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Abstract

A deterministic interpretation of the Kalman !ltering formulas is given, using the principle
of least squares estimation. The observed signal and the to-be-estimated signal are modeled as
being generated as outputs of a !nite-dimensional linear system driven by an input disturbance.
Postulating that the observed signal is generated by the input disturbance that has minimal least
squares norm leads to a method of computing an estimate of the to-be-estimated output. The
derivation of the resulting !lter is carried out in a completely self-contained way. The analogous
approach to least squares control is also discussed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

It is a pleasure and an honor to have been invited to contribute an article to this
special issue dedicated to Manfred Deistler on the occasion of his sixtieth birthday. I
will address an issue that has been the topic of numerous discussions and exchanges
of ideas which I had with Manfred over the years. Namely, the rationale of using a
stochastic setting for obtaining algorithms in dynamical system problems and time-series
analysis.
The e9ectiveness in applications of stochastic models for accommodating uncertainty

in dynamical systems is beyond question, it appears. Stochastics is being applied,
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routinely and often successfully, in diverse areas ranging from signal processing to
communication networks, from !nancial mathematics to statistical and quantum physics,
from medical diagnosis to epidemiology, etc. Unfortunately, the logical basis and the
interpretation of such models is not always very convincing. Particularly in time-series
analysis, it is often not clear what a stochastic model implies physically, what it claims
about reality. Usually, in fact, it is not stated, even remotely explicitly, if probability
is to be interpreted as relative frequency, or as degree of belief, or as plausibility.
Moreover, while for !nite outcome spaces the probabilistic assumptions are often rea-
sonable and acceptable, it is much more diEcult to fathom how one could justify the
numerical values of the complex quantitative statements that are implicitly implied by
a stochastic time-series as a model of reality.
The purpose of this paper is to show that the Kalman !lter admits a perfectly satisfac-

tory deterministic least squares formulation. I will argue that this approach is eminently
reasonable, and circumvents the sticky modeling assumptions that are unavoidable in
the stochastic approach. The aim of the paper is to give a tutorial and self-contained
derivation of these formulas for continuous-time systems. In order to achieve this, I
have included at the end brief sections which review standard material from linear
system theory and about the Riccati equation.
The Kalman !ltering algorithm originally appeared in Kalman (1960a) for discrete-

time systems and in Kalman and Bucy (1961) for continuous-time systems. The
continuous-time !lter is sometimes referred to as the Kalman-Bucy 1lter. Since then,
these very important algorithms have been covered in numerous textbooks (for ex-
ample, Kwakernaak and Sivan, 1972), special issues (for example, Athans, 1971), and
reprint volumes (for example, Kailath, 1977). The !ltering formulas, and many of their
spin-o9s, are prominently present in BaFsar (2001). The Kalman !lter actually deals with
the same problem as Wiener-Kolmogorov !ltering (Wiener, 1949; Kolmogoro9, 1939),
a connection that was often alluded to in the original work of Kalman. However, the
Kalman !lter o9ers a solution that is far superior to Wiener-Kolmogorov !ltering, es-
pecially in view of the recursive nature of the algorithm and the e9ective use that is
made of the Riccati equation as a method for computing the !lter coeEcients. For these
and other reasons, the Kalman !lter is an algorithm that is of historical signi!cance
indeed.
Originally, before this research area became dominated by the intricacies of stochas-

tic calculus, the least squares aspects of the Kalman !lter were emphasized. It is
very well-known that the Kalman !lter is the least squares estimator in a stochastic
sense. Indeed, the Kalman !lter gives a recursive formula for the linear estimator that
minimizes the expected value of the square of the estimation error. If the processes
involved are jointly gaussian, then the optimal linear estimator coincides with the opti-
mal non-linear estimator, the conditional mean estimator, and the maximum likelihood
estimator. These connections between the Kalman !ltering algorithm and least squares,
in a stochastic context, are classical.
In this paper, I will give a purely deterministic interpretation of the Kalman !lter.

The basic idea is to explain the observations as being generated by the input distur-
bances of least squares norm. By substituting these least squares disturbances in the
system dynamics, an estimate of any related system variable can be obtained. That
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this leads to the same formulas as maximum likelihood estimation when these distur-
bances are assumed to be stochastic and normally distributed is easy to see for static
estimators (see Section 3), and for discrete-time Kalman !ltering over a !nite time
interval. However, mathematical diEculties prevent such a straightforward interpreta-
tion for in!nite-time !ltering and for continuous-time systems. This has to do with the
properties of white noise and Brownian motion. In particular, while it is intuitively
reasonable to claim that realizations of white noise that have small L2-norm are more
likely than those that have large L2-norm, mathematically, realizations of white noise
have with probability one in1nite L2-norm on any non-zero length interval, and so
this likelihood interpretation is, at best, an informal one.
My claims what regards originality are very modest. As already mentioned, in static

estimation problems (see Section 3), it is well-known and easy to see that there is
an equivalence between deterministic least squares on the one hand, and conditional
expectation for random vectors with gaussian distributions on the other hand. That a
similar least squares interpretation is possible for the Kalman !lter is certainly part
of the system theory folklore, and has been so ever since the Kalman !lter appeared
on the horizon. The paper by Swerling (1971), in fact, deals exactly with this aspect
(see also the references in Swerling’s paper). There are a number of earlier sources
that give a deterministic interpretation of the Kalman !ltering formulas, in particular
(Mortenson, 1968; Sontag, 1990; Hijab, 1980; Fleming, 1997; McEneaney, 1998). Of
course, the derivation of the analogue of the static case promises to be much more
involved for the Kalman !lter, in view of the dynamical aspects of the problem setting.
The purpose of this paper is to present this derivation.

2. Notation

A few words about the mathematical notation that will be used. As usual, R denotes
the real line, R+=[0;∞);Rn= the n-dimensional vectors with real components, Rn×m=
the n×m matrices with real coeEcients. � denotes transposition. A symmetric matrix
M = M� ∈Rn×n is said to be non-negative de1nite (non-positive de1nite), denoted
M ¡ 0 (M 4 0), if a�Ma¿ 0 (a�Ma6 0) for all a∈Rn, and positive de1nite
(negative de1nite), denoted M � 0 (M ≺ 0), if a�Ma¿ 0 (a�Ma¡ 0) for all 0 �=
a∈Rn. For M=M� ∈Rn×n and a∈Rn, a�Ma is often denoted as ‖a‖2M . The Euclidean
norm (corresponding to M = I) of a∈Rn is denoted by ‖a‖.
The map f from the set A to the set B is denoted by f :A → B. If f takes the

element a∈A to b∈B, we write f : a 	→ b, or f : a∈A 	→ b∈B.
Let A be a (!nite or in!nite) interval in R. L2(A;Rn) denotes the set of all

square integrable maps from A to Rn. The L2-norm of f∈L2(A;Rn), is de!ned
by ‖f‖2L2(A;Rn) =

∫
A ‖f(t)‖2 dt. When A is an in!nite interval in R, we denote by

Lloc
2 (A;Rn) (‘L2-local’) all f :A → Rn such that

∫ t1
t0
‖f(t)‖2 dt ¡∞ for all !nite

intervals [t0; t1] ⊂ A. We denote by L−
2 (R;Rn) (‘half-line’ L2) the maps f :R→ Rn

such that
∫ T
−∞ ‖f(t)‖2 dt ¡∞ for all T ∈R.
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3. Static estimation

Assume that d is a d-dimensional vector of real random variables, whose joint
distribution is normal with (for simplicity) zero mean and covariance normalized to
the identity. Consider the problem of estimating z = Hd from observing y = Cd, with
H ∈Rz×d and C ∈Ry×d (!xed, known) matrices. Assume (again for simplicity) that
C has rank y. Then it is well-known and elementary to prove that

ẑ = HC�(CC�)−1y (1)

is the conditional expectation (or the maximum likelihood estimate) of z given Cd=y.
However, it is possible to interpret this estimate of z without assuming randomness,

as follows. ‘Explain’ the observed y as being generated by the d of least Euclidean
norm that satis!es y=Cd. Denote this least squares d by d∗, and de!ne the resulting
estimate ẑ of z by ẑ =Hd∗. It is elementary to verify that this yields again (1) as the
formula for ẑ.
Which interpretation of (1) is to be preferred, the probabilistic one with its condi-

tional mean/maximum likelihood interpretation, or the deterministic least squares one,
is a matter of debate. Indeed, it has been a matter of debate at least since Gauss (1995)
introduced least squares, or should one say justi1ed Legendre’s (1805) least squares,
as a method of computing the most probable, maximum likelihood, outcome. It is not
my purpose to re-open this debate, although I would like to state that I !nd, and
have always found, simple least squares more satisfactory. It is more pragmatic, and it
lays its strengths and weaknesses bare. All too often, probabilistic reasoning evokes a
thick cloud of evasive claims concerning statistical knowledge about uncertainty. The
uncertainty in models is very often due to such things as model approximation and
simpli!cation, neglected dynamics of sensors, unknown deterministic inputs, etc. It is
hard to conceive situations in which precise stochastic knowledge about real uncertain
disturbance signals can be justi!ed as a description of reality.
Furthermore, in the case of continuous-time Kalman !ltering, the deterministic least

squares approach that I will present has also major pedagogical advantages. It totally
avoids white noise, Brownian motion, stochastic calculus, and all that. That the de-
terministic approach is reasonable and convincing as a methodology, perhaps more so
than the stochastic approach, may be to some extent a matter of opinion. However, the
pedagogical advantages are beyond debate.

