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Abstract

The relation between Markovianity and representability by means of first-order PDEs is investigated. We consider two versions of the
Markovian property, weak and strong-Markovianity. The weak version has been introduced in [J.C. Willems, State and first-order representations,
in: V.D. Blondel, A. Megretski (Eds.), Unsolved Problems in Mathematical Systems & Control Theory, Princeton University Press, Princeton,
NJ, 2004, pp. 54–57] and conjectured to correspond to first-order representations. We provide a counterexample to this conjecture. For finite-
dimensional behaviors, strong-Markovianity is proven to be indeed equivalent to the representability by means of first-order PDEs with a
special structure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Representing a dynamical system by means of first-order
differential or difference equations not only guarantees eas-
ier recursive computations, but, in some cases, also allows
to capture the system memory. Indeed, as shown in [2], the
representability of a linear system with R or Z as time-axis by
means of first-order linear equations is equivalent to the one-
dimensional Markov property. A dynamical system with R or
Z as time-axis is said to be Markovian whenever the concate-
nation of two system trajectories w1, w2 that coincide at one
point (i.e., w1(t)=w2(t), for some t) yields a function w (coin-
ciding with w1 on (−∞, t] and with w2 on [t, +∞)) which is
still an admissible system trajectory [2]. This is a deterministic
version of the stochastic Markovianity: independence of past
and future given the present. The relation between first-order
representations and the memory property is quite different for
multidimensional systems: the existing results [3,4] deal mainly
with discrete two-dimensional (2D) (meaning that the set
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of independent variables is Z2) systems, and show that a direct
generalization of the Markov property for 1D systems (which
in the sequel will be referred to as the weak-Markov property)
does not correspond to the representability by means of first-
order partial difference equations. However a stronger general-
ization has been introduced (the strong Markov property) which
does correspond to the existence of first-order representations
with, in fact, a special structure [5].

In this article, we consider systems described by linear
constant coefficient PDEs, hence with a continuous set of in-
dependent variables equal to Rn. Recently, a conjecture has
been presented in [7], according to which these systems are
thought to behave differently from the discrete ones, and the
weak-Markov property is thought to be equivalent to the repre-
sentability by means of a system of first-order linear PDEs. One
of our purposes is to analyze this conjecture. After showing
that it does not hold true, we prove that, for the particular case
of finite-dimensional behaviors, it is a stronger version of the
Markov property that indeed corresponds to representability by
means of a system of first-order PDEs. This first-order repre-
sentation is endowed with a special structure, since it exhibits a
decoupling of the elementary partial differential operators. The
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question whether the equivalence between strong-controllability
and first-order representations also holds for general, not nec-
essarily finite-dimensional, behaviors of PDEs, remains open.

2. nD Markovian properties

We consider multidimensional (nD) behavioral systems that
can be represented as the solution set of a system of linear PDEs
with constant coefficients. Formally, let R ∈ R•×w[s1, . . . , sn]
(the real polynomial matrices in n variables with w columns).
Associate with R the following system of PDEs

R

(
�

�x1
, . . . ,

�

�xn

)
w = 0. (1)

We define the behavior to be the set of solutions of this system
of PDE’s. There are many, more or less equivalent, ways to
define this solution set: C∞ solutions, distributions, etc. For the
purposes of this paper it is convenient to consider the continuous
solutions. Hence

B= {w ∈ C0(Rn, Rw) | (1) holds in the distributional sense}.
AsB is the kernel of a partial differential operator, we refer to it
as a kernel behavior, and denote it as ker(R(�/�x1, . . . , �/�xn)).
The PDE (1) is called a kernel representation of B =
ker(R(�/�x1, . . . , �/�xn)).

As mentioned in the introduction, the question which we
investigate is the connection between the fact that a behavior
B is Markovian (in a sense to be made precise soon) and the
possibility of representing it as the kernel of a system of first-
order PDEs

R0w + R1
�

�x1
w + · · · + Rn

�

�xn
w = 0. (2)

We consider two versions of Markovianity. The first is the one
used in [7]. We call it weak-Markovianity. Define � to be the
set of 3-way partitions (S−, S0, S+) of Rn such that S− and S+
are open and S0 is closed;given a partition � = (S−, S0, S+) ∈
� and a pair of trajectories (w−, w+) that coincide on S0,
define the concatenation of (w−, w+) along � as the trajectory
w− ∧ |�w+ that coincides with w− on S0 ∪ S− and with w+
onS0 ∪ S+.

