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Abstract

The relation between Markovianity and representability by means of first-order PDEs is investigated. We consider two versions of the
Markovian property, weak and strong-Markovianity. The weak version has been introduced in [J.C. Willems, State and first-order representations,
in: V.D. Blondel, A. Megretski (Eds.), Unsolved Problems in Mathematical Systems & Control Theory, Princeton University Press, Princeton,
NIJ, 2004, pp. 54-57] and conjectured to correspond to first-order representations. We provide a counterexample to this conjecture. For finite-
dimensional behaviors, strong-Markovianity is proven to be indeed equivalent to the representability by means of first-order PDEs with a

special structure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Representing a dynamical system by means of first-order
differential or difference equations not only guarantees eas-
ier recursive computations, but, in some cases, also allows
to capture the system memory. Indeed, as shown in [2], the
representability of a linear system with R or Z as time-axis by
means of first-order linear equations is equivalent to the one-
dimensional Markov property. A dynamical system with R or
Z as time-axis is said to be Markovian whenever the concate-
nation of two system trajectories w1, wy that coincide at one
point (i.e., wi () =w»(t), for some ¢) yields a function w (coin-
ciding with w on (—o0, t] and with w, on [, +00)) which is
still an admissible system trajectory [2]. This is a deterministic
version of the stochastic Markovianity: independence of past
and future given the present. The relation between first-order
representations and the memory property is quite different for
multidimensional systems: the existing results [3,4] deal mainly
with discrete two-dimensional (2D) (meaning that the set

* Corresponding author. Tel.: +351234370359; fax: +351234382014.
E-mail addresses: procha@mat.ua.pt (P. Rocha), Jan.Willems @esat.
kuleuven.ac.be (J.C. Willems).

0167-6911/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2005.11.003

of independent variables is Z?) systems, and show that a direct
generalization of the Markov property for 1D systems (which
in the sequel will be referred to as the weak-Markov property)
does not correspond to the representability by means of first-
order partial difference equations. However a stronger general-
ization has been introduced (the strong Markov property) which
does correspond to the existence of first-order representations
with, in fact, a special structure [5].

In this article, we consider systems described by linear
constant coefficient PDEs, hence with a continuous set of in-
dependent variables equal to R®. Recently, a conjecture has
been presented in [7], according to which these systems are
thought to behave differently from the discrete ones, and the
weak-Markov property is thought to be equivalent to the repre-
sentability by means of a system of first-order linear PDEs. One
of our purposes is to analyze this conjecture. After showing
that it does not hold true, we prove that, for the particular case
of finite-dimensional behaviors, it is a stronger version of the
Markov property that indeed corresponds to representability by
means of a system of first-order PDEs. This first-order repre-
sentation is endowed with a special structure, since it exhibits a
decoupling of the elementary partial differential operators. The
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question whether the equivalence between strong-controllability
and first-order representations also holds for general, not nec-
essarily finite-dimensional, behaviors of PDEs, remains open.

2. nD Markovian properties

We consider multidimensional (nD) behavioral systems that
can be represented as the solution set of a system of linear PDEs
with constant coefficients. Formally, let R € R™[sq, ..., s,]
(the real polynomial matrices in n variables with w columns).
Associate with R the following system of PDEs

r(2° 0 0 1)
— ..., — Jw=0.
ox;’ 7 ox,

We define the behavior to be the set of solutions of this system
of PDE’s. There are many, more or less equivalent, ways to
define this solution set: € solutions, distributions, etc. For the
purposes of this paper it is convenient to consider the continuous
solutions. Hence

B={we %O(R“, R¥) | (1) holds in the distributional sense}.

As B is the kernel of a partial differential operator, we refer to it
as a kernel behavior, and denote it as ker (R (0/0x1, . .
The PDE (1) is called a kernel representation of B =
ker(R(0/0xq, ..., 0/0x,)).

