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Abstract

We study the control problem from the point of view of the behavioral systems theory. Two controller constructions, called
canonical controllers, are introduced. We prove that for linear time-invariant behaviors, the canonical controllers implement
the desired behavior if and only if there exists a controller that implements it. We also investigate the regularity of the
canonical controllers, and establish the fact that they are maximally irregular. This means a canonical controller is regular if

and only if every other controller that implements the desired behavior is regular.
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1. Introduction

to-be-controlled variablesand control variables A
controller is a device that is attached to the control

Control problems, seen from the behavioral systems variables and restricts their behavior. This restriction

theory point of view, amount to finding a controller,
which when interconnected with the plant in a speci-
fied way yields the desired behavid#,1]. The prob-
lem may be formulated as follows. Consider a plant
to be controlled which has two kinds of variables:
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is imposed on the plant, such that it affects the behav-
ior of the to-be-controlled variables (s€@. 1). The
resulting behavior is called theontrolled system

In this paper we discuss the properties of a special
type of controllers, the so-callednonical controllers
[11,10,16] We are patrticularly interested in their reg-
ularity properties. The concepts of canonical and regu-
lar controllers will be formally introduced later in this
paper.

While the behavioral approach seasntrol as in-
terconnection the more common point of view in
control theory is to view a controller as a feedback

0167-6911/$ - see front matter © 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysconle.2004.12.002


http://www.elsevier.com/locate/sysconle
mailto:a.a.julius@math.utwente.nl
mailto:jan.willems@esat.kuleuven.ac.be
mailto:belur@ee.iitb.ac.in
mailto:h.l.trentelman@math.rug.nl

788 A.A. Julius et al. / Systems & Control Letters 54 (2005) 787-797

Il
1!
1!
1!
1!
1!
[l
1!
1!
1!
1!
[
1!
1!
[l
1!
1!
1!
[l
1!
1!
[l
[
1!
|
=

I
I

to-be-controlled! ) ) I
variables | | :

— 1 ] |

—— PLANT = CONTROLLER :
I

I

I

I

I

—_
B

|

| control
: variables
|

____________________ I

\—/ CONTROLLED SYSTEM

Fig. 1. Control in the behavioral approach.

P

processor that accepts the plant sensor outputs as its
inputs and produces the actuator inputs as its outputs.
In [14], this paradigm is calletintelligent control, as
the controller acts as an intelligent agent capable of
reasoning how to react to sensory observations.

The main advantages of the behavioral over the clas- Fig. 2. The relation betweefffu, #, ¢, and.#".
sical feedback point of view are:

) ) ] contained inW x C. The full plant behavior consists
(i) Its practical generallty. In many control systems, of g]| signal pairgw, ¢) compatible with the plant dy-
the controller (i.e. the device added to the plant pamics, If we project the full behavior o, we ob-

system to obtain a desired behavior) does not act i the so calleananifest behaviomwhich is denoted
as a sensor/actuator device. Dampers, heat fins,552 Thys,

acoustic noise insulators are examples of such de-
vices. P = {fweW]3ce C such that(w, c) € ngu”}.
(i) Its theoretical simplicity. Controlin the behavioral
setting has been introduced [ih4], and subse-
quent development includes the work[6117,9]

The reader is referred {d.2] for further motiva-
tion and details. H = {w e W |3c € C such that(w, ¢) € P

andc € €}.

A controller® is a subset o€, containing all signals
c allowed by the controller. Theontrolled behavior
is then defined as

Throughout this paper, we shall denote the control
variables a€ and the to-be-controlled variables\as The relationship between the full plant behavior, the
These variables take their value at any given time from manifest behavior, the controller and the controlled
their respective signal spacé&sand W. Let W and behavior is captured ifig. 2

C denote the set of all trajectories of the variables In this framework, the control problem can be for-
andc that are a priori possible, before we have even mulated as to find a controlléf that yields a desired
modelled the plant. In dynamical systen®, andC controlled behavioZ. Hence the controlle¥ should

are typically the set of (smooth) signals from the time yield the controlled behavio” = . We callZ the

axis to the signal spacéd andC. In discrete event  desired controlled behaviodf it is possible to find

systems, the time axis is discrete and the signal spacesa controller® that yields#" = &, thenZ is said to

are typically called alphabets. beimplementable or implementedy %. Further, if
We shall now discuss our problem from a purely a given desired” is implementable, we say that ‘the

set theoretic point of view. The behavioral model of control problem is solvable’.

