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Abstract

We study the control problem from the point of view of the behavioral systems theory. Two controller constructions, called
canonical controllers, are introduced. We prove that for linear time-invariant behaviors, the canonical controllers implement
the desired behavior if and only if there exists a controller that implements it. We also investigate the regularity of the
canonical controllers, and establish the fact that they are maximally irregular. This means a canonical controller is regular if
and only if every other controller that implements the desired behavior is regular.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Control problems, seen from the behavioral systems
theory point of view, amount to finding a controller,
which when interconnected with the plant in a speci-
fied way yields the desired behavior[14,1]. The prob-
lem may be formulated as follows. Consider a plant
to be controlled which has two kinds of variables:
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to-be-controlled variablesand control variables. A
controller is a device that is attached to the control
variables and restricts their behavior. This restriction
is imposed on the plant, such that it affects the behav-
ior of the to-be-controlled variables (seeFig. 1). The
resulting behavior is called thecontrolled system.

In this paper we discuss the properties of a special
type of controllers, the so-calledcanonical controllers
[11,10,16]. We are particularly interested in their reg-
ularity properties. The concepts of canonical and regu-
lar controllers will be formally introduced later in this
paper.

While the behavioral approach seescontrol as in-
terconnection, the more common point of view in
control theory is to view a controller as a feedback
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Fig. 1. Control in the behavioral approach.

processor that accepts the plant sensor outputs as its
inputs and produces the actuator inputs as its outputs.
In [14], this paradigm is called‘intelligent control’, as
the controller acts as an intelligent agent capable of
reasoning how to react to sensory observations.

The main advantages of the behavioral over the clas-
sical feedback point of view are:

(i) Its practical generality. In many control systems,
the controller (i.e. the device added to the plant
system to obtain a desired behavior) does not act
as a sensor/actuator device. Dampers, heat fins,
acoustic noise insulators are examples of such de-
vices.

(ii) Its theoretical simplicity. Control in the behavioral
setting has been introduced in[14], and subse-
quent development includes the work in[6,17,9].
The reader is referred to[12] for further motiva-
tion and details.

Throughout this paper, we shall denote the control
variables asc and the to-be-controlled variables asw.

These variables take their value at any given time from
their respective signal spacesC and W. Let W and
C denote the set of all trajectories of the variablesw
andc that are a priori possible, before we have even
modelled the plant. In dynamical systems,W andC
are typically the set of (smooth) signals from the time
axis to the signal spacesW andC. In discrete event
systems, the time axis is discrete and the signal spaces
are typically called alphabets.

We shall now discuss our problem from a purely
set theoretic point of view. The behavioral model of
the plant system that captures the relevant relation be-
tweenw andc is called thefull plant behavior, which
is denoted byPfull . Naturally, we assume thatPfull is

full 

C 

W

C

Fig. 2. The relation betweenPfull , P, C, andK.

contained inW × C. The full plant behavior consists
of all signal pairs(w, c) compatible with the plant dy-
namics. If we project the full behavior onW, we ob-
tain the so calledmanifest behavior, which is denoted
asP. Thus,

P := {w ∈ W | ∃ c ∈ C such that(w, c) ∈ Pfull }.
A controllerC is a subset ofC, containing all signals

c allowed by the controller. Thecontrolled behavior
is then defined as

K := {w ∈ W | ∃ c ∈ C such that(w, c) ∈ Pfull

andc ∈ C} .

The relationship between the full plant behavior, the
manifest behavior, the controller and the controlled
behavior is captured inFig. 2.

In this framework, the control problem can be for-
mulated as to find a controllerC that yields a desired
controlled behaviorD. Hence the controllerC should
yield the controlled behaviorK = D. We callD the
desired controlled behavior. If it is possible to find
a controllerC that yieldsK = D, thenD is said to
be implementable1 or implementedby C. Further, if
a given desiredD is implementable, we say that ‘the
control problem is solvable’.