Definition 1. A multidimensional behavior B ⊆ (Rw)Rn
is

said to be weak-Markovian if for any partition � ∈ � and any
pair of trajectories w−, w+ ∈ B such that w−|S0

= w+|S0
, the

trajectory w− ∧ |�w+ is also an element of B.

The second version of Markovianity is called strong-
Markovianity. It requires concatenability along partitions of
linear subspaces of Rn. Given a subspace S ⊆ Rn, let �S be
the set of 3-way partitions (S−, S0, S+) of S such that S− and
S+ are open (in S) and S0 is closed (in S).

Definition 2. A multidimensional behaviorB ⊆ (Rw)Rn
is said

to be strong-Markovian if for any subspace S, any partition
�S ∈ �S , and any pair of trajectories w−, w+ ∈ B|S such that
w−|S0

=w+|S0
, the trajectory w− ∧ |�w+ is an element of B|S .

Obviously, strong-Markovianity implies weak-Markovianity.
Note that strong-Markovianity coincides with weak-Markovia-
nity for one-dimensional behaviors, and both can therefore be
regarded as a generalization of the 1D Markov property.

Let B be a behavior defined by a first-order PDE (1). It is
easy to see that this implies weak-Markovianity. The question
arises whether a behavior as (1) that is weak-Markovian admits
an equivalent first-order representation (2) (equivalent in the
sense that they have the same behavior). We provide a coun-
terexample showing that, contrary as was put forward in [7],
this converse does not hold true. The analogous questions arise
for strong-Markovianity. Do first-order PDEs generate behav-
iors that are strong-Markovian? Do strongly Markovian behav-
iors of PDE’s (1) admit equivalent first-order representations
(2)? We will prove that for finite-dimensional behaviors, strong-
Markovianity is equivalent to representability by means of a
special type of first-order PDEs.

3. Weak-Markovianity and first-order representations

The next example shows that, similar to what happens in the
discrete case, the direct generalization of the one-dimensional
Markov property does not necessarily lead to the desired type
of first-order representations, implying that the conjecture in
[7] is false.

Consider the behavior B ⊆ C∞(R2, R2) given by

B= span

{[
1
1

]
, ex

[
1
0

]
, ey

[
0
1

]
, ex+y

[
1

−1

]}
. (3)

Obviously,

B= ker

(
R

(
�

�x
,

�

�y

))

with

R(s1, s2) =
⎡
⎢⎣

(s1 − 1)(s2 − 1) −(s1 − 1)(s2 − 1)

0 s1(s2 − 1)

s2(s1 − 1) 0
s1s2 s1s2

⎤
⎥⎦ .

We will show that this behavior is weak-Markovian, but does
not allow a first-order representation of form (2).

In order to check that B is weak-Markovian, we show that if
two trajectories w1 and w2 inB coincide on two different points
(x1, y1) and (x2, y2) of R2, then they are the same trajectory.
This obviously implies that any two trajectories coinciding on
a set S0 of a partition � = (S−, S0, S+) ∈ � are concatenable
in B. Assume that

w1(x, y) = a1

[
1
1

]
+ b1ex

[
1
0

]
+ c1ey

[
0
1

]
+ d1ex+y

[
1

−1

]
,

and

w2(x, y) = a2

[
1
1

]
+ b2ex

[
1
0

]
+ c2ey

[
0
1

]
+ d2ex+y

[
1

−1

]

are two trajectories in B such that w1(x1, y1) = w2(x1, y1)

and w1(x2, y2) = w2(x2, y2), with (x1, y1) �= (x2, y2). This
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means that

(a1 − a2) + (b1 − b2)e
x1 + (d1 − d2)e

x1+y1 = 0,

(a1 − a2) + (c1 − c2)e
y1 − (d1 − d2)e

x1+y1 = 0,

(a1 − a2) + (b1 − b2)e
x2 + (d1 − d2)e

x2+y2 = 0,

(a1 − a2) + (c1 − c2)e
y2 − (d1 − d2)e

x2+y2 = 0.