the plant system that captures the relevant relation be-

tweenw andc is called thefull plant behavior which L1n the literature the terrachievablés sometimes used instead

is denoted by?s . Naturally, we assume tha#s is of implementable
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The remainder of this paper is organized as fol-
lows. In Section 2 we present two constructions for
the canonical controllersand their properties in the

setting of general behaviors. In Section 3 we discuss

the concept of implementability, particularly for LTI

behaviors. Section 4 is devoted for discussion on the

concept of regularity. In Section 5, we study the be-
havior implemented by the canonical controller and
use the result from Section 4 to establish its regularity.

2. The construction and properties of the
canonical controllers

In the previous section we explained that we work
in the generality in which the plant has two types of

variables, the to-be-controlled variables and the con-

trol variables, and further that a controller can put a re-
striction on just the control variables. This restriction
is propagated through the plant to the to-be-controlled
variables.

The idea of the canonical controller uses the ‘in-
ternal model principle’ in the following waj11,10].

I to-be-controlled
| variables

CANONICAL j

CONTROLLER

|
I
1 . X
DESIRED |
.—
V;f:gg?és TVALS = conroLLen| | |1
= BEHAVIOR || | :
— |
I
|2

Fig. 3. The construction Oﬁéanonical Mirrored text reflects the
idea that the interconnection is reversed.

Definition 1. A full plant behavior %y, is said to
have thehomogeneity propertif for any wy, wo € W
andci, c2 € C, the following implication holds:

(w1, c1), (w1, c2), (w2, c1) € Pl
= (w2, c2) € Pl

Homogeneity can also be understood as follows.

We use a plant model that has the same behavior asThe behaviorZs, can be seen as a relation between

the plant. The propagation of information explained
in the previous paragraph is theaversedby inter-

W andC. A relation is calledindependentif it can
be written as a Cartesian product of its projections

connecting the plant model to the desired behavior on the related domains. The behavi#, has the

9 using the to-be-controlled variabfesThis is how
we construct the canonical controll€ig. 3illustrates
this construction. Notice that the word PLANT is mir-
rored to highlight the fact that the interconnection is
reversed. The behavior of the canonical controller ob-
tained using this construction is denoted@s,onical

(géanonicalzz {c € C|3v € W such that
(v, ¢) € Pt andv € Z}.

@)

Fig. 4 provides a block diagram showing how
(gé:anonicalis app”ed'

In [11,10] it is proven that for a class of plants,
which are ‘homogeneous’in the plant and control vari-
ables, the control problem is solvable (i%.is im-
plementable) if and only if the canonical controller
% canonicaliImplementsZ. We now define the homo-
geneity property.

2A construction similar to the canonical controller has been
used in[7]

homogeneity property if it can be written as a disjoint
union of independent relations. In particulatwf and
C are linear spaces am#y is a linear subspace, then
2w has the homogeneity property.

The following theorem captures an important prop-
erty of the canonical controlle®’.,onicai

Theorem 2. If the full plant behavior?s, has the
homogeneity properfythen the canonical controller

% canonicalimplements the smallest implementable be-
havior containing? N &.

Proof. Denote the behavior implemented 6, onical
as.#". From (1), we can infer thaty" > 2N 2. To
show that%,,onicasimplements the smallest imple-
mentable behavior containingg N &, consider any
other controller’ that implements#” such that
A 2> PN Z. We shall prove that?” € %

Take any elementy € #". We are going to show
thatw e #'. If w e 2N 2, thenw € A, since
H' DPNG.
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Fig. 4. The canonical controlléﬁcanomcmin action.

If we¢ 2N 2, there exists @ € ¥ andw’ € 2N
2 such that both(w, ¢) and (w’, ¢) are elements of
251 Now we are going to show that ¢ #” is a
contradiction. Suppose that it is true, then

{ceC|(w,c) e PuNE =9.