As mentioned in the introduction, the question which we
investigate is the connection between the fact that a behavior
B is Markovian (in a sense to be made precise soon) and the
possibility of representing it as the kernel of a system of first-
order PDEs

Row+R1ﬂw+---+Rniw=0. 2)
x| Ox,

We consider two versions of Markovianity. The first is the one
used in [7]. We call it weak-Markovianity. Define I1 to be the
set of 3-way partitions (S—, So, S+) of R™ such that S_ and S
are open and S is closed;given a partition = = (S_, Sp, S4) €
IT and a pair of trajectories (w_, wy) that coincide on Sp,
define the concatenation of (w_, w4 ) along 7 as the trajectory
w_ A |zw4 that coincides with w— on Sy U S_ and with w
onSo U S4.

Definition 1. A multidimensional behavior B C ([R{W)Rn is
said to be weak-Markovian if for any partition = € Il and any
pair of trajectories w_, w4 € B such that W—g = W, the

trajectory w_ A |zw4 is also an element of B.

The second version of Markovianity is called strong-
Markovianity. It requires concatenability along partitions of
linear subspaces of R®. Given a subspace § C R, let Il be
the set of 3-way partitions (S_, Sp, S4+) of S such that S_ and
S+ are open (in S) and Sy is closed (in S).

Definition 2. A multidimensional behavior B C ([RW)[Rin is said
to be strong-Markovian if for any subspace S, any partition
ns € Ilg, and any pair of trajectories w_, w4 € B|g such that
W—pgy = Weg s the trajectory w_ A |zw is an element of Bs.

., 0/0x.)).

Obviously, strong-Markovianity implies weak-Markovianity.
Note that strong-Markovianity coincides with weak-Markovia-
nity for one-dimensional behaviors, and both can therefore be
regarded as a generalization of the 1D Markov property.

Let B be a behavior defined by a first-order PDE (1). It is
easy to see that this implies weak-Markovianity. The question
arises whether a behavior as (1) that is weak-Markovian admits
an equivalent first-order representation (2) (equivalent in the
sense that they have the same behavior). We provide a coun-
terexample showing that, contrary as was put forward in [7],
this converse does not hold true. The analogous questions arise
for strong-Markovianity. Do first-order PDEs generate behav-
iors that are strong-Markovian? Do strongly Markovian behav-
iors of PDE’s (1) admit equivalent first-order representations
(2)? We will prove that for finite-dimensional behaviors, strong-
Markovianity is equivalent to representability by means of a
special type of first-order PDE:s.

3. Weak-Markovianity and first-order representations

The next example shows that, similar to what happens in the
discrete case, the direct generalization of the one-dimensional
Markov property does not necessarily lead to the desired type
of first-order representations, implying that the conjecture in
[7] is false.

Consider the behavior B C (€°°(R2, [Riz) given by

o[l (]

Obviously,

0 0

=ker| R|{ —, —

wter(1( 55
with

(51— D@s2—1) —(s1—Dis2—1)

. 0 s1(sp — 1)
R(s1,82) = s2(s1 — 1) 0
5182 5182

We will show that this behavior is weak-Markovian, but does
not allow a first-order representation of form (2).

In order to check that B is weak-Markovian, we show that if
two trajectories wi and wy in B coincide on two different points
(x1, y1) and (x2, y2) of R?, then they are the same trajectory.
This obviously implies that any two trajectories coinciding on
a set So of a partition © = (S_, So, S+) € II are concatenable
in B. Assume that

1 1 T
wl(X,Y)=a1[1]+blex |:0i|+cley |:(1)i|+dlex+y|:_1i|’

and

el e [ ]

are two trajectories in B such that wi(x1, y1) = wa(xy, y1)
and wi(x2, y2) = wa(x2, y2), with (x1, y1) # (x2,y2). This