4. Filtering

In !ltering problems, there are two time-signals involved: an observed signal, denoted
by y, and a to-be-estimated signal, denoted by z. Both are assumed to be vector-valued,
and, at !rst, we will take R+ as the time set on which these signals are de!ned. Later
on, the case that the time set is R will also be discussed, and the development will
make clear what happens when the time set is a !nite interval.
Hence, let y :R+→Ry be the observed signal, and z :R+→Rz be the to-be-estimated

signal. The basic problem is !nd a map F :y 	→ ẑ such that ẑ :R+ → Rz is a good
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Fig. 2. Filter con!guration.

estimate of z. The requirement that makes the !ltering problem interesting and diEcult
is the constraint that the estimate ẑ(T ) at time T is allowed to depend only on the
past of y, i.e., on the observed outcomes y(t) for 06 t6T . In other words, the !lter
map F is required to be non-anticipating.
The map F is called a 1lter. In the earliest formulations, this problem was considered

one of noise suppression, with y = z + n and n unwanted ‘noise’ (see Fig. 1). The
problem then is to ‘!lter’ the noise out of the observations.
Nowadays, the picture of Fig. 2 is more appropriate. Indeed, it is usually assumed

that the to-be-estimated signal and the observed signal can be related in a more general
way, and that both are outputs of a common signal generator.
The !ltering problem as intuitively formulated above is of obvious relevance in a

large variety of situations. However, in order to turn it into a mathematical question,
we need to:

1. Model the relation between y and z mathematically.
2. Formulate an estimation principle.
3. Obtain an algorithm that computes ẑ from y, i.e., an algorithm that implements the

!lter map F.

In the stochastic approach to !ltering, the relationship between z and y is speci!ed by
assuming that (z; y) is a stochastic process with known statistics, (i.e., it is assumed that
the probability distributions of the relevant random variables are given). The estimation
principle is then typically the requirement that ẑ(T ) must be the conditional expectation
of z(T ) given y(t) for 06 t6T . The Kalman !lter formulas provide an e9ective,
beautiful algorithm for computing ẑ from y. The Kalman !lter formulas are obtained by
assuming that the stochastic model that yields (z; y) is given through a Gauss–Markov
model, more speci!cally, through a linear system driven by disturbance inputs, and with
these disturbances modeled as white noise processes (this model will be described more
explicitly in Section 9).
The deterministic approach to !ltering discussed in the present paper uses a simi-

lar model, but without the stochastic assumptions. Assume that the signals (z; y) are
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generated by the linear system (see Section 13 for an introduction to this model
class)

d
dt
x = Ax + Gd1; y = Cx + d2; z = Hx: (2)

Here A∈Rn×n; G ∈Rn×d; C ∈Ry×n, and H ∈Rz×n are !xed, known, 1 matrices that
parameterize the system, and d1 :R+ → Rd, d2 :R+ → Ry, x :R+ → Rn, y :R+ → Ry,
and z :R+ → Rz are signals that are related through this linear system (2) (see
Fig. 3).
The vector signal (d1; d2) should be interpreted as an (unobserved) disturbance

input, which, together with the (unobserved) initial state x(0)∈Rn of (2), deter-
mines the observed signal y and the to-be-estimated signal z. More precisely, assume
that d1 ∈Lloc

2 (R+;Rd) and d2 ∈Lloc
2 (R+;Ry), then y and z are given in terms of

(d1; d2); x(0), and the system parameter matrices (A;G; C; H), by

y(t) = CeAtx(0) +
∫ t

0
CeA(t−�)Gd1(�) d�+ d2(t); (3)

z(t) = HeAtx(0) +
∫ t

0
HeA(t−�)Gd1(�) d� (4)

for t¿ 0. It is easy to see from these expressions that y∈Lloc
2 (R+;Ry) and z ∈Lloc

2
(R+;Rz).
The signal generation model hence assumes that there is a ‘hidden’ vector signal

(d1; d2) and a ‘hidden’ initial state x(0) which, through (3), generate the observed sig-
nal y and, through (4), the to-be-estimated signal z. We will return to the interpretation
of the model in Section 10.4.
In the sequel, in order to distinguish between an arbitrary output y and the output

that is observed, we will denote the output that has actually been observed by ỹ. The
problem is to !nd a non-anticipating !lter map F :Lloc

2 (R+;Ry) → Lloc
2 (R+;Rz), so

that F(ỹ)(T ) is a good estimate of z(T ).

1 In !ltering problems, the system model (in case, the matrices (A; G; C; H)) is assumed to be known. Of
course, the problem of deducing the model from observations is also of much interest. In system theory,
it is called system identi1cation. It is a problem to which Manfred Deistler has made important contribu-
tions (Hannan and Deistler, 1988). For a treatise of identi!cation algorithms from an applications oriented
perspective, see Ljung (1987).
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5. The least squares �ltering principle

Assume that the output ỹ :R → Ry has been observed. We want to obtain a !lter
that maps ỹ into the estimate ẑ.

What is a rational way of obtaining an estimate

ẑ(T ) of z(T ) from ỹ(t) for 06 t6T?

I have already described the stochastic approach: declare (d1; d2), and x(0) to be
random, and use conditional expectation. The deterministic approach put forward in
this article is based on the following principle.
1. Among all the d1 ∈L2([0; T ];Rd), d2 ∈L2([0; T ];Ry), and x(0)∈Rn that ‘ex-

plain’ the observed ỹ∈L2([0; T ];Ry), compute the one that minimizes the norm
squared

‖x(0)‖2# + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry): (5)

Here #∈Rn×n is a given matrix that satis!es # = #� � 0. As usual, ‖ · ‖# denotes
the norm on Rn de!ned by ‖a‖2# := a�#a. The above functional (5) is called the
uncertainty measure. Alternative choices of the functional to be minimized will be
discussed in Section 10.
With ‘explain’, I mean that in this minimization, only those (d1; d2); x(0) are con-

sidered, which, after substitution in (3), yield the observed signal ỹ, i.e., such that

ỹ(t) = CeAtx(0) +
∫ t

0
CeA(t−�)Gd1(�) d�+ d2(t) (6)

for 06 t6T .
2. Denote the minimizing (d1; d2); x(0), obtained in step 1, by (d∗1 ; d

∗
2); x(0)

∗. Now,
substitute (d∗1 ; d

∗
2); x(0)

∗ in (4). Denote the resulting output by z∗. Hence

z∗(t) = HeAtx(0)∗ +
∫ t

0
HeA(t−�)Gd∗1 (�) d�

for 06 t6T .
3. De!ne the desired estimate of z(T ) by ẑ(T ) := z∗(T ), with z∗ obtained in step

2. Hence

ẑ(T ) = HeAT x(0)∗ +
∫ T

0
HeA(T−�)Gd∗1 (�) d�:

The principle underlying this procedure is reasonable and intuitively quite acceptable:
among all (d1; d2); x(0) that explain the observations, choose the one that has ‘smallest
uncertainty measure’, that is ‘most likely’, where ‘most likely’ should be interpreted
as ‘of least squares norm’, with the norm chosen as the square root of (5). Note that it
is obvious from this construction that ẑ(T ) depends only on ỹ(t) for 06 t6T . Hence
the !lter map F : ỹ 	→ ẑ is non-anticipating.

The construction of the optimal estimate ẑ appears quite involved, since we need to
compute z∗(T ) for all T ∈R+. So, it appears as if, at each time T , we have to carry
out, in step 1, what looks like a complicated dynamic optimization problem in order to
compute (d∗1 ; d

∗
2); x(0)

∗. The optimization problem is complicated indeed, but we will



348 J.C. Willems / Journal of Econometrics 118 (2004) 341–373

see that it admits a very nice recursive solution, which makes it possible to carry out
the computation of ẑ in a very eEcient way, and for all T at once!

6. Completion of the squares

The crucial lemmas that yield the solution of the minimization problem set up in the
previous section use the Riccati di9erential equation. For the bene!t of the uninitiated
reader, and in order to make the paper self-contained, I have included the required
know-how about the Riccati di9erential equation in Section 15.