1 In the literature the termachievableis sometimes used instead
of implementable.
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The remainder of this paper is organized as fol-
lows. In Section 2 we present two constructions for
the canonical controllersand their properties in the
setting of general behaviors. In Section 3 we discuss
the concept of implementability, particularly for LTI
behaviors. Section 4 is devoted for discussion on the
concept of regularity. In Section 5, we study the be-
havior implemented by the canonical controller and
use the result from Section 4 to establish its regularity.

2. The construction and properties of the
canonical controllers

In the previous section we explained that we work
in the generality in which the plant has two types of
variables, the to-be-controlled variables and the con-
trol variables, and further that a controller can put a re-
striction on just the control variables. This restriction
is propagated through the plant to the to-be-controlled
variables.

The idea of the canonical controller uses the ‘in-
ternal model principle’ in the following way[11,10].
We use a plant model that has the same behavior as
the plant. The propagation of information explained
in the previous paragraph is thenreversedby inter-
connecting the plant model to the desired behavior
D using the to-be-controlled variables2. This is how
we construct the canonical controller.Fig. 3illustrates
this construction. Notice that the word PLANT is mir-
rored to highlight the fact that the interconnection is
reversed. The behavior of the canonical controller ob-
tained using this construction is denoted asC′

canonical.

C′
canonical:= {c ∈ C | ∃ v ∈ W such that

(v, c) ∈ Pfull andv ∈ D}. (1)

Fig. 4 provides a block diagram showing how
C′

canonicalis applied.
In [11,10], it is proven that for a class of plants,

which are ‘homogeneous’ in the plant and control vari-
ables, the control problem is solvable (i.e.D is im-
plementable) if and only if the canonical controller
C′

canonical implementsD. We now define the homo-
geneity property.

2 A construction similar to the canonical controller has been
used in[7]

PLANT
DESIRED

CONTROLLED
BEHAVIOR

to-be-controlled
variables

CANONICAL
CONTROLLER

control
variables

Fig. 3. The construction ofC′
canonical. Mirrored text reflects the

idea that the interconnection is reversed.

Definition 1. A full plant behaviorPfull is said to
have thehomogeneity propertyif for any w1, w2 ∈ W
andc1, c2 ∈ C, the following implication holds:

(w1, c1), (w1, c2), (w2, c1) ∈ Pfull

⇒ (w2, c2) ∈ Pfull .

Homogeneity can also be understood as follows.
The behaviorPfull can be seen as a relation between
W and C. A relation is calledindependentif it can
be written as a Cartesian product of its projections
on the related domains. The behaviorPfull has the
homogeneity property if it can be written as a disjoint
union of independent relations. In particular, ifW and
C are linear spaces andPfull is a linear subspace, then
Pfull has the homogeneity property.

The following theorem captures an important prop-
erty of the canonical controllerC′

canonical.

Theorem 2. If the full plant behaviorPfull has the
homogeneity property, then the canonical controller
C′

canonical implements the smallest implementable be-
havior containingP ∩ D.

Proof. Denote the behavior implemented byC′
canonical

asK. From (1), we can infer thatK ⊇ P ∩ D. To
show thatC′

canonical implements the smallest imple-
mentable behavior containingP ∩ D, consider any
other controllerC′ that implementsK′ such that
K′ ⊇ P ∩ D. We shall prove thatK ⊆ K′.

Take any elementw ∈ K. We are going to show
that w ∈ K′. If w ∈ P ∩ D, then w ∈ K′, since
K′ ⊇ P ∩ D.
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Fig. 4. The canonical controllerC′
canonical in action.

If w /∈P ∩ D, there exists ac ∈ C′ andw′ ∈ P ∩
D such that both(w, c) and (w′, c) are elements of
Pfull . Now we are going to show thatw /∈K′ is a
contradiction. Suppose that it is true, then

{c ∈ C | (w, c) ∈ Pfull } ∩ C′ = ∅.

