2n-variables, where n is the number of
independent variables (often n:4, reflecting time and
space). The construction of storage function leads
linea recta to Hilbert's l7-th problem on the factori-
zation of a non-negative real polynomial in n variables
as a sum of squares (the SOS problem is also relevant
for obtaining conditions for dissipativity of nonlinear
systems with polynomial right hand sides [5]).

An important consequence of the fact that this
factoization can only be carried out over the ra,tional
functions is that the storage function is not obser-
vable, or, more precisely, that it is a function of a
latent variable that is not observable from the man-
ifest variables that enter in the PDE model and in the
supply rate. This feature, it turns out, is already pre-
sent in the internal energy for Maxwell's equations for
electromagnetic fields. We refer to [8] for details. In
the ECC presentation, the case of distributed dis-
sipative systems will be presented.
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