540 P. Rocha, J.C. Willems / Systems & Control Letters 55 (2006) 538—542

means that

(a1 — a2) + (b1 — bp)e™ + (di — dp)e*' ™ =0,
(a1 — @) + (c1 — cp)e’ — (di — dp)e" ™1 =0,
(a1 — @) + (b1 — b)e™ + (dy — dp)e™> 2 =0,
(a1 — @) + (c1 — 2)e”? — (di — dp)e™ ™2 = 0.
or, equivalently,

eX1ty

1 et 0 a —ap
I 0 et —enty by — by
1 e2 0 e2tn cir—cy | 0- @
1 0 e? —et]ld—d
=:A
Since det(A) = ef1tyitutRe-ti—R) -2 _ )2 4

e~ 0122 (1772 —1)2], which is clearly nonzero for (x, y;) #
(x2, ¥2), we conclude that the only solution of (4) is the zero
solution. In other words, we must have a; = a>, b = by,
c1 = ¢3, di = dp, which means that w; = w, as claimed.

We next show that B does not allow a first-order representa-
tion. For that purpose we assume, to the contrary, that there ex-
ist real matrices Rp, R; and R», with two columns and the same
number of rows, such that B = ker(Ry + R{0/0x + R0/0y).
Since the elements of the generating set in (3) are then obvi-
ously in ker(Rg + R;0/0x 4+ R,0/0y), we have that

o[-

(Ro + Ry) [(1)} =0, (Ry+ R [?] =0,

(Ro+ Ry + Ry) |:_11:| =0.

Therefore, there exist column vectors X, Y such that

Ro+ Ris1 + Roso =[X(1 —s1) + Ys2 X(s2— 1)+ Ysi]
=[X Y]O(s1, 52),

with

1—s51 so—1

52 51 } ’

Consequently, ker(Q(0/0x,0/0y)) < ker(Ryp + R10/0x +
R»0/0y). But this contradicts the fact that B is finite-
dimensional, since ker(Q(0/0x,0/0y)) contains infinitely
many linearly independent trajectories of the form w(x, y) =
e By, with (a, P) roots of det(Q (s1, sz))=—sf—s%+s1 +s7
and 0 # wq € R? the associated solution of Q(a, Pwo = 0.
In this way we conclude that the given behavior cannot be
represented by means of a set of first-order PDEs.

This example suggests that in order to guarantee first-order
representability one should consider a stronger version of the
Markov property. We will now examine if strong-Markovianity
achieves this.

0(s1, 52) :[

4. PDE’s with a finite-dimensional behavior

In this section, we examine finite-dimensional behaviors. Of
course, if the solution set of (1) is finite dimensional, all its
elements are in €°°(R*, R"). Moreover, this set allows very
special representations, as stated in the following result. In here
we use the notion of a latent variable representation, a standard
notion from the behavioral theory.

Proposition 1. Let B € ¢°(R", R") be a finite-dimensional
nD behavior that is the kernel of a PDE. Then it can be rep-
resented by a latent variable model of the form

0
mZ = AlZ,
. )
ax—nZ = AnZ,
w=~Cz,
where Ay, ..., A, are square pairwise commuting matrices

of size N =dim(z), z € €*(R",R") is the latent vari-
able, and w € %°°(R",R") is the system variable. Note
that z(x1, ..., x,) = CeM¥1t+Anxaz( 0). Moreover,
(C; Ay, ..., A,) can be taken to be observable, in the sense that
if CeA¥itFAntnz (0 0)=0forallx; e R, i=1,...,n,
then z(0,...,0)=0.

In order to prove this proposition, we make use of the fol-
lowing auxiliary lemma.

Lemma 1. Let @y, ..., @, be N XN commuting real matrices
and T € Re >N, Then, there exists a nonsingular real matrix

T € RN guch that

o' 0

TOT™ = |: L))
! (Dl. (Dl.

:|7 i:l,,..,n’ FTﬁlz[rlo]’

with (I'y; @%1, el <Dr1)1) observable.