By the homogeneity property, we also have that

{c ∈ C | (w, c) ∈ Pfull } = {c ∈ C | (w′, c) ∈ Pfull }.
Thus, the following relation is also true:

{c ∈ C | (w′, c) ∈ Pfull } ∩ C′ = ∅.

This impliesw′ /∈K′, which is a contradiction. �

Remark 3. Theorem 2 also tells us that for every con-
trol problem involving a plant with the homogeneity
property, the smallest implementable behavior con-
tainingP ∩ D exists.

Obviously, a necessary condition for imple-
mentability ofD is D ⊂ P. This fact, combined with
Theorem 2 givesC′

canonicalits special property.

Corollary 4. Assume the full plant behavior has the
homogeneity property. Then, the canonical controller
C′

canonical implementsD if and only if D is imple-
mentable(that is, if and only the control problem is
solvable).

As already noted, ifPfull is a linear behavior, then it
has the homogeneity property. Hence, although seem-
ingly restrictive, the class of behaviors with the homo-
geneity property is, in fact, fairly large, and most im-
portantly, it captures the class of linear time-invariant
behaviors, the subject of Sections 3–5.

We give LTI behaviors as examples of behaviors
with the homogeneity property. For that of behaviors
without the homogeneity property, refer to the plant
behavior depicted inFig. 2.

There is, in fact, a second canonical controller that
is of interest, and has been introduced in[16]. The
canonical controller, denoted asC′′

canonical, is defined
as follows,

C′′
canonical:= {c ∈ C | ∃ v such that

•(v, c) ∈ Pfull , and
•(v, c) ∈ Pfull ⇒ v ∈ D

}
. (2)

In other words, this canonical controller accepts a
control-variable trajectoryc if and only if every to-
be-controlled-variables trajectoryv that can be paired
with c is accepted in the desired behavior. Clearly,
whatever behavior is implemented by this controller,
it must be contained inD. In fact, we have the fol-
lowing theorem.

Theorem 5. The canonical controllerC′′
canonical im-

plements the largest implementable behavior con-
tained inD.



A.A. Julius et al. / Systems & Control Letters 54 (2005) 787–797 791

PLANT PLANT

DESIRED
CONTROLLED

BEHAVIOR

to-be-controlled
variables

control
variables

to-be-controlled
variables

CANONICAL  CONTROLLER

Fig. 5. The canonical controllerC′′
canonical in action.

Proof. Denote the behavior implemented byC′′
canonical

as K. It is quite obvious thatK ⊆ D. To show
that C′′

canonical implements the largest implementable
behavior inD, consider any other controllerC′ that
implementsK′ such thatK′ ⊆ D. We shall prove
thatK′ ⊆ K.

Take any elementw ∈ K′. There exists ac ∈ C′
such that

(w, c) ∈ Pfull ,

{v ∈ W | (v, c) ∈ Pfull } ⊆ K′ ⊆ D. (3)

From (2) and (3), we can infer thatc ∈ C′′
canonicaland

thereforew ∈ K. �

Remark 6. Using Theorem 5, we can also infer
that for every control problem (not necessarily the
ones with homogeneity property), the largest imple-
mentable behavior contained inD exists.

As a consequence of Theorem 5, the canonical con-
troller C′′

canonicalpossesses the following special prop-
erty.

Corollary 7. The canonical controllerC′′
canonical im-

plementsD if and only ifD is implementable(that is,
if the control problem is solvable).

Fig. 5 illustrates the action ofC′′
canonical. Notice

that the connectors are replaced with symbols de-
noting “implies”. For comparison, the behaviors

W

canonical

canonical

C

pfull

C″

K′

K″

C′

Fig. 6. Comparison between theC′
canonicalandC′′

canonical.

implemented by the two canonical controllers are
shown inFig. 6.