By the homogeneity property, we also have that
{ceCl(w,c) € Zru} ={c e ClW, ¢) € Pr}.
Thus, the following relation is also true:
{ceCl(w,c)e Pu}NE =0.

This impliesw’ ¢ .#”, which is a contradiction. (]

Remark 3. Theorem 2 also tells us that for every con-
trol problem involving a plant with the homogeneity
property, the smallest implementable behavior con-
taining # N & exists.

Obviously, a necessary condition for imple-
mentability of 7 is 2 c 2. This fact, combined with
Theorem 2 giveS . nonicalitS SPeCcial property.

Corollary 4. Assume the full plant behavior has the
homogeneity property. Thethe canonical controller
% canonical IMplementsZ if and only if Z is imple-
mentable(that is, if and only the control problem is
solvablg.

As already noted, i?5 is a linear behavior, then it
has the homogeneity property. Hence, although seem-
ingly restrictive, the class of behaviors with the homo-
geneity property is, in fact, fairly large, and most im-
portantly, it captures the class of linear time-invariant
behaviors, the subject of Sections 3-5.

We give LTI behaviors as examples of behaviors
with the homogeneity property. For that of behaviors
without the homogeneity property, refer to the plant
behavior depicted ifrig. 2

There is, in fact, a second canonical controller that
is of interest, and has been introduced[16]. The
canonical controller, denoted &%/, onicar 1S defined
as follows,

In other words, this canonical controller accepts a
control-variable trajectory if and only if every to-
be-controlled-variables trajectopythat can be paired
with c is accepted in the desired behavior. Clearly,
whatever behavior is implemented by this controller,
it must be contained ir7. In fact, we have the fol-
lowing theorem.

(gganonicaﬂz {C (S C | 3 v SUCh that
e(v,c) € Ztui, and
o(v,¢) € Pl > ved

)

Theorem 5. The canonical controller? ., onical IM-
plements the largest implementable behavior con-
tained inZ.
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Proof. Denote the behavior implemented 6, nonical
as .#". It is quite obvious that#” € %. To show

P =

that € anonicalimplements the largest implementable
behavior inZ, consider any other controllef”’ that
implements.#” such that#” < %. We shall prove
that#” < .
Take any elemenw € .#". There exists a € ¢ »
such that
(w, ©) € Z1,
{veW|@w,c)e Pt <A CI. 3 A"
From (2) and (3), we can infer thate %4nonicai@nNd %"canonical
thereforew € #°. [ —pp-C

%' canonical
Remark 6. Using Theorem 5, we can also infer _ _ ,
that for every control problem (not necessarily the g 6- Comparison between thef,nicaaNd % canonicat
ones with homogeneity property), the largest imple-
mentable behavior contained in exists. . _
implemented by the two canonical controllers are
As a consequence of Theorem 5, the canonical con- shown inFig. 6.
troller € anonicaP0Ssesses the following special prop-
erty.
3. Implementability of linear behaviors
Corollary 7. The canonical controllefé ¢ onicaiM-

plementsZ if and only if Z is implementabléthat is In the remaining of the paper we shall restrict our
if the control problem is solvab)e attention to LTI differential behaviors. This class of
behaviors has been discussed quite extensively in the
Fig. 5 illustrates the action of6ynonicai NOtice literature, se¢13,6,12] for example. In the following

that the connectors are replaced with symbols de- we give a brief introduction to the subject to make this
noting “implies”. For comparison, the behaviors paper self-contained.
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We use the symonW to denote the class of LTI
differentiaP systems withw variables. These are dy-
namical system& = (R, RY, B), where the behavior

B can be expressed as the solutions of a system of

differential equations

d

Here the polynomial matriR € R’Xw[cf]. Further-
more, the behavio® is defined to be the set of all
smooth solutions to the differential equations,

%::{weGW(R,RWnR(%)w:o}.

The differential equation (4) is called &ernel
representation of B and sometimes we write
B = kerR(d/dr). A kernel representation is called
minimalif the rank of the polynomial matrix is equal
to the number of its rows.