Lemma 1. Consider the following system of di9erential equations involving d1 :
[0; T ] → Rd, d2 : [0; T ] → Ry, x : [0; T ] → Rn, y : [0; T ] → Ry, x̂ : [0; T ] → Rn,
and $ : [0; T ] → Rn×n,

d
dt
x = Ax + Gd1; y = Cx + d2;

d
dt
x̂ = Ax̂ + $C�(y − Cx̂);

d
dt
$= GG� + A$+ $A� − $C�C$:

Then, assuming that d1 ∈L2([0; T ];Rd), d2 ∈L2([0; T ];Ry), and that $(t)∈Rn×n is
symmetric and non-singular for 06 t6T , there holds

‖x(0)− x̂(0)‖2$(0)−1 + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry)

=‖x(T )− x̂(T )‖2$(T )−1 + ‖d1 − G�$−1(x − x̂)‖2L2([0;T ];Rd)

+‖y − Cx̂‖2L2([0;T ];Ry):

Proof. Verify the following straightforward calculation
d
dt
[(x − x̂)�$−1(x − x̂)]

=2(x − x̂)�$−1 d
dt
(x − x̂) + (x − x̂)�(

d
dt
$−1)(x − x̂)

=2(x − x̂)�$−1[A(x − x̂) + Gd1 − $C�C(x − x̂)− $C�d2]

+(x − x̂)�(C�C − A�$−1 − $−1A− $−1GG�$−1)(x − x̂)

=− (x − x̂)�C�C(x − x̂) + 2(x − x̂)�$−1Gd1

−2(x − x̂)�C�d2 − (x − x̂)�$−1GG�$−1(x − x̂)

=‖d1‖2 + ‖d2‖2 − ‖d1 − G�$−1(x − x̂)‖2 − ‖y − Cx̂‖2;
and integrate.
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Now, specialize the above lemma by specifying the initial value of the Riccati dif-
ferential equation for $ and of the di9erential equation for x̂. For the initial value of
$, use $(0) = #−1. Since # = #� � 0, it follows from Theorem 7 that the Riccati
di9erential equation with this initial condition has a unique solution on the interval
[0; T ], and that this solution is symmetric and positive de!nite.

Lemma 2. Let $ : [0; T ] → Rn×n be the (unique) solution to the Riccati di9erential
equation

d
dt
$= GG� + A$+ $A� − $C�C$; $(0) = #−1: (7)

Then $(t) = $(t)� � 0 for 06 t6T .
Consider the system of di9erential equations involving d1 : [0; T ] → Rd; d2 : [0; T ] →

Ry; x : [0; T ] → Rn, and y : [0; T ] → Ry
d
dt
x = Ax + Gd1; y = Cx + d2:

Assume that d1 ∈L2([0; T ];Rd), d2 ∈L2([0; T ];Ry). Then y∈L2([0; T ];Ry).
De1ne x̂ in terms of $ and y by

d
dt
x̂ = Ax̂ + $C�(y − Cx̂); x̂(0) = 0:

Then

‖x(0)‖2# + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry)

=‖x(T )− x̂(T )‖2$(T )−1 + ‖d1 − G�$−1(x − x̂)‖2L2([0;T ];Rd)

+ ‖y − Cx̂‖2L2([0;T ];Ry) (8)

Proof. This follows immediately from the previous lemma.

7. The least squares �lter

The optimal !lter is readily deduced from Lemma 2. Indeed, (8) shows that, when-
ever d1 ∈Lloc

2 (R+;Rd), d2 ∈Lloc
2 (R+;Ry), and x(0)∈Rn lead to the observed signal

ỹ∈Lloc
2 (R;Ry), there holds

‖x(0)‖2# + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry)¿ ‖ỹ − Cx̂‖2L2([0;T ];Ry); (9)

with x̂ generated from ỹ by
d
dt
x̂ = Ax̂ + $C�(ỹ − Cx̂); x̂(0) = 0; (10)

and $ de!ned by (7).
Observe, very importantly, that x̂ is a function of ỹ, but that it does not depend on

the speci!c (d1; d2), and x(0) that generated ỹ. Hence the right hand side of inequality
(9) depends on ỹ only. Therefore

‖x(0)‖2# + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry)
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will be minimized if equality holds in (9). Lemma 2 shows that equality holds if and
only if, among the (d1; d2), and x(0) that generated ỹ, we can choose one such that

1. x(T ) = x̂(T ), and
2. d1(t) = G�$(t)−1(x(t)− x̂(t)) for 06 t6T .

Such a choice indeed exists! It is intuitively quite clear from 1 and 2 how to make
this choice, and it will be formally derived in the proof of Theorem 3.
Note the following important consequence of the existence of such a choice. It im-

plies in particular that the optimal (d∗1 ; d
∗
2); x(0)

∗ yields for the state trajectory generated
by (d∗1 ; x(0)

∗), at time T , x(T ) = x̂(T ), and hence ẑ(T ) = Hx̂(T ). Therefore, once we
prove the mere existence of a choice (d1; d2), and x(0) that meets the above condi-
tions 1 and 2, the speci!c expressions of the optimal (d∗1 ; d

∗
2); x(0)

∗ are not needed
any further: (10) and ẑ = Hx̂ yield the optimal !lter.
This leads to the main result of this paper.

Theorem 3 (Least squares !lter). Consider the least squares 1ltering problem de1ned
by the linear system (2) with the uncertainty measure (5). Let ỹ∈Lloc

2 (R;Ry) be an
observed output. Let $ :R+ → Rn×n be the (unique) solution of the Riccati di9erential
equation

d
dt
$= GG� + A$+ $A� − $C�C$; $(0) = #−1: (11)

Then the least squares 1lter is given by
d
dt
x̂ = Ax̂ + $C�(ỹ − Cx̂); x̂(0) = 0; ẑ = Hx̂; (12)

viewed as map ỹ∈L2([0;∞);Ry) 	→ ẑ ∈L2([0;∞);Rz).

Proof. It will be shown that there exist unique d1 ∈Lloc
2 (R;Rd), d2 ∈Lloc

2 (R;Ry), and
x(0)∈Rn such that the corresponding solution x : [0; T ] → Rn to (d=dt)x=Ax+Gd1; y=
Cx + d2 yields (i) y(t) = ỹ(t) for 06 t6T , (ii) x(T ) = x̂(T ), and
(iii) d1(t) = G�$(t)−1(x(t)− x̂(t)) for 06 t6T .
This choice is obtained by !rst solving the Riccati di9erential equation (1) with

initial condition $(0)=# ‘forwards’ on [0; T ] (this yields $(t) for t ∈ [0; T ]), then the
!lter equation (12) with initial condition x̂(0)=0 ‘forwards’ on [0; T ] (this yields x̂(t)
for t ∈ [0; T ]), and !nally solving

d
dt
x̃ = Ax̃ − GG�$−1(x̃ − x̂); x̃(T ) = x̂(T ); (13)

‘backwards’ on [0; T ] (this yields x̃(t) for t ∈ [0; T ]).
Now de!ne the optimal (d1; d2), and x(0) by

d∗1 (t) = G�$(t)−1(x̃(t)− x̂(t)); for 06 t6T;

d∗2 (t) = ỹ(t)− Cx̃(t); for 06 t6T; and

x(0)∗ = x̃(0):
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It is straightforward to verify that

d
dt
x = Ax + Gd∗1 (t); y = Cx + d∗2 (t); x(0) = x(0)∗

yields x(t) = x̃(t), for 06 t6T . Hence (i) Cx(t) + d∗2 (t) = Cx̃(t) + d∗2 (t) = ỹ(t)
for 06 t6T , (ii) x(T ) = x̃(T ) = x̂(T ); and (iii) d∗1 (t) = G�$(t)−1(x̃(t) − x̂(t)) =
G�$(t)−1(x(t)− x̂(t)) for 06 t6T . Optimality follows.
To see the uniqueness, note that x(T )= x̂(T ) and d1(t)=G�$(t)−1(x(t)− x̂(t)) for

06 t6T are satis!ed only if x(t) = x̃(t), with x̃ governed by (13).
The above formulas show how to compute the inputs d∗1 : [0; T ] → Rd; d∗2 : [0; T ] →

Ry, and the initial state x(0)∗ that optimally (in the least squares sense) explain the
observations ỹ(t) for 06 t6T . In principle, we should now compute ẑ :R+ → Rz by
solving the di9erential equation

d
dt
x = Ax + Gd∗1 (t); x(0) = x(0)∗

on [0; T ], computing ẑ(T )=Hx(T ), and repeating this for each T ∈R+. But there is no
need to do that, since d∗1 and x(0)

∗ were chosen so that there would hold x(T )= x̂(T ).
Hence ẑ(T ) = Hx̂(T ) for all T¿ 0.
The (somewhat surprising) conclusion that can drawn from the above is that there

is no need to repeat the calculation for each T , and that (12) is the optimal !lter.