or, equivalently,

⎡
⎢⎣

1 ex1 0 ex1+y1

1 0 ey1 −ex1+y1

1 ex2 0 ex2+y2

1 0 ey2 −ex2+y2

⎤
⎥⎦

︸ ︷︷ ︸
=:A

⎡
⎢⎣

a1 − a2
b1 − b2
c1 − c2
d1 − d2

⎤
⎥⎦ = 0. (4)

Since det(A) = ex1+y1+x2+y2 [e−(x1−x2)(ex1−x2 − 1)2 +
e−(y1−y2)(ey1−y2 −1)2], which is clearly nonzero for (x1, y1) �=
(x2, y2), we conclude that the only solution of (4) is the zero
solution. In other words, we must have a1 = a2, b1 = b2,
c1 = c2, d1 = d2, which means that w1 = w2 as claimed.

We next show that B does not allow a first-order representa-
tion. For that purpose we assume, to the contrary, that there ex-
ist real matrices R0, R1 and R2, with two columns and the same
number of rows, such that B= ker(R0 + R1�/�x + R2�/�y).
Since the elements of the generating set in (3) are then obvi-
ously in ker(R0 + R1�/�x + R2�/�y), we have that

R0

[
1
1

]
= 0,

(R0 + R1)

[
1
0

]
= 0, (R0 + R2)

[
0
1

]
= 0,

(R0 + R1 + R2)

[
1

−1

]
= 0.

Therefore, there exist column vectors X, Y such that

R0 + R1s1 + R2s2 = [X(1 − s1) + Ys2 X(s2 − 1) + Ys1]
= [X Y ]Q(s1, s2),

with

Q(s1, s2) =
[

1 − s1 s2 − 1
s2 s1

]
.

Consequently, ker(Q(�/�x, �/�y)) ⊆ ker(R0 + R1�/�x +
R2�/�y). But this contradicts the fact that B is finite-
dimensional, since ker(Q(�/�x, �/�y)) contains infinitely
many linearly independent trajectories of the form w(x, y) =
e�x+�yw0, with (�, �) roots of det(Q(s1, s2))=−s2

1−s2
2+s1+s2

and 0 �= w0 ∈ R2 the associated solution of Q(�, �)w0 = 0.
In this way we conclude that the given behavior cannot be
represented by means of a set of first-order PDEs.

This example suggests that in order to guarantee first-order
representability one should consider a stronger version of the
Markov property. We will now examine if strong-Markovianity
achieves this.

4. PDE’s with a finite-dimensional behavior

In this section, we examine finite-dimensional behaviors. Of
course, if the solution set of (1) is finite dimensional, all its
elements are in C∞(Rn, Rw). Moreover, this set allows very
special representations, as stated in the following result. In here
we use the notion of a latent variable representation, a standard
notion from the behavioral theory.

Proposition 1. Let B ⊆ C∞(Rn, Rw) be a finite-dimensional
nD behavior that is the kernel of a PDE. Then it can be rep-
resented by a latent variable model of the form
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
�x1

z = A1z,

...
�

�xn
z = Anz,

w = Cz,

(5)

where A1, . . . , An are square pairwise commuting matrices
of size N = dim(z), z ∈ C∞(Rn, RN) is the latent vari-
able, and w ∈ C∞(Rn, Rw) is the system variable. Note
that z(x1, . . . , xn) = CeA1x1+···+Anxnz(0, . . . , 0). Moreover,
(C; A1, . . . , An) can be taken to be observable, in the sense that
if CeA1x1+···+Anxnz(0, . . . , 0) = 0 for all xi ∈ R, i = 1, . . . ,n,
then z(0, . . . , 0) = 0.

In order to prove this proposition, we make use of the fol-
lowing auxiliary lemma.

Lemma 1. Let �1, . . . ,�n be N×N commuting real matrices
and � ∈ Rp ×N. Then, there exists a nonsingular real matrix
T ∈ RN ×N such that

T �iT
−1 =

[
�11

i 0
�21

i �22
i

]
, i = 1, . . . ,n, �T −1 = [�1 0],

with (�1; �11
1 , . . . ,�11

n ) observable.

This result is an immediate consequence of the fact that,
similar to the 1D (n = 1) case, the unobservable subspace N
associated with (�; �1, . . . ,�n) is �i-invariant and contains
ker �. Thus, in a basis of RN whose last elements constitute a
basis for N the matrices �i and � have the desired form. A
proof for the 2D (n= 2) case can be found in [6].