Often, the behavior is defined through auxiliary
variables. In this case, we use the termanifesfor the
variables of interest, andtentfor the auxiliary ones.
If BeeWisa system involving the manifest vari-
ablesw and the latent variabldghen it can be proven
(see[13,6]) that themanifest behavio®,, defined by

B, = {w e C(R, RY) |3¢ € €°(R, RY
such that(w, ¢£) € B}

4

®)

is also an element 08", This result is referred to as
the elimination theorem

Remark 8. The choice of the underlying function
spaceC™ (R, RY) is made for mathematical conve-
nience. An alternative that is quite commonly used
is to regard the behavior as the collectionveéak
solutions of the differential equation (4), which are
elements on'fc(lR, RY), the space of locallynte-
grable functionsWe refer tg6] for further exposition
on this issue.

We return to the control problem discussed in Sec-
tion 1. For linear time-invariant differential systems,
the control problem can be formulated as follows. The
plant behaviorZ?y € @WC g expressed in terms of

3The analysis also holds if difference equations were used
instead of differential equations; however, we restrict our attention
to differential equations in order to ease the exposition.

A.A. Julius et al. / Systems & Control Letters 54 (2005) 787-797

the to-be-controlled variables and the control vari-
ablesc. The controller behavioff is an element of
€€ The controlled behaviaw” defined by

Ho={we C°MR,RY) |Tce ¥
such that(w, ¢) € 2},

is an element of?" (as a consequence of the elimi-
nation theorem).

For linear differential systems, the implementability
guestion becomes:

Question. Given 2y e £WC which behaviors
A e €W can be implemented by using a suitable
controller € €2

The answer to this question is summarized in the
following theorem.

Theorem 9. GivenZy € QW+C, the behavior#” e
2Wis implementable if and only if

N CH CP, (6)

where.t” € €W is the hidden behavior defined by
N = {w € €°R, RY) | (w, 0) € Z1},
and Z is the manifest plant behavior defined by

P = {w e C°R,RY) |Ic € C°(R, R®)
such that(w, ¢) € P }.

This result was first published if15] and subse-
qguently used irf2,5,8-11]

It is important to notice that the controller that im-
plements#” is usually not unique. Generally speak-
ing, the controllers that implement the same behavior
may have very different properties.

4. Regular interconnections

In the previous section, we have been discussing
interconnection of linear differential behaviors without
considering any further restrictions. We now introduce
a notion of compatibility in the control problem. In
order to motivate it, consider the following example.
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Let # and% be defined as the following: we end up with partitioningv into outputy andinput
u. The reasoru is called input is because it is free,
in the following sense. For any choice G input
trajectoryu, we can always find an output trajectory
such thatu, y) € B. Notice that the number of inputs
and outputs are properties of the behavior, and are
independent of the minimal kernel representation used
We can easily verify tha# is anautonomouse- to represent the behavior. Therefore, we can define two
havior [6], that is, any trajectory i”? is completely mapsmandp such thaim: W 10,1,...,w} and
characterized by its past. Moreover, this behavior has p : W . 10,1,...,w}, which give the number of

d2w
ﬂzz{we(ioo([R,[R{WHF—w:O},

€ = {we(ioo(R,[RW)|c:j—1f+w:0}.

unstable exponential trajectories. Thasis an unsta-
ble autonomous behavior. Now, consider the intercon-
nection?||%, which consists of the trajectories in the
intersection of”? and¥, i.e. 2 N ¥. (Here,|| denotes
the interconnection of twaystemswhile N denotes
the intersection of théehaviorsof the two systems.)
For the above example, notice that the unstable tra-
jectories inZ (the trajectories that are not bounded as
t — o0) do not belong to the interconnectich||%.
Moreover, since all trajectories i#t| ¢ are stable (i.e.,
lim;_ o w(z) = 0 for all elementaw in 2||%) we in-

fer that the interconnection o and% yields a stable
behavior. Therefore, if we do not add any further re-
strictions on the admissible controllers, it is perfectly

possible that an autonomous unstable behavior is sta-

bilized. Such controllers may be impossible to imple-
ment. More on this can be found jt&4,3,10]

In order to cope with this, we introduce the concept
of compatibility. With this concept, interconnections
like the one in the previous paragraph are discounted.
The control problem then becomes ‘to find a compat-
ible controller’ instead of just ‘to find any controller’.