8. In�nite-time �ltering

There are two ways to turn the !ltering problem into an in!nite-time problem: either
by simply letting t → ∞ in (12), or by assuming that y is observed on all of R, and
that the !lter computes the optimal estimate ẑ(T ) on the basis of the observations ỹ(t)
for all t6T .
The latter version, i.e., when the time-set is R, is discussed !rst. In this case, it is nec-

essary to assume some regularity on the system (2), for example, stability. Assume !rst
that it is stable (see Section 13), i.e., that A∈Rn×n is Hurwitz. This implies, in partic-
ular, that for any d1 ∈L−

2 (R;Rd); d2 ∈L−
2 (R;Ry), there exist unique x∈L−

2 (R;Rn),
y∈L−

2 (R;Ry), and z ∈L−
2 (R;Rz) such that (2) holds. This x :R→ Rn is given by

x(t) =
∫ t

−∞
eA(t−�)Gd1(�) d�:

This yields

y(t) =
∫ t

−∞
CeA(t−�)Gd1(�) d�+ d2(t);

z(t) =
∫ t

−∞
HeA(t−�)Gd1(�) d�

for the corresponding y∈L−
2 (R;Ry) and z ∈L−

2 (R;Rz).
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The least squares !ltering problem may now be formulated as follows:

1. Let ỹ :R→ Ry be observed, and assume that ỹ∈L−
2 (R;Ry).

2. Among all the d1 ∈L−
2 (R;Rd); d2 ∈L−

2 (R;Ry) that explain this ỹ in the sense that

ỹ(t) =
∫ t

−∞
CeA(t−�)Gd1(�) d�+ d2(t);

compute the one that minimizes the uncertainty measure, de!ned as the norm
squared

‖d1‖2L2((−∞;T ];Rd) + ‖d2‖2L2((−∞;T ];Ry):

Denote this minimizing (d1; d2) by (d∗1 ; d
∗
2).

3. De!ne the estimate ẑ ∈L−
2 (R;Rz) by

ẑ(T ) =
∫ T

−∞
HeA(T−�)Gd∗1 (�) d�:

This problem can be solved in an analogous way as the !nite-time problem. The
solution in this case uses the algebraic Riccati equation. The relevant facts about the
Riccati equation are brieTy reviewed in Section 16.

Theorem 4 (In!nite-time least squares !lter). Consider the least squares 1ltering prob-
lem de1ned by the linear system (2) with A∈Rn×n Hurwitz, and the uncertainty
measure (21). Let ỹ∈L−

2 (R;Ry) be an observed output. Let
∑

∞ ∈Rn×n be the
(unique) solution of the algebraic Riccati equation

GG� + A$+ $A� − $C�C$= 0; $= $� ¡ 0: (14)

Then the in1nite-time least squares 1lter is given through the unique solution x̂∈L−
2

(R;Rn) of
d
dt
x̂ = Ax̂ +

∑
∞

C�(ỹ − Cx̂); ẑ = Hx̂: (15)

From the theory of the algebraic Riccati equation (see proposition 8), it follows that
A−∑∞ C�C is Hurwitz. Therefore (15) has a unique solution x̂∈L−

2 (R;Rn), and
so the 1lter is well-de1ned. In fact,

ẑ(t) =
∫ t

−∞
He(A−

∑
∞ C�C)(t−�)∑

∞
C�ỹ(�) d�:

Proof. Only an outline of the proof is given.
The result follows readily, analogously to the !nite-time case, when

∑
∞ � 0.

Unfortunately, it is only guaranteed that
∑

∞ ¡ 0. The proof for the case
∑

∞ � 0
is given !rst, and later on, it will be indicated how it needs to be modi!ed for the
general case.
Note that x̂∈L−

2 (R;Rn) and ỹ∈L−
2 (R;Ry) imply, using (15), that (d=dt)x̂∈L−

2
(R;Rn). Now, x̂; (d=dt)x̂∈L−

2 (R;Rn) implies x̂(t) → 0 as t → −∞. Now, repeat the
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steps leading to Eq. (8), and obtain

‖d1‖2L2((−∞;T ];Rd) + ‖d2‖2L2((−∞;T ];Ry) = ‖x(T )− x̂(T )‖2∑−1
∞

+‖d1 − G�$−1(x − x̂)‖2L2((−∞;T ];Rd) + ‖y − Cx̂‖2L2((−∞;T ];Ry): (16)

Now, verify that the proof used in the !nite-time case goes through with the obvious
changes.
In the general case, when

∑
∞ ¡ 0, prove !rst that (x − x̂)(t)∈ im(

∑
∞) for all

t ∈R, and deduce then the analogue of (16) with
∑−1

∞ replaced by
∑#

∞, with
∑#

∞
the pseudo-inverse of

∑
∞. The details are omitted.

The above formulation of the in!nite-time !ltering problem uses stability of the
signal generator in an essential way. We may avoid this (unpleasant) assumption by
assuming instead that d1; d2; x; y; ỹ; and z are in L−

2 and of compact support, and that
the system is detectable and stabilizable (see Section 14).
In the second way of approaching the in!nite-time problem, by considering the

problem on [0; T ] and letting T → ∞, stability is not needed, and detectability and
stabilizability are suEcient. Assume that the pair of matrices (A; C) is detectable, and
that the pair of matrices (A;G) is stabilizable. It follows from the theory of the Ric-
cati equation (see Section 16) that, in this case, there exists a unique solution to the
algebraic Riccati equation

GG� + A$+ $A� − $C�C$= 0

that is symmetric and non-negative de!nite: $=$� ¡ 0. Denote this solution by
∑

∞.
Moreover, for any initial condition $0=$�

0 ¡ 0, the solution of the Riccati di9erential
equation (see Section 16)

d
dt
$= GG� + A$+ $A� − $C�C$; $(0) = $0

converges to
∑

∞: $(t) →∑
∞ as t → ∞.

It follows that when (A; C) is detectable and (A;G) is stabilizable, then the !lter
derived in Theorem 3 approaches, as t → ∞, the !lter

d
dt
x̂ = Ax̂ +

∑
∞
C�(ỹ − Cx̂); ẑ = Hx̂: (17)

This !lter has very good properties. In particular, A−C�C
∑

∞ is Hurwitz, and so,
the !lter is stable. This implies that the estimate ẑ(t) in Eq. (15) becomes independent
of x(0) for t → ∞. This asymptotic independence can be viewed as a form of ‘merging
of opinions’ (of the initial condition $(0) = # on the Riccati equation and the initial
condition x̂(0) of the !lter—see Remark 10.1. The dynamics of the estimation error
e = z − ẑ may be obtained by subtracting (17) from (2). This yields

d
dt
ex =

(
A− C�C

∑
∞

)
ex + Gd1 −

∑
∞
C�d2; e = Hex:

This shows, for example, that if d1 and d2 have compact support, then ẑ(t)− z(t) → 0
for t → ∞. This is interesting in the case that A is not Hurwitz, since then z and ỹ
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may be unbounded, but nevertheless the !lter output ẑ tracks z asymptotically without
error: while z(t); ẑ(t) → ∞ for t → ∞, z(t)− ẑ(t) → 0 for t → ∞.

9. Stochastic interpretation

It is well-known, of course, that the !lter derived in Theorem 3 is also obtained,
with exactly the same formulas, under the following stochastic assumptions.

1. x(0) is a gaussian random vector with zero mean and covariance matrix #.
2. (d1; d2) is a zero-mean white noise process with identity covariance, and independent

of x(0). The system equations are then usually written, for the sake of mathematical
rigor, as a stochastic di9erential equation

dx = Ax dt + G dw1; df = Cx dt + dw2; z = Hx;

with (w1; w2) a Wiener process, and it is assumed that it is f (instead of y=(d=dt)f)
that is observed.

3. ẑ(T ) is the conditional expectation, equivalently, the maximum likelihood estimate,
of z(T ) given the observations y(t) for 06 t6T .

The least squares approach has important advantages above the stochastic approach. It
is a very rational and reasonable principle in itself, and avoids modeling the uncertainty
probabilistically. In applications, this uncertainty is often due to e9ects as quantization,
saturation and other neglected (non-linear) features of the plant and the sensors, inputs
with an unknown and/or unmeasured origin, etc. In such situations, the probabilistic
interpretation is heuristic, at best, but not an attempt to describe reality.
Pedagogically, the least squares approach also has a great deal to be said for. It

allows one to dispense with the diEcult aspects of the mathematical etiquette that
occurs when one has to consider stochastic di9erential equations. It allows to aim
much more directly at the Kalman !lter as a signal processor.
It is of interest to interpret the functional (5), or, perhaps more appropriately,

e−(‖x(0)‖2
#+‖d1‖2

L2([0;T ];Rd)
+‖d2‖2

L2([0;T ];Ry )
)

as a belief, or a likelihood function that expresses numerically the degree of con!dence
in the joint occurrence of x(0) and (d1; d2)(t) for 06 t6T . Unfortunately, to the best
of my knowledge, the classical axiomatization of belief functions (Paris, 1994) does
not cover this interpretation. Note that, informally, also the stochastic white noise
interpretation leads to a likelihood in which realizations of (d1; d2) and x(0) for which
the norm (5) is large, are viewed as less likely than realizations for which the norm is
small. However, since realizations of white noise have—with probability one—in!nite
L2 norm on any interval, this interpretation is destined to remain an informal one. In
fact, our derivation of the deterministic Kalman !lter can be considered a mathematical
proof that, in the stochastic case, the maximum likelihood estimate of x(T ) given the
observations ỹ(t) for 06 t6T can be computed by deterministic least squares. It is an
interesting question to examine if this principle extends for more general Itô equations.
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10. Remarks

There are number of directions in which the results of this paper can be extended.