3. Implementability of linear behaviors

In the remaining of the paper we shall restrict our
attention to LTI differential behaviors. This class of
behaviors has been discussed quite extensively in the
literature, see[13,6,12], for example. In the following
we give a brief introduction to the subject to make this
paper self-contained.
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We use the symbolLw to denote the class of LTI
differential3 systems withw variables. These are dy-
namical systems�= (R, Rw,B), where the behavior
B can be expressed as the solutions of a system of
differential equations

R

(
d

dt

)
w = 0. (4)

Here the polynomial matrixR ∈ R•×w[�]. Further-
more, the behaviorB is defined to be the set of all
smooth solutions to the differential equations,

B :=
{
w ∈ C∞(R, Rw) |R

(
d

dt

)
w = 0

}
. (5)

The differential equation (4) is called akernel
representation of B and sometimes we write
B = kerR(d/dt). A kernel representation is called
minimal if the rank of the polynomial matrix is equal
to the number of its rows.

Often, the behavior is defined through auxiliary
variables. In this case, we use the termmanifestfor the
variables of interest, andlatent for the auxiliary ones.
If B ∈ Lw+� is a system involving the manifest vari-
ablesw and the latent variablesl then it can be proven
(see[13,6]) that themanifest behaviorBw defined by

Bw := {w ∈ C∞(R, Rw) | ∃ � ∈ C∞(R, R�)

such that(w, �) ∈ B}
is also an element ofLw. This result is referred to as
the elimination theorem.

Remark 8. The choice of the underlying function
spaceC∞(R, Rw) is made for mathematical conve-
nience. An alternative that is quite commonly used
is to regard the behavior as the collection ofweak
solutions of the differential equation (4), which are
elements ofLloc

1 (R, Rw), the space of locallyinte-
grable functions. We refer to[6] for further exposition
on this issue.

We return to the control problem discussed in Sec-
tion 1. For linear time-invariant differential systems,
the control problem can be formulated as follows. The
plant behaviorPfull ∈ Lw+c is expressed in terms of

3 The analysis also holds if difference equations were used
instead of differential equations; however, we restrict our attention
to differential equations in order to ease the exposition.

the to-be-controlled variablesw and the control vari-
ablesc. The controller behaviorC is an element of
Lc . The controlled behaviorK defined by

K := {w ∈ C∞(R, Rw) | ∃ c ∈ C

such that(w, c) ∈ Pfull },

is an element ofLw (as a consequence of the elimi-
nation theorem).

For linear differential systems, the implementability
question becomes:

Question. Given Pfull ∈ Lw+c , which behaviors
K ∈ Lw can be implemented by using a suitable
controllerC ∈ Lc ?

The answer to this question is summarized in the
following theorem.

Theorem 9. GivenPfull ∈ Lw+c , the behaviorK ∈
Lw is implementable if and only if

N ⊆ K ⊆ P, (6)

whereN ∈ Lw is the hidden behavior defined by

N := {w ∈ C∞(R, Rw) | (w, 0) ∈ Pfull },
andP is the manifest plant behavior defined by

P := {w ∈ C∞(R, Rw) | ∃ c ∈ C∞(R, Rc )

such that(w, c) ∈ Pfull }.

This result was first published in[15] and subse-
quently used in[2,5,8–11].

It is important to notice that the controller that im-
plementsK is usually not unique. Generally speak-
ing, the controllers that implement the same behavior
may have very different properties.

4. Regular interconnections

In the previous section, we have been discussing
interconnection of linear differential behaviors without
considering any further restrictions. We now introduce
a notion of compatibility in the control problem. In
order to motivate it, consider the following example.
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Let P andC be defined as the following:

P :=
{
w ∈ C∞(R, Rw) | d2w

dt2 − w = 0

}
,

C :=
{
w ∈ C∞(R, Rw) | dw

dt
+ w = 0

}
.