A notion of compatibility for behavior interconnec-
tions in a general sense, not limited to just LTI sys-
tems, has been studied j8]. For LTI systems, this
general notion is related to the conceptredular in-
terconnection, that has been introduced befofé4j

Consider a behavidB € €W Let R(d/dt)w =0 be
a minimal kernel representation &. Being minimal,

inputs and the number of outputs of a given behavior,
respectively. Obviously, for any behavith ¢ 2V, we
have thamB) + p(B) = w.

Definition 10. The interconnection of two behaviors
B, andB;, is said to beegular if

P(B1) + p(B2) = p(B1[B2).

In a sense, regularity implies that the set of equa-
tions governing the dynamics of both behaviors are
independent of each other.

We shall now apply regularity to the control prob-
lem. Recalling the definitions of the full plant behav-
ior Zsui and the controller behavics, we define the
full controlled behavior# s as

At = {(w, ¢) € P | c € 6)}.

The interconnection between the plant and the con-
troller is regular if

P(Zrun) + p(6) = p (A ).

If this is the case, then the controllér is called a
regular controller.

It can be shown that a controller is regular if and
only if it can be realized as a (possibly non-proper)

R has at least as many columns as it has rows. Let transfer function from the output variables to the input

g be the number of rows. The number of columns
is obviouslyw. Therefore,g <w. This means that we
are always able to selegtcolumns fromR to form a
square polynomial matrix with nonzero determinant.
Notice that the selection is generally not unique. If we
group together the componentswfcorresponding to
the g selected rows and call theyn and do similarly

to the remainingv — g components and call them

variables ofZy. Therefore, a controller isegular

if it can be viewed as an “intelligent controller” that
processes sensor outputs into actuator inputs[13@ge
for more details.

Given the formulation of regular interconnection,
we recast the question of implementability &f in
the previous section into the questionrefjular im-
plementabilityof 7"
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Question. Given 2y, € QV‘”C, which behaviors
A e €W can be implemented by using a suitable
regular controller® e £¢?

It turns out that regular implementability involves
controllability of the plant. For more on the concept
of controllability from the behavioral systems theory
point of view, we refer the reader {6]. In fact, it
has been proven if¥,14] that every implementable
behaviorz#" of a controllable plan# is regularly im-
plementable.

A necessary and sufficient condition for regular im-
plementability, even when the plant may not be con-
trollable, is given in[2].

Theorem 11. Given a full plant behavior?y, €
@W+C  Dpenote the hidden behavior and the mani-
fest plant behavior as/” and 2 respectively. Let
Pcontrollable b€ the controllable part of”. The behav-
ior # € €Wis regularly implementable if and only if

(1) # is implementablei.e. /" C # C 2 and
(2) A"+ Pcontrollable= 2.

Regular implementability of a behaviof™ implies

the existence of at least one regular controller that

implements it. In general, given a regularly imple-

A.A. Julius et al. / Systems & Control Letters 54 (2005) 787-797

be a minimal kernel representation #f,; . Note that
2, = E°(R, R®) is equivalent toR having full row
rank.

(If) Take any controllers € €C. Let C(d/dt)c =0
be its minimal kernel representation. Sirieéas full
row rank, it follows that

() M3 (1) <o

d
0 C(g)
is a minimal kernel representation.#fy . Therefore,

p (A su) = rankR + rankC
=p( @) + p(%).

Hence the controller is regular.

(Only if) Suppose that?, # E>°(R, R®). Let
P(d/dt)c = 0 be a minimal kernel representation of
2.. Note thatP # 0. It follows that if we choose a
controller that has the same minimal kernel represen-
tation as?,, then the resulting interconnection is not
regular. [

5. Control with the canonical controller

Let us revisit the formulation of the control problem

mentable behavior, there exist irregular controllers that ¢, |inear time-invariant systems. We are given a full

implement it. The question that we address in the rest

of this section isUnder what conditions on the plant
251 and the controlled behavia¥”, can we conclude
that every controller that implementg” is regular?