10.1.

Consider the !ltering problem in which, instead of (5), the uncertainty functional

‖x(0)− a‖2# + ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry)

is minimized, with a∈Rn a !xed vector, and, as before, #∈Rn×n; # = #� � 0. The
optimal !lter is then identical to the one of (12), but with initial condition x̂(0) = a.
This corresponds completely to the usual situation considered in the Kalman !lter.

10.2.

The formulas are easily adapted, as in the stochastic Kalman !lter, to the case in
which the disturbance inputs d1 and d2 are coupled. The system equations then take
the form

d
dt
x = Ax + Gd; y = Cx + Dd; z = Hx;

and ‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry) in (5) is replaced by ‖d‖2
L2([0;T ];Rd). The !lter re-

mains identical (assuming that D has full row rank), but the relevant Riccati di9erential
equation for $ becomes more involved.

10.3.

Often, there is, in addition to a measured output, y, also a measured input, u, leading
to the system equations

d
dt
x = Ax + Bu+ Gd; y = Cx + Dd; z = Hx:

In this case, it suEces to add Bu to the right hand side of the !lter equations (12) in
order to obtain the least squares !lter.

10.4.

Let us reTect once again about the general problem formulation of !ltering, and
obtain a point of view that has all the above situations as special cases.
Assume that we have two (vector) signals, w : [0; T ] → Rw and z : [0; T ] → Rz. We

think of w as a signal, that we will, perhaps imperfectly, observe, and through which
we wish to estimate the unobserved signal z. The !rst thing to do, is model the (ideal)
relation between w and z. A reasonable model, in the context of linear systems, is

d
dt
x = Ax + Bu+ Gd; y = Cx + Dd; w = (u; y); z = Hx: (18)
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In this model we have partitioned w into a free input u and a bound output y. Such
a partition is, in a precise sense, always possible (see Polderman and Willems, 1998).
But, more importantly, we have introduced another free input d. We view this input as
a latent input, which together with the initial state x(0), yields a well-de!ned relation
between w=(u; y) and z. This latent input is a passe-partout term that expresses model
inadequacies.
Now assume that we measure the signal w. Let w̃ be the vector signal that is actu-

ally observed. In order to take into consideration things as modeling approximations,
saturation, discretizations and quantizations, nonlinear e9ects, sensor dynamics and in-
accuracies, etc., it is reasonable not to jump to the conclusion that w̃ must satisfy the
model equations, but to assume that there is another signal, ŵ, that satis!es the model
equations (in other words for which there is an (d; x(0)) which together with ŵ satis!es
the model equations) and for which the observed w̃ is but an imperfect manifestation.
This brings about two elements through which the actual observations are explained:

(i) the mis1t w̃ − ŵ, measured, say, as ‖w̃ − ŵ‖2L2([0;T ];Rw), and
(ii) the latency (d; x(0)), measured, say, as ‖x(0)− a‖2# + ‖d‖2

L2([0;T ];Rd).

Excessive reliance on either of these, the mis!t or the latency, in order to explain the
measurements is, in principle, undesirable. It is therefore reasonable to determine the
optimal (d∗; x(0)∗) and w∗, as the one that minimizes the (weighted) sum of the mis!t
and the latency, yielding the uncertainty measure

‖w̃ − ŵ‖2L2([0;T ];Rw) + ‖x(0)− a‖2# + ‖d‖2L2([0;T ];Rd):

The !lter algorithm obtained in Section 7 is readily extended to this situation, and
yields a non-anticipating !ltering algorithm that obtains ẑ from w̃.
For the deterministic Kalman !lter discussed in Section 5, the input u is absent,

and it is most reasonable to consider (d1; x(0)) as the latency, measured as ‖x(0)‖2# +
‖d1‖2L2([0;T ];Rd), and ỹ − Cx as the mis!t, measured as ‖ỹ − Cx‖2L2([0;T ];Ry), whence
assuming in e9ect that Cx is a signal that is generated by (d1; x(0)) and that is measured
through y with mis!t d2 = y − Cx.
I consider the above as the most reasonable interpretation of the Kalman !lter that

I have come across. 2

Note that it is not unreasonable to interpret this situation in terms of fuzzy logic. Eqs.
(18) de!ne a behavior: all trajectories (d; x; Hx; Cx) that are declared possible, that are
compatible with these equations. We have two fuzzy membership functions. An inter-
nal fuzzy membership function which tells how likely an element of the behavior will
occur, and an external fuzzy membership function, which tells how close a trajectory

comes to belonging to the behavior. The latency (or, better, e−(‖x(0)‖2
#+‖d1‖2

L2([0;T ];Rd)
))

de!nes the internal fuzzy membership, while the mis!t (or, better, e−‖d2‖2
L2([0;T ];Ry ) ) de-

!nes the external fuzzy membership. Our !lter looks for the maximum of the total

2 Note the close relation of this interpretation with errors-in-variables !ltering, another area to which
Manfred Deistler has made important contributions.
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fuzzy membership function (the product of the internal and the external memberships)
that is compatible with the observations.

10.5.

It is well-known that in the stochastic case, $(T ) can be interpreted as a measure
for the uncertainty of the estimate x̂(T ), in the sense that $(T ) equals the expected
value of (x(T )− x̂(T ))(x(T )− x̂(T ))�.

A similar interpretation holds in the deterministic case. Assume that, as in Section 7,
we set out to estimate z(T ) from the observations ỹ(t) for 06 t6T . As we have seen,
this leads to estimating x(T ) through the optimal x(0) and d1. We can do this in two
batches: process !rst the observations for 06 t6 t1, and subsequently for t16 t6T .
It is in combining these two batches that $(t1) becomes important. Indeed, the correct
way of proceeding is to estimate !rst x̂(t1) using the algorithm of Theorem 3 by min-
imizing the partial uncertainty measure ‖x(0)‖2# + ‖d1‖2L2([0;t1];Rd) + ‖d2‖2L2([0;t1];Ry), and
then estimate x̂(T ) using the algorithm of Theorem 3 by minimizing (taking into con-
sideration the modi!cation explained in Remark 10.1) the partial uncertainty measure
‖x(t1)− x̂(t1)‖2$(t1)−1 +‖d1‖2L2([t1 ;T ];Rd)+‖d2‖2L2([t1 ;T ];Ry). Thus ‖x(t)− x̂(t)‖2$(t)−1 has the
interpretation of the equivalent accumulated uncertainty (more exactly, the equivalent
latency) at time t.

10.6.

The theory leading to the !nite-time !lter (12) goes through, at the expense of only
more complicated notation, for time-varying systems.

10.7.

The theory leading to the !nite-time least squares !lter goes through, with suita-
ble adaptation of the notation, for discrete time systems. In this case, the least squares
!lter allows a genuine interpretation as a maximum likelihood, conditional mean, sto-
chastic estimator. However, it remains awkward to interpret the in!nite-time !lter of
Theorem 4 stochastically.

10.8.

In 1ltering, it is assumed, as we have seen, that z(T ) is estimated on the basis of
the observations y(t) for 06 t6T ′ with T ′ = T . The estimation problem is also of
interest when T ′ �= T . When T ′¡T , the problem is called prediction, when T ′¿T ,
is called smoothing. The least squares !ltering approach is readily extended to cover
these situations as well. We should then minimize (5) with T=Tf, under the constraint
that x(0); d1; d2 explains the observations.
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10.9.

Note that in Theorem 4 we assumed ỹ∈L−
2 (R;Ry). Of course, the resulting !lter

can be shown to be optimal for other function spaces as well, for example, for (almost)
periodic signals. More pragmatically, it is reasonable to use a !lter that works well for
L2 signals, also for other signals for which its dynamics are well-de!ned.

10.10.

We are presently investigating how the theory of quadratic di9erential forms (Willems
and Trentelman, 1998) can be used to cover more general uncertainty measures than
(5). This extension is analogous to assuming (d1; d2) to be colored noise in traditional
stochastic !ltering.

10.11.

I believe that the deterministic least squares interpretation of !ltering will have im-
portant (conceptual and algorithmic) advantages when considering multi-dimensional
systems, e.g., images, or distributed phenomena governed by partial di9erential equa-
tions. In these applications, the stochastic interpretation of uncertainty becomes often
even more tenuous.

11. Examples

We now discuss a couple of quick examples in order to illustrate the action of the
deterministic Kalman !lter intuitively. Note !rst that if, instead of the uncertainty (5),
the weighted sum ‖x(0)‖2# + )2‖d1‖2L2([0;T ];Rd) + ‖d2‖2L2([0;T ];Ry) with weighting )¿ 0
is used, then it suEces to replace GG� in the Riccati equation by GG�=)2. This also
pertains to the in!nite-time case.