We can easily verify thatP is anautonomousbe-
havior [6], that is, any trajectory inP is completely
characterized by its past. Moreover, this behavior has
unstable exponential trajectories. Thus,P is an unsta-
ble autonomous behavior. Now, consider the intercon-
nectionP‖C, which consists of the trajectories in the
intersection ofP andC, i.e.P ∩C. (Here,‖ denotes
the interconnection of twosystems, while ∩ denotes
the intersection of thebehaviorsof the two systems.)
For the above example, notice that the unstable tra-
jectories inP (the trajectories that are not bounded as
t → ∞) do not belong to the interconnectionP‖C.
Moreover, since all trajectories inP‖C are stable (i.e.,
lim t→∞ w(t) = 0 for all elementsw in P‖C) we in-
fer that the interconnection ofP andC yields a stable
behavior. Therefore, if we do not add any further re-
strictions on the admissible controllers, it is perfectly
possible that an autonomous unstable behavior is sta-
bilized. Such controllers may be impossible to imple-
ment. More on this can be found in[14,3,10].

In order to cope with this, we introduce the concept
of compatibility. With this concept, interconnections
like the one in the previous paragraph are discounted.
The control problem then becomes ‘to find a compat-
ible controller’ instead of just ‘to find any controller’.

A notion of compatibility for behavior interconnec-
tions in a general sense, not limited to just LTI sys-
tems, has been studied in[3]. For LTI systems, this
general notion is related to the concept ofregular in-
terconnection, that has been introduced before in[14].

Consider a behaviorB ∈ Lw. Let R(d/dt)w=0 be
a minimal kernel representation ofB. Being minimal,
R has at least as many columns as it has rows. Let
g be the number of rows. The number of columns
is obviouslyw. Therefore,g�w. This means that we
are always able to selectg columns fromR to form a
square polynomial matrix with nonzero determinant.
Notice that the selection is generally not unique. If we
group together the components ofw corresponding to
theg selected rows and call themy, and do similarly
to the remainingw− g components and call themu,

we end up with partitioningw into outputy andinput
u. The reasonu is called input is because it is free,
in the following sense. For any choice ofC∞ input
trajectoryu, we can always find an output trajectoryy
such that(u, y) ∈ B. Notice that the number of inputs
and outputs are properties of the behavior, and are
independent of the minimal kernel representation used
to represent the behavior. Therefore, we can define two
mapsmandp such thatm : Lw → {0, 1, . . . , w} and
p : Lw → {0, 1, . . . , w}, which give the number of
inputs and the number of outputs of a given behavior,
respectively. Obviously, for any behaviorB ∈ Lw, we
have thatm(B) + p(B) = w.

Definition 10. The interconnection of two behaviors
B1 andB2 is said to beregular if

p(B1) + p(B2) = p(B1‖B2).

In a sense, regularity implies that the set of equa-
tions governing the dynamics of both behaviors are
independent of each other.

We shall now apply regularity to the control prob-
lem. Recalling the definitions of the full plant behav-
ior Pfull and the controller behaviorC, we define the
full controlled behaviorKfull as

Kfull := {(w, c) ∈ Pfull | c ∈ C}.

The interconnection between the plant and the con-
troller is regular if

p(Pfull ) + p(C) = p(Kfull ).

If this is the case, then the controllerC is called a
regular controller.

It can be shown that a controller is regular if and
only if it can be realized as a (possibly non-proper)
transfer function from the output variables to the input
variables ofPfull . Therefore, a controller isregular
if it can be viewed as an “intelligent controller” that
processes sensor outputs into actuator inputs. See[14]
for more details.

Given the formulation of regular interconnection,
we recast the question of implementability ofK in
the previous section into the question ofregular im-
plementabilityof K.
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Question. Given Pfull ∈ Lw+c , which behaviors
K ∈ Lw can be implemented by using a suitable
regular controllerC ∈ Lc ?

It turns out that regular implementability involves
controllability of the plant. For more on the concept
of controllability from the behavioral systems theory
point of view, we refer the reader to[6]. In fact, it
has been proven in[4,14] that every implementable
behaviorK of a controllable plantP is regularly im-
plementable.