It turns out that the answer to this question does not

depend on#’, but just on the plant.
Define thecontrol variable plant behavio?,. €
¢C as follows:

2. :={c|3w such that(w, ¢) € P }.

We have the following result.

Theorem 12. Let Zy € £V be the full plant be-
havior. Given any controlled behaviof” € 2%, every
controller ¢ € 2° that implements#” is a regular
controller if and only if2, = €*(R, R°).

Proof. Let

R(Ywim(L)ezo
ar ) v ar )T

plant behavioZy . Let

R d + M d 0
_ w _ —
dr dr )€

be a minimal kernel representation &, . We are
also given a desired controlled behavi@r, whose
minimal kernel representation i8(d/df)w = 0.

The behavior of the first canonical controller
(géanonicale ¢C is defined as

()

C E:anonical:: {c € € (R, RC) [JveW
such that(v, ¢) € Zqy andv € Z}.

Obviously, a kernel representation for this controller
can be obtained by eliminating from the following
kernel representation:

G SR
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The behavior of the second canonical controller is (i) = (i): Take anyc € %canonicai ThEre €x-

defined as ists aw € Z such that(w,c) € Pq. Take any
y ~ c otherw’ such that(w’, ¢) € Zs, then we also have
canonical'= {¢ € €7 (R, R™) [Jv (w—w’, 0) € Pyy. Thereforqw—w') € A" C %.By
such thal{ o(v,c) € Zn, and } . the linearity ofZ, we conclude thaw’ €  and there-
*(v.0) € Pl > veEYD fore ¢ € € anonical We have shown that,nonical €
(©) % anonical The converse is obvious from the definitions

. . of the canonical controllers.d
Recall the fact that LTI behaviors satisfy the homo-

geneity property. For Iinee}r time-invariant differentigl This theorem implies that if the control problem is
systems, these two canonical controllers are essem'a”ysolvable, then the two canonical controllers are equal.

equivalent, as shown in the following theorem. Motivated by this theorem, we shall consider in the

subsequent discussion only the first canonical con-

Theorem 13. The following three statements are troller % ey The question what controlled behav-

equivalent ior is actually implemented by the canonical controller
N . is answered by the following theorem.
y g
(') (gcanonicalz canonical , .
(i) '(Ia'rr:]eptsyecond canonical controliéfcanonicalS MOt 10610m 14, ConsiderZu ¢ €€ and 2 ¢ oW,

The controlled behavioy” implemented by the canon-
ical controller €..nonical€ £° IS

H=N+INP

(i) The hidden behaviarl” is contained in the de-
sired controlled behavio#, i.e. /" C 9.

Proof. We prove(i) = (ii) = (iii) = (i).

(i) = (ii): Notice that the zero trajectory is always
contained IN%canonical therefore®canonical IS NEvVer
empty.

(i) = (iii): We first prove that for any; and
2 1N G anonicar their linear combinations are also in
% canonical Notice that from definition (9), it is not
clear that this is the case. Suppose thaandc, are
iN € Zanonical There existw1 andwgy, both inZ, such
that (w1, c1) and (w2, ¢) are both inZ?. Now take

with /" the hidden behavior an#’ the manifest plant
behavior

Proof. Let the kernel representation & be given
by (7), and letZ be represented by (d/dt)w = 0.
We then know that a kernel representatioféof,,onical
can be obtained by eliminating from (8). Therefore,
A" is the manifest behavior (witlv as the manifest
variable) of the behavior represented by

any linear combinatiomycy + o2co. For anyw such R(%) M(%) 0 w
that (w, a1c1+ 0iaco) € Prun, the following reasoning o M) R(E) |:c:| =0
holds: 0 0 D(E)]Lv
(w, o1c1 + 02¢2) € Pl Notice that#” is then also the manifest behavior (with

linearity of Z w as the manifest variable) of the behavior represented

= (w—ouwy —owz+wi,c1) € P, py
pmpert)'g(gcanonicakw — w1 — dpwy + w1) € 9. R(%) 0 0 W— v
Iinearié)é of ?jw ca. 0 M(%) R(dgdr) |: c :| =0. (20)
0 0  D(g) v