Proof of Proposition 1. We use the results of [8]. Assume
that B ⊆ U is a finite-dimensional nD kernel behavior. Then
it admits a kernel representation with R(s1, . . . , sn) weakly
zero prime, and hence there exist nD polynomial matrices
Ui(s1, . . . , sn) such that

Ui(s1, . . . , sn)R(s1, . . . , sn) = Di(si),

where Di(si) = di(si)Iw×w for i = 1, . . . ,n. This implies that
B ⊆ B̃, with B̃ described by

d1

(
�

�x1

)
w = 0, . . . , dn

(
�

�xn

)
w = 0.
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Define a vector function z̃ whose components are the partial
derivatives (��1+···+�n/�x

�1
1 · · · �x�n

n )w for �i=0, . . ., deg(di)−
1. It is not difficult to check that this yields a latent variable
representation for B̃ of the form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
�x1

z̃ = F1z̃,

...

�
�xn

z̃ = Fnz̃,

w = Hz̃,

(6)

with real commuting matrices F1, . . . , Fn. Therefore, w ∈
B if and only if it satisfies (6) together with the equa-
tion R(�/�x1, . . . , �/�xn)w = 0. Let R(�/�x1, . . . , �/�xn) =∑J1,...,Jn

j1,...,jn=0(�
j1+···+jn/�x

j1
1 · · · �xjn

n )R(j1,...,jn).Taking (6) into
account, the equation R(�/�x1, . . . , �/�xn) w = 0 becomes⎛
⎝ J1,...,Jn∑

j1,...,jn=0

R(j1,...,jn)HF
j1
1 · · · Fjn

n

⎞
⎠

︸ ︷︷ ︸
=:K

z̃ = 0.

In this way the following latent variable representation for B
is obtained⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�
�x1

z̃ = F1z̃,

...

�
�xn

z̃ = Fnz̃,

Kz̃ = 0,

w = Hz̃.

It follows from Lemma 1 that there exists a nonsingular real
matrix T such that

T F iT
−1 =

[
F 11

i 0
F 21

i F 22
i

]
, i = 1, . . . ,n, KT −1 = [K1 0],

with (K1; F 11
1 , . . . , F 11

n ) observable. Thus, partitioning T z̃ =
col(z̃1, z̃2) accordingly, the equations for z̃ become⎧⎪⎨
⎪⎩

�
�xi

z̃1 = F 11
i z̃1,

�
�xi

z̃2 = F 21
i z̃1 + F 22

i z̃2 i = 1, . . . ,n,

K1z̃1 = 0,

which, by observability, is equivalent to{
z̃1 = 0,
�

�xi
z̃2 = F 22

i z̃2 i = 1, . . . ,n.

On the other hand, the equation w = Hz̃ can be written as
w = H2z̃2, where H2 is such that HT = [H1 H2]. Renaming
z = z̃2, Ai = F 22

i and C = H2, we obtain the following exact
description for the dynamics of w:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
�x1

z = A1z,

...
�

�xn
z = Anz,

w = Cz,

(7)

where A1, . . . , An are still pairwise commuting matrices.

The fact that (C; A1, . . . , An) in (7) can be taken to be
observable follows again from Lemma 1. This yields Propo-
sition 1. �

5. Strong-Markovianity and first-order representations

It turns out that if, in addition to being finite-dimensional, B
has the strong-Markov property, then the matrix C in (5) can
be shown to be injective.

Lemma 2. Let B ⊆ C∞(Rn, Rw) be a finite-dimensional nD

behavior that is the kernel of a PDE. If B is strong-Markovian
then it can be represented by a latent variable model of form
(5) where the matrix C has full column rank.

Proof. By Proposition 1,B has a latent variable representation
of form (5), with (C; A1, . . . , An) observable. Note that in this
caseB={w : Rn → Rw|w(x1, . . . , xn)=CeA1x1+···+Anxn z̄, z̄ ∈
RN}.

We start by showing that if B is strong-Markovian then,
for k = 1, . . . ,n − 1, the behaviors Bk := {w : Rn−k+1 →
Rw|w(xk, . . . , xn) = CeAkxk+···+Anxn z̄, z̄ ∈ RN} are also
strong-Markovian with (C; Ak, . . . , An) observable. Strong-
Markovianity of Bk follows immediately from the definition.
We now prove observability, by considering the case k = 2,
and proceeding by induction. Suppose that z∗, z∗∗ ∈ RN are
such that

CeA2x2+···+Anxnz∗ = CeA2x2+···+Anxnz∗∗

for all xi ∈ R, i= 2, . . . ,n.