A necessary and sufficient condition for regular im-
plementability, even when the plant may not be con-
trollable, is given in[2].

Theorem 11. Given a full plant behaviorPfull ∈
Lw+c . Denote the hidden behavior and the mani-
fest plant behavior asN and P respectively. Let
Pcontrollablebe the controllable part ofP. The behav-
ior K ∈ Lw is regularly implementable if and only if

(1) K is implementable, i.e.N ⊆ K ⊆ P and
(2) K + Pcontrollable= P.

Regular implementability of a behaviorK implies
the existence of at least one regular controller that
implements it. In general, given a regularly imple-
mentable behavior, there exist irregular controllers that
implement it. The question that we address in the rest
of this section is:Under what conditions on the plant
Pfull and the controlled behaviorK, can we conclude
that every controller that implementsK is regular?
It turns out that the answer to this question does not
depend onK, but just on the plant.

Define thecontrol variable plant behaviorPc ∈
Lc as follows:

Pc := {c | ∃w such that(w, c) ∈ Pfull }.
We have the following result.

Theorem 12. LetPfull ∈ Lw+c be the full plant be-
havior. Given any controlled behaviorK ∈ Lw, every
controller C ∈ Lc that implementsK is a regular
controller if and only ifPc = C∞(R, Rc ).

Proof. Let

R

(
d

dt

)
w + M

(
d

dt

)
c = 0

be a minimal kernel representation ofPfull . Note that
Pc = C∞(R, Rc ) is equivalent toR having full row
rank.

(If) Take any controllerC ∈ Lc . Let C(d/dt)c = 0
be its minimal kernel representation. SinceR has full
row rank, it follows that(

R
( d

dt

)
M

( d
dt

)
0 C

( d
dt

) ) (
w

c

)
= 0

is a minimal kernel representation ofKfull . Therefore,

p(Kfull ) = rankR + rankC

= p(Pfull ) + p(C).

Hence the controller is regular.
(Only if) Suppose thatPc �= C∞(R, Rc ). Let

P(d/dt)c = 0 be a minimal kernel representation of
Pc. Note thatP �= 0. It follows that if we choose a
controller that has the same minimal kernel represen-
tation asPc, then the resulting interconnection is not
regular. �

5. Control with the canonical controller

Let us revisit the formulation of the control problem
for linear time-invariant systems. We are given a full
plant behaviorPfull . Let

R

(
d

dt

)
w + M

(
d

dt

)
c = 0 (7)

be a minimal kernel representation ofPfull . We are
also given a desired controlled behaviorD, whose
minimal kernel representation isD(d/dt)w = 0.

The behavior of the first canonical controller
C′

canonical∈ Lc is defined as

C′
canonical:= {c ∈ C∞(R, Rc ) | ∃ v ∈ W

such that(v, c) ∈ Pfull andv ∈ D}.
Obviously, a kernel representation for this controller
can be obtained by eliminatingv from the following
kernel representation:(

R
( d

dt

)
M

( d
dt

)
D

( d
dt

)
0

) (
v

c

)
= 0. (8)
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The behavior of the second canonical controller is
defined as

C′′
canonical:= {c ∈ C∞(R, Rc ) | ∃ v

such that

{•(v, c) ∈ Pfull , and
•(v, c) ∈ Pfull ⇒ v ∈ D

}
.

(9)

Recall the fact that LTI behaviors satisfy the homo-
geneity property. For linear time-invariant differential
systems, these two canonical controllers are essentially
equivalent, as shown in the following theorem.

Theorem 13. The following three statements are
equivalent:

(i) C′
canonical= C′′

canonical.

(ii) The second canonical controllerC′′
canonicalis not

empty.
(iii) The hidden behaviorN is contained in the de-

sired controlled behaviorD, i.e.N ⊆ D.