11.1. An integrator

Consider the scalar model (d=dt)x = d1; y = x + d2, and the uncertainty measure

)2‖d1‖2L2((−∞;T ];R) + ‖d2‖2L2((−∞;T ];R):

The corresponding algebraic Riccati equation is $2 − 1=)2 = 0, whence $∞ =1=). The
!lter becomes (d=dt)x̂= 1

) (ỹ− x̂): exponential weighting with time constant ), whence

x̂(T ) =
∫∞
0

1
)e

−t=)ỹ(T − t) dt.

11.2. An interpretation

We can interpret this example as a model for the price y of a share of stock. This
price is modeled as the sum of the intrinsic value x and a term d2 depending on
the market mood. The intrinsic value Tuctuates as a consequence of change d1 of the
fundamentals. The weighting factor ) reTects the relative volatility of the change of the
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fundamentals and the market mood. Assuming, for example, that the mood Tuctuates
in a day as the fundamentals do in a month, leads to )=30 days. The optimal estimate
of the intrinsic value from the share trading price is then the exponential weighting
of the share price with a time constant of 30 days. Note that our interpretation as a
deterministic Kalman !lter yields this exponential smoothing, without need to enter
into a tenuous interpretation of x; y; d1; d2 as stochastic processes.

11.3. A double integrator

Consider the state model (d=dt)x1 =x2; (d=dt)x2 =d, with d an (un-measured, latent)
input. Let ỹ be the measurement, and de!ne the uncertainty measure as

)2‖d‖2L2((−∞;T ];R) + ‖ỹ − x1‖2L2((−∞;T ];R);

with )¿ 0 a weighting factor. The algebraic Riccati equation in

$=

[
*1 *2

*2 *3

]

yields 2*2 = *21 ; *
2
2 = 1=)2; *3 = *1*2, resulting in

$∞ =

[√
2=) 1=)

1=)
√
2=)

√
)

]
:

The in!nite-time !lter becomes
d
dt
x̂1 = x̂2 +

√
2=)(ỹ − x̂1);

d
dt
x̂2 = 1=)(ỹ − x̂1):

The transfer functions ỹ 	→ x̂2 and ỹ 	→ x̂1 are equal to

s
)s2 +

√
2)s+ 1

and
√
2) s+ 1

) s2 +
√
2)s+ 1

;

respectively. The !lter ỹ 	→ x̂2 acts as a di9erentiator at low frequencies, but quenches
high frequencies, with the turn-around point at frequency ∼ 1=2+

√
).

11.4. An interpretation

We can interpret this example as the estimation of the velocity of a moving vehicle
(for example, a truck) by measuring its position (for example, from a satellite). The
vehicle accelerates and decelerates in unpredictable ways (due to gear shifting, braking,
hills and other terrain irregularities, etc.). Assume also that the measurements can only
recognize the position with a limited accuracy and are quantized in time and space. The
aim is to estimate the velocity. A somewhat surprising, but very useful, achievement
of the Kalman !lter is that it provides an algorithm that makes it possible to estimate
the velocity, not by di9erentiating (generally a non-robust operation, and obviously
unsuitable for the case at hand), but by using the system equations instead.
Figs. 4–11 show the result of a simulation. The motion is assumed to be one dimen-

sional (the vehicle drives along a straight road). Fig. 4 shows the acceleration of the
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vehicle, Fig. 5 its velocity, and Fig. 6 its position. The measurements of the position,
shown in Fig. 7, are assumed to be taken once a second, and rounded up to 1 m after
being corrupted by an additive noise term with a 5 m range (in order to express the
size of the moving object). The resulting velocity estimates, obtained by the algorithm
of Section 11.3 with )=5, are shown in Fig. 8. In order to evaluate the performance of
the !lter, we also computed the velocity estimate obtained by !tting at each instant the
optimal least squares regression line to the 10 most recent measurements (the number
10 being chosen to obtain good performance: much less than 10 leads to very noisy
regression estimates, and much more than 10 leads to a very sluggish estimator). The
resulting estimates are shown in Fig. 9. The measurement error is shown in Fig. 10,
and the estimation errors of both the deterministic Kalman !lter and the regression are
shown in Fig. 11. Observe that the Kalman !lter performs somewhat better than the
estimator obtained by regression, especially during acceleration or deceleration. How-
ever, from the computational point of view, the Kalman !lter requires integration of
merely a second order system, compared to the regression estimator which e9ectively
comes down to using a 10th order moving average !lter.
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12. Least squares control

The least squares principle that I have put forward for !ltering, can also be used for
control. This is explained in the present section. Consider the plant

d
dt
x = Ax + Bu+ Gd1; y = Cx + d2: (19)

Here A∈Rn×n; B∈Rn×u; G ∈Rn×d, and C ∈Ry×n are !xed, known matrices that para-
meterize the system, and u :R → Ru; d1 :R+ → Rd, d2 :R+ → Ry, x :R+ → Rn, and
y :R+ → Ry are signals that are related through the linear system equations (19) (see
Fig. 12).
The vector signal u is a to-be-chosen control input, while (d1; d2) should, as in the

!ltering problem, be interpreted as an (unobserved) disturbance input. Together with
the (unobserved) initial state x(0)∈Rn of (19), these inputs determine the observed
signal y.
In feedback control (see Fig. 13), the control input u should be chosen on the basis

of observations y, so as achieve one or other control objective, for example, steer the
state (or another output) along a desirable path. Denote the controller by N :y 	→ u.
The requirement that makes the feedback control problem interesting and diEcult is the
(natural) constraint that the control input value u(T ) =N(y)(T ) at time T is allowed
to depend only on the past of y, i.e., on the observed outcomes y(t) for 06 t6T .
In other words, the controller map N is required to be non-anticipating.

Formally, a feedback controller is de!ned as a map 3

N :L2([0; Tf];Ry) → L2([0; Tf];Ru)

3 This choice of admissible feedback controllers is adequate for least squares control. However, in other
applications, one may need to consider a more general class, allowing, for example, also di9erential operators.
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that is non-anticipating. This means that y1; y2 ∈L2([0; Tf];Ry), T ∈ [0; Tf], and 4

a1(t) = a2(t) for 06 t6T imply N(a1)(t) =N(a2)(t) for 06 t6T .
In linear-quadratic (LQ) control, the controller performance is expressed by means

of a cost-functional, given by an integral of a quadratic expression in u, x, and the
terminal state x(Tf). The cost will be taken to be∫ Tf

0
[u(t)�Ru(t) + x(t)�Lx(t)] dt + x(Tf)�Qx(Tf): (20)

Here Tf ¿ 0 is the control horizon, and R∈Ru×u; L∈Rn×n; Q∈Rn×n are the cost
matrices. Assume R= R� � 0; L= L�, and Q = Q�.
The problem is to select the feedback controller that minimizes the cost (20). How-

ever, the value of the cost does not depend solely on N, but also on (d1; d2) and x(0),
and so, we meet the common situation of having to optimize a functional that depends
both on the decision variable (N) and uncertainty (x(0); d1; d2). As in the !ltering
problem, these are only partially and indirectly known through the observations. In
general, of course, there will not be a feedback controller that minimizes the cost for
all (d1; d2) and x(0). The classical way out of this dilemma is to assume that (d1; d2)
and x(0) are stochastic, and to choose N so as to minimize the expected value of
the cost. For the case at hand, the problem of !nding the optimal stochastic feedback
controller is very nicely solved in what is called the linear-quadratic-gaussian (LQG)
problem (see, for example Athans, 1971; Kwakernaak and Sivan, 1972; Wonham, 1968;
Willems, 1978).
In this section, I will show that this optimal control problem allows a perfectly

reasonable and rational, deterministic least squares formulation.
The basic methodological question to be answered is

When do we want to call the feedback controller N∗ optimal?

Optimality will be based on the following principle.
1. Fix a time T ∈ [0; Tf] in the control horizon interval. Among all d1 ∈L2([0; Tf];

Rd), d2 ∈L2([0; Tf];Ry), and x(0)∈Rn that ‘explain’ the already observed ỹ∈L2

([0; T );Ry), compute the one that at time T minimizes the uncertainty measure

‖x(0)‖2# + ‖d1‖2L2([0;Tf];Rd) + ‖d2‖2L2([0;Tf];Ry): (21)

Here #∈Rn×n is a given matrix that satis!es # = #� � 0.
With ‘explain’, I mean, as in the !ltering case, that only those (d1; d2); x(0) are con-

sidered, which, after substitution in (19), yield the observed signal ỹ(t) for 06 t6T ,
i.e., such that

ỹ(t) = CeAtx(0) +
∫ t

0
CeA(t−�)BN∗(ỹ)(�) d�+

∫ t

0
CeA(t−�)Gd1(�) d�+ d2(t);

for 06 t6T .