Thenthe trajectoriesw∗(x1,x2, . . . ,xn)=CeA1x1+A2x2+···+Anxnz∗
and w∗∗(x1, x2, . . . , xn) = CeA1x1+A2x2+···+Anxnz∗∗ of B co-
incide on S0 = {(x1, . . . , xn) ∈ Rn|x1 = 0}. If B is strong-
Markovian, this implies that ŵ = w∗∧(S−,S0,S+)w∗∗ (where
S− = {(x1, . . . , xn) ∈ Rn|x1 < 0} and S+ = {(x1, . . . , xn) ∈
Rn|x1 > 0}) is a trajectory of B, i.e., there exists ẑ ∈ RN such
that ŵ(x1, . . . , xn) = CeA1x1+A2x2+···+Anxn ẑ. Since ŵ coin-
cides with w∗ in S− and with w∗∗ in S+, the observability of
(C; A1, . . . , An) implies that

z∗ = ẑ = z∗∗

and hence that (C; A2, . . . , An) is indeed observable.
We conclude in particular that the behavior of

�

�xn
zn = Anz

n w0(xn) = Czn(xn),

is strong-Markovian and observable. However by the results of
the 1D case [2] this implies that C has full column rank. �

The previous lemma allows to state the main result of this
paper.

Theorem 1. Let B ⊆ C∞(Rn, Rw) be a finite-dimensional
nD behavior that is the kernel of a PDE. Then it is strong-
Markovian if and only if it can be represented by means of
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partial differential equations of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�

�x1
IN − A1

)
E

(
�

�x2
IN − A2

)
E

...(
�

�xn
IN − An

)
E

F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w = 0, (8)

where A1, A2, . . . , An are square pairwise commuting matrices

and the matrix V =
[

E
F

]
is invertible.

Proof. Assume now that B can be represented by a model of
type (5) with C having full column rank. Let E be a left-inverse

of C and F a suitable matrix such that V =
[

E
F

]
is invertible.

Notice that Eqs. (5) yield (8).
Conversely, let B have a representation as (8). In a suitable

basis in Rw, these equations look like⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�

�x1
IN − A1

)
(

�

�x2
IN − A2

)
...(

�

�xn
IN − An

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w1 = 0

w2 = 0,

w =
[

w1
w2

]
.

(9)

The corresponding w1-behavior B1 consists of all the trajecto-
ries of the form

w1(x1, . . . , xn) = eA1x1···Anxnz, z ∈ Rw1 .

If suffices to prove that B1 is strong-Markovian. But this is
easy: any two trajectories which coincide on a subspace, have
the same value at x1 = · · · = xn = 0, and hence coincide, since
z = w1(0, . . . , 0). �

This theorem shows that, in the finite-dimensional case,
strong-Markovianity is equivalent to the existence of a first-
order representation with a special structure, where the el-
ementary partial differential operators are decoupled. Note
that the existence of such a representation may be difficult to
check directly. However, a test for strong-Markovianity can
be obtained as follows. The proof of Lemma 2 shows that if a
finite-dimensional behavior B is strong-Markovian then, in ev-
ery corresponding observable (C; A1, . . . , An) representation,
the matrix C has full column rank. Moreover, it is easy to see
that the converse also holds true. This allows to check whether
B is or not strong-Markovian by constructing an observable

(C; A1, . . . , An) representation (which can be done as in the
proof of Proposition 1) and checking whether C has or not full
column rank.

6. Conclusion

In this paper the conjecture of [7] on the correspondence
between the nD weak-Markov property and first-order repre-
sentability for PDE was proven to be false. In order to obtain
equivalence with first-order representability, a strong-Markov
property has been introduced, which can still be viewed as a
generalization of 1D Markovianity to higher dimensions. For
finite-dimensional behaviors this property was shown to be
equivalent to the representability by means of a special type of
first-order PDEs exhibiting a decoupling of the partial differen-
tiation operators. This decoupling seems to be strictly connected
with the finite-dimensionality of the associated behaviors. The
obtained results suggest that strong-Markovianity constitutes a
suitable extension of (1D) Markovianity to the nD case.
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