This result is an immediate consequence of the fact that,
similar to the 1D (n = 1) case, the unobservable subspace 9t
associated with (I'; @4, ..., ®,) is &;-invariant and contains
ker I'. Thus, in a basis of R" whose last elements constitute a
basis for 9t the matrices @; and I' have the desired form. A
proof for the 2D (n = 2) case can be found in [6].

Proof of Proposition 1. We use the results of [8]. Assume
that B C % is a finite-dimensional nD kernel behavior. Then
it admits a kernel representation with R(sy,...,s,) weakly
zero prime, and hence there exist nD polynomial matrices
Ui(s1, ..., s,) such that

Ui(s1, ..., S0)R(s1, ..., 8,) = Di(s7),

where D;(s;) = d;(s;)lyx, for i =1, ..., n. This implies that
B C B, with B described by

d o =0 d, 0 =0
1 o w=0,...,d, o w =
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Define a vector function z whose components are the partial
derivatives (al""'““n/axf] oxtyw for €;,=0, . . ., deg(d;) —
1. It is not difficult to check that this yields a latent variable
representation for B of the form

0 ~ -
ax—]Z = FlZ,
(6)
9 - -
ax—nz=Fnz,
w=HZ,

with real commuting matrices Fi, ..., F,. Therefore, w €
B if and only if it satisfies (6) together with the equa-
tion R(0/0xy,...,0/0x)w = 0. Let R(0/0xy,...,0/0x,) =
Zj}';_-;;;szo(aﬁ+“'+J'n/ax{1 - 0x/*)R(j,....j.)-Taking (6) into

account, the equation R(0/0xy, ..., 0/ Gxn) w = 0 becomes

,,,,,

=K

In this way the following latent variable representation for B
is obtained

0 ~ -

ax—lZ: FlZ,

si=FZ,
Kz=0,
w=HzZ.

It follows from Lemma 1 that there exists a nonsingular real
matrix 7 such that

[F.“ 0

—1
TF,T = FEZ] Fizz

] i=1,....,n, KT™'=[K; 0],
with (K; Flll, el Fn“) observable. Thus, partitioning 7z =
col(Z1, z2) accordingly, the equations for z become

9 - -

il = Flzy,

6%22 = F,»2121 + F,~2222 i=1,...,n,

Kiz1 =0,

which, by observability, is equivalent to

Zé =0,

— 223 P —
=" i=1l..,n

On the other hand, the equation w = HZ can be written as
w = H»Zp, where Hj is such that HT = [H; H»]. Renaming
72=2, A = Fi22 and C = H,, we obtain the following exact
description for the dynamics of w:

0
ax—lz = A1z,
, @)
ax—nZ = AnZ,
w=_Czg,
where Ay, ..., A, are still pairwise commuting matrices.

The fact that (C; A1,...,A,) in (7) can be taken to be
observable follows again from Lemma 1. This yields Propo-
sition 1. [

5. Strong-Markovianity and first-order representations

It turns out that if, in addition to being finite-dimensional, B
has the strong-Markov property, then the matrix C in (5) can
be shown to be injective.

Lemma 2. Let B € ¢°°(R", R") be a finite-dimensional nD
behavior that is the kernel of a PDE. If B is strong-Markovian
then it can be represented by a latent variable model of form
(5) where the matrix C has full column rank.

Proof. By Proposition 1, B has a latent variable representation
of form (5), with (C; Ay, ..., A,) observable. Note that in this
case B={w : R" - R |w(xy, ..., x,)=CeA1¥ittAntnz = o

R"}.