4 Here, and elsewhere, the equality y1|[0;T ] =y2|[0;T ] and N(y1)|[0;T ] =N(y2)|[0;T ] should be understood
in the L2-sense.
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2. Denote the minimizing (d1; d2); x(0), obtained in step 1, by (d∗1 ; d
∗
2); x(0)

∗. Note
that we now have chosen (d∗1 ; d

∗
2) optimally on the whole interval [0; Tf], since the

integrals in (21) extend over the whole interval [0; Tf]. On [0; T ], their prediction is
obtained analogously to the !ltering case, while on [T; Tf], they will be taken to be
equal to zero. Now, solve the following optimal control problem. Compute the control
input that minimizes the cost-functional (20), subject to

d
dt
x = Ax + Bu+ Gd∗1 ; x(0) = x(0)∗

over all u∈L2([0; Tf];Ru) such that u(t)=N∗(ỹ)(t) for 06 t6T . Note that in this
minimization, it is assumed that the disturbance d1=d∗1 and the initial state x(0)=x(0)∗

are known, equal to those that were declared ‘most likely’ in step 1.
This minimization problem is what is called an ‘open-loop’ control problem. We are

basically simply minimizing over all possible control input signals u∈L2([0; Tf];Ru),
or, more to the point, over all control-to-go input signals u|[T;Tf] ∈L2([T; Tf];Ru).
3. Denote the optimal control input obtained in step 2 by u∗. Of course, u∗ depends

on d∗1 and x(0)∗, which in turn depend on ỹ(t) for 06 t6T . It will be shown that
u∗ is continuous from the right at T . De!ne Wu(T )=limt↓T (u∗(t)). Of course, Wu(T ) also
depends on d∗1 and x(0)∗, which in turn depend on ỹ(t) for 06 t6T . The optimality
condition for N∗ is

Wu=N∗(ỹ) for all ỹ∈L2([0; Tf];Ry)
The principle underlying this procedure is reasonable and intuitively quite acceptable:

among all (d1; d2); x(0) that explain the observations ỹ(t) for 06 t6T , choose the
one that has ‘smallest uncertainty measure’, that is ‘most likely’, where ‘most likely’
should be interpreted as ‘of least squares norm’, with the norm chosen as the square
root of (21). Then compute the control-to-go that minimizes the cost (20), under the
assumption that the disturbance d1 and x(0) are given by their most likely value, and
that the control ũ(t)=N∗(ỹ)(t) for 06 t6T (these control values have already been
decided upon at time T ). This yields Wu(T ) as the ‘best’ control value that should be
used at time T . If, for all ŷ and all T , the resulting decision Wu(T ) corresponds to
N∗(ỹ)(T ), as N∗ would have suggested, then N∗ is declared to be optimal.
This construction of Wu appears quite involved, since it requires that we compute it

for all T ∈ [0; Tf]. So, it appears as if, at each time T , we have to carry out, both
in step 1 and in step 2, what look like complicated dynamic optimization problems.
These optimization problems are complicated indeed, but we will see that they admit
very nice recursive solutions, which makes it possible to carry out the computation in
a very eEcient way.
The following theorem gives the solution of the least squares control problem.

Theorem 5 (Least squares controller). Consider the least squares control problem de-
1ned by the plant (19), the uncertainty measure (21), and the cost-functional (20).
Let $ :R+ → Rn×n be the (unique) solution of the 1ltering Riccati di9erential
equation

d
dt
$= GG� + A$+ $A� − $C�C$; $(0) = #−1: (22)
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Assume further that the control Riccati di9erential equation

d
dt
K =−L− A�K − KA+ KBR−1B�K; K(Tf) = Q (23)

has a solution K : [0; Tf] → Rn×n (this solution is then unique and symmetric: K(t)=
K�(t), and existence is guaranteed if, for example, L= L� ¡ 0 and Q=Q� ¡ 0)).
Then the controller de1ned by

d
dt
x̂ = Ax̂ − BR−1B�Kx̂ + $C�(ỹ − Cx̂); x̂(0) = 0; ũ=−R−1B�Kx̂; (24)

viewed as map ỹ∈L2([0; Tf];Ry) 	→ ũ∈L2([0; Tf];Ru), is optimal.

Proof. Only an outline of the proof is given.
Step 1: The !rst step of the proof computes the least squares !lter with a controller

in the loop. Let N be a feedback controller, ỹ∈L2(R;Ry) an observed output of the
system

d
dt
x = Ax + BN(y) + Gd1; y = Cx + d2;

and 06T6Tf. Consider now the problem of explaining the observations ỹ(t) for
06 t6T optimally in the sense of minimizing (21) over all d1; d2; x(0) such that

ỹ(t) = CeAtx(0) +
∫ t

0
CeA(t−�)BN(ỹ)(�) d�+

∫ t

0
CeA(t−�)Gd1(�) d�+ d2(t)

for 06 t6T . Repeating the proof of (3) yields for the optimum

d∗1 (t) =

{
G�$(t)−1(x̃(t)− ˆ̂x)(t)); if 06 t6T;

0 otherwise;

d∗2 (t) =

{
ỹ(t)− C ˆ̂x(t); for 06 t6T;

0 otherwise;

x(0)∗ = x̃(0);

where ˆ̂x and x̃ are given by

d
dt

ˆ̂x = A ˆ̂x +N(ỹ) + $C�(ỹ − C ˆ̂x); ˆ̂x(0) = 0;

d
dt
x̃ = Ax̃ +N(ỹ) + GG�$−1(x̃ − ˆ̂x); x̃(T ) = ˆ̂x(T ):

Step 2: The second step of the proof consists of identifying the optimal control-to-go.
We need the following lemma.
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Lemma 6. Consider the following system of di9erential equations involving u : [0; Tf] →
Ru; d1 : [0; Tf] → Rd, x : [0; Tf] → Rn, s : [0; Tf] → Rn, and K : [0; Tf] → Rn×n,

d
dt
x = Ax + Bu+ Gd1;

d
dt
s=−As+ KBR−1B�s− KGd1;

d
dt
K =−L− A�K − KA+ KBR−1B�K:

Then there holds
d
dt
(x�Kx + 2x�s) + ‖u‖2R + ‖x‖2L

=‖u+ R−1B�(Kx + s)‖2R − ‖B�s‖2R−1 + 2s�Gd1:

Proof. After substitution of (d=dt)x; (d=dt)s, and (d=dt)K , the proof is a straightforward
calculation, along the lines of the proof of Lemma 1.

It follows from the above lemma that, with s(Tf) = 0, there holds∫ Tf

0
[u(t)�Ru(t) + x(t)�Lx(t)] dt + x(Tf)�Qx(Tf)

=
∫ Tf

0
|u+ R−1B�(Kx + s)|2R dt

+x(0)�K(0)x(0) + 2x(0)�s(0)−
∫ Tf

0
|B�s|2R−1 dt +

∫ Tf

0
2s�Gd1 dt:

Now, consider the cost (20), with x(0) and d1 ∈L2([0; Tf];Rd given, and s(Tf) = 0.
It follows that on the right hand side of the above expression, only the !rst term∫ Tf

0
|u+ R−1B�(Kx + s)|2R dt

depends on the control u∈L2(R;Ru).
This allows to solve the open-loop control problem of minimizing the cost-functional

(20), subject to (d=dt)x=Ax+Bu+Gd1, with d1 and x(0) given, over all u∈L2([0; Tf];
Ru) such that u(t) = ũ(t) for 06 t6T . It immediately follows that the optimal u∗ is
given by u∗(t) =−R−1B�(K Wx(t) + s(t)), for T6 t6Tf, with

d
dt

Wx = A Wx − BR−1B�(K Wx + s); Wx(T ) = x̃(T )

and
d
dt
x̃ = Ax̃ + Bũ+ Gd1; x̃(0) = x(0):

Step 3: The above two steps provide the necessary ingredients for the proof of
the theorem. Let N be a feedback controller, leading to an observed output ỹ and
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ũ=N(ỹ). Let T ∈ [0; Tf]. Apply step 2 with d1 =d∗1 , and x(0)= x(0)
∗, with d∗1 ; x(0)

∗

obtained in step 1. Then, since d∗1 (t) = 0 for T6 t6Tf and s(Tf) = 0, the cor-
responding s(t) = 0 for T6 t6Tf. Hence the optimal control-to-go is given by
u∗(t) =−R−1B�K Wx(t), for T6 t6Tf, with

d
dt

Wx = A Wx − BR−1B�K Wx; Wx(T ) = x̃(T )

and
d
dt
x̃ = Ax̃ + Bũ+ Gd∗1 ; x̃(0) = x(0)∗:

Clearly u∗ is continuous from the right at T , and limt↓T (u∗(t)) = −R−1B�Kx̃(T ).
However, because of the choice of d∗1 and x(0)∗, there holds x̃(T )= ˆ̂x(T ), with ˆ̂x given
by

d
dt

ˆ̂x = A ˆ̂x +N(ỹ) + $C�(ỹ − C ˆ̂x); ˆ̂x(0) = 0:

Hence N is optimal if and only if it satis!es N(ỹ)=−R−1B�K ˆ̂x. It follows that the
controller given in the statement of the theorem is indeed the optimal controller.