Hence, if% anonicallS NONEMpty, it is obvious that the  Now definew’ := w — v, we can see from (10) that
zero trajectory is included i L, nonical L€t # canonicai the dynamics ofw’ is decoupled from that of and
be the controlled behavior implemented 6, onicai v. Furthermore, the behavior af’ is exactly./" (see
Since 0€ €¢anonicat We have that/” C A Linonical Section 3). The second and third rows of (10) in-
From Theorem 5 we also know that'¢,nonical S Z- dicate that the behavior af, which is obtained by

HenceA” C 9. eliminating c, is 2 N #. From here, using the fact
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thatw = w’ + v, we obtain non-minimal).
H=N+a02. O [ Ma(§) i|c=0
F(&) Ma(5)

This result is not unexpected. In fact, we can see it
as an application of Theorem 2 to the special case of We see thatf,nonica @lWays repeats some laws of
LTI behaviors. Similarly, we can apply Corollary 4 to 2, namely the rows 2. Thus%anonicalS regular

LTI systems to obtain the following corollary. only if M, is the zero matrix, which implies?, =
C*R,R%). O

Corollary 15. The canonical controlleff nonical €

2 implementsz € ¢V if and only if 7 is imple- This result, combined with Theorem 12, tells us that

mentablei.e. /" C 2 C 2. the canonical controller imaximally irregular in the
sense that if there exists any irregular controller that

So far we have seen that whénis implementable,  implements the desired behavigr then the canonical
the canonical controllef’, onicaimplements it. How-  controller is irregular too.

ever, as we have seen in Section 4, implementability

alone may not be good enough. In the following we

shall address the issue of regularity of the canonical 6. Concluding remarks
controller€¢anonical

The idea of the canonical controller in the behav-

Theorem 16. Given a full plant behavior?sy e ioral framework is attractive because of its simplicity
W€ and a desired controlled behavigz e ™. of construction and also since it formalizes the ‘in-
Assume tha® is implementable. The canonical con- ternal model principle’ without undue recourse to the
troller € anonicalimplementsZ regularly if and only  ‘equations’ with which the plant is described. This ap-
if 2. = € (R, R%). proach of building systems without using the equations
explicitly underlines theepresentation fre@ature of
Proof. (If) Follows directly from Theorem 12. behavioral theory. Some specific issues are summa-

(Only if) Without loss of generality, we can assume  rized here to highlight the main results of the paper.
that Zqy1 has a minimal kernel representation of the  \we defined two canonical controllers. For the case

following form. of linear time-invariant behaviors (or more generally,

d d for plants with homogeneity property), when the de-

[Rl(w) Ml(g)] [w] =0, sired behavio# is implementable, the canonical con-
0 M2(E) ¢ trollers are the same (see Theorem 13). However, they

can differ whenZ is not implementable. In this situa-
tion each of the two canonical controllers are extreme
in a certain sense. The first canonical controller imple-
ments the smallest implementable behavior that con-
tains?N4Z. The second canonical controlt&,onical
implements the largest implementable behavior con-
tained inZ. These statements were formulated and
proved in Theorems 2 and 5, respectively.

For the case of linear time-invariant behaviors,

with both R; and M» having full row rank. The ker-
nel representations ofl” and %, are then given by
R1(d/dr)w=0 andM>(d/dr)c=0, respectively. Since
N C 9, we are able to find a suitable full row rank
matrix F(d/dr) such thatF(d/dt)R1(d/dt)w =0 is a
minimal kernel representation &f. Therefore a ker-
nel representation of the canonical contro#&r, onical
can be obtained by eliminatingfrom

Ri($) Mi($) the implementability ofZ implies non-emptiness
0 Mz(ad;) |:v:| =0. of (gganonical (Theorem 13). Whe%ganonical is non-
¢ empty, it is a linear subspace &*°(R,R°®), and

F() Ry (& 0 _ :
(37) 1(37) hence contains the zero trajectory. Thus, we have
Since R1 has full row rank, we easily obtain the fol- a necessarycondition for implementability ofZ,
lowing kernel representation f,nonical (POSSIbly namely if the zero trajectory belongs ®,onicaf
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