We start by showing that if B is strong-Markovian then,
for k =1,...,n — 1, the behaviors B, := {w : Re—k+1
RY|w(xy, ..., x,) = CeAxt-+ninz 7 RY} are also

strong-Markovian with (C; A, ..., A,) observable. Strong-
Markovianity of B, follows immediately from the definition.
We now prove observability, by considering the case k = 2,
and proceeding by induction. Suppose that z*, z** € R" are
such that

CeA2x2+'“+Anan* — CeA2x2+“'+Anxn ok

Z

forallx; e R, 1 =2,...,n.
Thenthe trajectories wy(x1,X2, . . . ,X,)=CeA¥1 TA2X 2+ +Anxn &
and Wy (X1, X2, . . ., x,) = CeAr¥itAznttAnin it of B ¢o-
incide on Sy = {(x1,...,x,) € R*|x; = 0}. If B is strong-
Markovian, this implies that W = w«As_5,.5 ) Wi (Where
S_={(x1,...,xy) € R*|x; <0} and S; = {(x1,...,x,) €
R*|x; > 0}) is a trajectory of B, i.e., there exists Z € R" such
that W(xy, ..., x,) = CeArxitAat-+Anxaz GQince o coin-
cides with w, in S_ and with w,, in S, the observability of
(C; Ay, ..., A,) implies that

*

F=z=7"

and hence that (C; Ay, ..., A,) is indeed observable.
We conclude in particular that the behavior of

— = A2 wl(x) = C(x),

Ox,

is strong-Markovian and observable. However by the results of
the 1D case [2] this implies that C has full column rank. [

The previous lemma allows to state the main result of this
paper.

Theorem 1. Ler B C €°(R", R") be a finite-dimensional
nD behavior that is the kernel of a PDE. Then it is strong-
Markovian if and only if it can be represented by means of
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partial differential equations of the form
i (il - A1> E ]
ox;
(iz A ) £
axz N 2

aI—A E
aan n
F

w =0, ®)

where Ay, Ao, ..., A, are square pairwise commuting matrices

and the matrix V = [?] is invertible.

Proof. Assume now that B can be represented by a model of

type (5) with C having full column rank. Let E be a left-inverse
of C and F a suitable matrix such that V = [ﬁ] is invertible.
Notice that Eqgs. (5) yield (8).

Conversely, let B have a representation as (8). In a suitable
basis in R", these equations look like

_( 0 I Al> -
ox|
ox2 w; =0

©))

The corresponding wi-behavior B consists of all the trajecto-
ries of the form

A1x1--Anxn

wi(Xg, ..., X)) =€ z, ze€R™M,

If suffices to prove that B is strong-Markovian. But this is
easy: any two trajectories which coincide on a subspace, have
the same value at x; = --- = x, =0, and hence coincide, since
z=w1(0,...,0). O

This theorem shows that, in the finite-dimensional case,
strong-Markovianity is equivalent to the existence of a first-
order representation with a special structure, where the el-
ementary partial differential operators are decoupled. Note
that the existence of such a representation may be difficult to
check directly. However, a test for strong-Markovianity can
be obtained as follows. The proof of Lemma 2 shows that if a
finite-dimensional behavior B is strong-Markovian then, in ev-
ery corresponding observable (C; Ay, ..., A,) representation,
the matrix C has full column rank. Moreover, it is easy to see
that the converse also holds true. This allows to check whether
B is or not strong-Markovian by constructing an observable

(C; Ay, ..., A,) representation (which can be done as in the
proof of Proposition 1) and checking whether C has or not full
column rank.

6. Conclusion

In this paper the conjecture of [7] on the correspondence
between the nD weak-Markov property and first-order repre-
sentability for PDE was proven to be false. In order to obtain
equivalence with first-order representability, a strong-Markov
property has been introduced, which can still be viewed as a
generalization of 1D Markovianity to higher dimensions. For
finite-dimensional behaviors this property was shown to be
equivalent to the representability by means of a special type of
first-order PDEs exhibiting a decoupling of the partial differen-
tiation operators. This decoupling seems to be strictly connected
with the finite-dimensionality of the associated behaviors. The
obtained results suggest that strong-Markovianity constitutes a
suitable extension of (1D) Markovianity to the nD case.
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