Proof. We prove(i) ⇒ (ii ) ⇒ (iii ) ⇒ (i).
(i) ⇒ (ii ): Notice that the zero trajectory is always

contained inC′
canonical, thereforeC′

canonical is never
empty.

(ii ) ⇒ (iii ): We first prove that for anyc1 and
c2 in C′′

canonical, their linear combinations are also in
C′′

canonical. Notice that from definition (9), it is not
clear that this is the case. Suppose thatc1 andc2 are
in C′′

canonical. There existw1 andw2, both inD, such
that (w1, c1) and(w2, c2) are both inPfull . Now take
any linear combination�1c1 + �2c2. For anyw such
that(w, �1c1+�2c2) ∈ Pfull , the following reasoning
holds:

(w, �1c1 + �2c2) ∈ Pfull

linearity of Pfull⇒ (w − �1w1 − �2w2 + w1, c1) ∈ Pfull ,

property of C′′
canonical⇒ (w − �1w1 − �2w2 + w1) ∈ D,

linearity of D⇒ w ∈ D.

Hence, ifC′′
canonicalis nonempty, it is obvious that the

zero trajectory is included inC′′
canonical. LetK′′

canonical
be the controlled behavior implemented byC′′

canonical.

Since 0∈ C′′
canonical, we have thatN ⊆ K′′

canonical.

From Theorem 5 we also know thatK′′
canonical⊆ D.

HenceN ⊆ D.

(iii ) ⇒ (i): Take anyc ∈ C′
canonical. There ex-

ists a w ∈ D such that(w, c) ∈ Pfull . Take any
otherw′ such that(w′, c) ∈ Pfull , then we also have
(w−w′, 0) ∈ Pfull . Therefore(w−w′) ∈ N ⊆ D. By
the linearity ofD, we conclude thatw′ ∈ D and there-
fore c ∈ C′′

canonical. We have shown thatC′
canonical⊆

C′′
canonical. The converse is obvious from the definitions

of the canonical controllers.�

This theorem implies that if the control problem is
solvable, then the two canonical controllers are equal.
Motivated by this theorem, we shall consider in the
subsequent discussion only the first canonical con-
troller C′

canonical. The question what controlled behav-
ior is actually implemented by the canonical controller
is answered by the following theorem.

Theorem 14. ConsiderPfull ∈ Lw+c andD ∈ Lw.

The controlled behaviorK implemented by the canon-
ical controllerC′

canonical∈ Lc is

K = N + D ∩ P

withN the hidden behavior andP the manifest plant
behavior.

Proof. Let the kernel representation ofPfull be given
by (7), and letD be represented byD(d/dt)w = 0.

We then know that a kernel representation ofC′
canonical

can be obtained by eliminatingw from (8). Therefore,
K is the manifest behavior (withw as the manifest
variable) of the behavior represented by
R

( d
dt

)
M

( d
dt

)
0

0 M
( d

dt

)
R

( d
dt

)
0 0 D

( d
dt

)

 [

w

c

v

]
= 0.

Notice thatK is then also the manifest behavior (with
w as the manifest variable) of the behavior represented
by
 R

( d
dt

)
0 0

0 M
( d

dt

)
R

( d
dt

)
0 0 D

( d
dt

)

 [

w − v

c

v

]
= 0. (10)

Now definew′ := w − v, we can see from (10) that
the dynamics ofw′ is decoupled from that ofc and
v. Furthermore, the behavior ofw′ is exactlyN (see
Section 3). The second and third rows of (10) in-
dicate that the behavior ofv, which is obtained by
eliminating c, is D ∩ P. From here, using the fact
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thatw = w′ + v, we obtain

K = N + D ∩ P. �

This result is not unexpected. In fact, we can see it
as an application of Theorem 2 to the special case of
LTI behaviors. Similarly, we can apply Corollary 4 to
LTI systems to obtain the following corollary.

Corollary 15. The canonical controllerC′
canonical ∈

Lc implementsD ∈ Lw if and only ifD is imple-
mentable, i.e.N ⊆ D ⊆ P.

So far we have seen that whenD is implementable,
the canonical controllerC′

canonicalimplements it. How-
ever, as we have seen in Section 4, implementability
alone may not be good enough. In the following we
shall address the issue of regularity of the canonical
controllerC′

canonical.

Theorem 16. Given a full plant behaviorPfull ∈
Lw+c and a desired controlled behaviorD ∈ Lw.

Assume thatD is implementable. The canonical con-
troller C′

canonical implementsD regularly if and only
if Pc = C∞(R, Rc ).

Proof. (If) Follows directly from Theorem 12.
(Only if) Without loss of generality, we can assume

thatPfull has a minimal kernel representation of the
following form.[
R1

( d
dt

)
M1

( d
dt

)
0 M2

( d
dt

)] [
w

c

]
= 0,

with both R1 andM2 having full row rank. The ker-
nel representations ofN andPc are then given by
R1(d/dt)w=0 andM2(d/dt)c=0, respectively. Since
N ⊆ D, we are able to find a suitable full row rank
matrix F(d/dt) such thatF(d/dt)R1(d/dt)w = 0 is a
minimal kernel representation ofD. Therefore a ker-
nel representation of the canonical controllerC′

canonical
can be obtained by eliminatingv from
 R1

( d
dt

)
M1

( d
dt

)
0 M2

( d
dt

)
F

( d
dt

)
R1

( d
dt

)
0


 [

v

c

]
= 0.

SinceR1 has full row rank, we easily obtain the fol-
lowing kernel representation ofC′

canonical (possibly

non-minimal).[
M2

( d
dt

)
F

( d
dt

)
M1

( d
dt

)]
c = 0.

We see thatC′
canonical always repeats some laws of

Pfull , namely the rows inM2. ThusC′
canonicalis regular

only if M2 is the zero matrix, which impliesPc =
C∞(R, Rc ). �

This result, combined with Theorem 12, tells us that
the canonical controller ismaximally irregular, in the
sense that if there exists any irregular controller that
implements the desired behaviorD, then the canonical
controller is irregular too.

6. Concluding remarks

The idea of the canonical controller in the behav-
ioral framework is attractive because of its simplicity
of construction and also since it formalizes the ‘in-
ternal model principle’ without undue recourse to the
‘equations’ with which the plant is described. This ap-
proach of building systems without using the equations
explicitly underlines therepresentation freenature of
behavioral theory. Some specific issues are summa-
rized here to highlight the main results of the paper.

We defined two canonical controllers. For the case
of linear time-invariant behaviors (or more generally,
for plants with homogeneity property), when the de-
sired behaviorD is implementable, the canonical con-
trollers are the same (see Theorem 13). However, they
can differ whenD is not implementable. In this situa-
tion each of the two canonical controllers are extreme
in a certain sense. The first canonical controller imple-
ments the smallest implementable behavior that con-
tainsP∩D. The second canonical controllerC′′

canonical
implements the largest implementable behavior con-
tained inD. These statements were formulated and
proved in Theorems 2 and 5, respectively.

For the case of linear time-invariant behaviors,
the implementability ofD implies non-emptiness
of C′′

canonical (Theorem 13). WhenC′′
canonical is non-

empty, it is a linear subspace ofC∞(R, R•), and
hence contains the zero trajectory. Thus, we have
a necessarycondition for implementability ofD,
namely if the zero trajectory belongs toC′′

canonical.
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We then addressed the issue of regularity of a con-
troller with respect to a given plant. It turns out that
the condition of guaranteed regularity of every con-
troller that implements a given desired behavior, is a
property of just the plant, and is independent of the
given desired behavior.

The issues of regularity of every controller and the
canonical controllers are related by the results in the
final section. Here we showed that, given a plant, ir-
regularity of any controller implies irregularity of the
canonical controller, and hence we termed the canon-
ical controller asmaximally irregular.
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