Recapitulating, the optimal control law N∗ is incrementally constructed as fol-
lows. Say that at time T , ỹ(t) has been observed for 06 t ¡T . From N∗ (or by
directly observing the control input, after all, we generated it ourselves), we can
compute the corresponding control input ũ(t) for 06 t ¡T . Estimate the x(0)∗ and
d∗1 (t); d

∗
2 (t) for 06 t6Tf that optimally explain ỹ(t) for 06 t ¡T . Determine the

optimal control-to-go, Wu(t) for T6 t6Tf, by minimizing (20), with x∗(T ) and d∗1 (t)
obtained from the optimal estimation. Compute Wu(T ). Then u∗(T ) = Wu(T ) yields the
incremental continuation of the optimal control law.
The optimal control law that we have constructed satis!es a separation and a cer-

tainty equivalence principle, just as in the stochastic case, but albeit in a much more
forced, more imposed, and hence mathematically less deep way. That the control law
(24) satis!es a separation principle is obvious from its expression, which involves es-
timating x(T ), regardless of the control objective, and then using this estimate with
control gains that are independent of the disturbance input matrix (G) or the observed
output matrix (C) of the plant. Whence the !ltering task may be regarded as separated
from the control task.
That the control law (24) satis!es a certainty equivalence principle may be seen

as follows. Let y = x. Assume that x̃ is observed. Then there is no need to estimate
x(0) and d1, the optimal estimate will, of course, yield x∗(T )= x̃(T ) and d∗1 (t)=0 for
T6 t6T . The optimal control, computed following Theorem 5, then becomes ũ(T )=
−R−1B�Kx̃(T ). The optimal control law, for the relevant observations y=Cx+d1, is
given by ũ=−R−1B�Kx̂. In other words, when the state x is not completely observed,
it is replaced in the control law by its optimal estimate. The optimal control law acts
‘equivalently’ as if it this estimate were ‘certain’. The value of the optimal control that
is actually used is equal to the optimal least squares estimate of the optimal control
that would be used if the whole state were observed.
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13. Linear systems

Consider the linear time-invariant di9erential system
d
dt
x = Ax + Bu; y = Cx + Du: (25)

Here A∈Rn×n; B∈Rn×u; C ∈Ry×n, and D∈Ry×u are !xed matrices that parameterize
the system, u :R → Ru is the input trajectory, x :R → Rn is the state trajectory,
while y :R → Ry is the output trajectory. In (25), u is considered an exogenous
(vector) signal imposed on the system by its environment, while y is an endogenous
(vector) signal, through which the system can in turn interact with its environment.
The (vector) variable x is an intermediate variable introduced in order to specify the
relation between u and y in a convenient way; x is called the state, because it succinctly
expresses the memory of the system.
For any given input trajectory u∈Lloc

2 (R;Ru) and initial state x(0)∈Rn, (25) de-
!nes a unique state trajectory x∈Lloc

2 (R;Rn) and output trajectory y∈Lloc
2 (R;Ry)

given by

x(t) = eAtx(0) +
∫ t

0
eA(t−�)Bu(�) d�;

y(t) = CeAtx(0) +
∫ t

0
CeA(t−�)Bu(�) d�+ Du(t):

The system (25) is said to be stable if u = 0 implies x(t) → 0 for t → ∞, equiv-
alently, if eAt → 0 for t → ∞. It is well-known that this is the case if and only if A
is Hurwitz. A matrix M ∈Rn×n is said to be a Hurwitz matrix if all its eigenvalues
have negative real part.
A stable system has the property that to each u∈L−

2 (R;Ru), there corresponds a
unique state trajectory x∈L−

2 (R;Rn). It is given by

x(t) =
∫ t

−∞
eA(t−�)Bu(�) d�:

The other state trajectories corresponding to this u, but with initial state x(0) di9erent
from the one given by the above formula, are not square integrable on (−∞; 0].

14. Controllability and observability

In this section, the notions of controllability and observability, classical notions from
the modern theory for dynamical systems, and their re!nements, stabilizability and
detectability, are reviewed. They are important in in!nite-time !ltering.
The system (25) is said to be controllable if it can be steered by the input from any

state to any other state. Formally, if for any two states x0; x1 ∈Rn, there exists a T ¿ 0,
a continuous input u : [0; T ] → Ru, and a continuously di9erentiable state trajectory
x : [0; T ] → Rn, such that x(0) = x0; x(T ) = x1, and ((d=dt)x)(t) = Ax(t) + Bu(t) for all
t ∈ [0; T ]. Controllability can be expressed very succinctly in terms of the matrices A
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and B. Indeed, it is easy to show (see, for example, Brockett, 1970, p. 80) that (25)
is controllable if and only if the n× nu matrix [B AB A2B · · ·An−1B] has rank n.

The system (25) is said to be stabilizable if the system can be steered by the
input from any state asymptotically to zero. Formally, if for any state x0 ∈Rn, there
exists a continuous input u :R+ → Ru, and a continuously di9erentiable state trajectory
x : [0; T ] → Rn, such that x(0) = x0, ((d=dt)x)(t) = Ax(t) + Bu(t) for all t ∈ [0; T ], and
x(t) → 0 for t → ∞. It is a bit more diEcult to express stabilizability succinctly in
terms of A and B. Perhaps the easiest characterization is that stabilizability of (25) is
equivalent to the existence of a matrix F ∈Ru×n such that A+ BF is Hurwitz.

The system (25) is said to be observable if the state can be deduced from the input
and output trajectories. In order to state this formally, de!ne the behavior of (25) as
B := {u; x; y)∈Lloc

2 (R;Ru × Rn × Ry)|(d=dt)x = Ax + Bu; y = Cx + Du. Then (25) is
said to be observable if (u; x1; y)∈B and (u; x2; y)∈B imply x1 = x2. Observability
can be expressed very succinctly in terms of the matrices A and C. Indeed, it is easy
to show (see, e.g., Brockett, 1970, p. 91) that (25) is observable if and only if the
n× ny matrix [C�A�C�(A�)2C� · · · (A�)n−1C�] has rank n.
The system (25) is said to be detectable if, asymptotically, the state can deduced

from the input and output trajectories. Formally, (25) is said to be detectable if
(u; x1; y)∈B and (u; x2; y)∈B imply x1(t) − x2(t) → 0 as t → ∞. It is a bit more
diEcult to express detectability succinctly in terms of A and C. Perhaps the easiest
characterization is that detectability of (25) is equivalent to the existence of a matrix
L∈Rn×y such that A+ LC is Hurwitz.
Controllability & stabilizability, and observability & detectability have become such

pervasive properties that are encountered in many contexts, that nowadays a pair of
matrices(A; B), A∈Rn×n; B∈Rn×u is called controllable (stabilizable) if the corre-
sponding system (25) is controllable (stabilizable). Similarly, a pair of matrices (A; C),
A∈Rn×n; C ∈Ry×n is called observable (detectable) if the corresponding system (25)
is observable (detectable).

15. The Riccati di0erential equation

The Riccati equation is a !xpoint in control theory. It is part of the algorithms that
lead to the solution of the main problems in the !eld: the Kalman !lter (Kalman,
1960a), linear-quadratic (LQ) (Kalman, 1960b) and linear-quadratic-gaussian (LQG)
control (Wonham, 1968), the theory of dissipative systems (together with LMI’s)
(Willems, 1972), and H∞-control. The remarkable solutions to the LQG and the
H∞-problems in terms of two Riccati equations (Doyle et al., 1989), are generally
perceived as the most important results in control theory in the 60’s and the 90’s.
The Riccati equation is a non-linear di9erential equation that seems rather impen-

etrable when one !rst encounters it. It has as its unknown an n × n matrix, which I
will denote by K , in honor of R.E. Kalman, who was instrumental in introducing this
equation in control and !ltering. What makes the Riccati equation diEcult to grasp
is the presence of (at least) 3 other n × n matrices, which, in view of the range of
applications, one wants to leave in as general parameter matrices. These matrices are
denoted as Q; F; P ∈Rn×n.
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Consider the nonlinear (quadratic) di9erential equation
d
dt
K = Q + FK + KF� + KPK: (26)

This should be viewed as a di9erential equation in the unknown matrix-valued function
K :R→ Rn×n, with Q; F; P ∈Rn×n !xed parameter matrices. This di9erential equation
is called a Riccati di9erential equation, after Jacopo Riccati [1696–1754], who, around
1724, !rst studied this equation in the case n= 1.
Note that the map K ∈Rn×n 	→ Q + FK + KF� + KPK ∈Rn×n is a quadratic map.

As such, the right hand side of (26) does not satisfy a global Lipschitz condition, and
hence it is not guaranteed by the standard theory of di9erential equations that (26),
with a speci!ed initial value K(0)∈Rn×n, has a solution on all of R. However, since
this quadratic map is di9erentiable, there does exist a unique solution on a suEciently
small interval [− 1; 1]. Actually, it is easy to see that already in the case n= 1, with,
for example, Q = 1; F = 0; P = 1, and K(0) = 0, there does not exist a solution on all
of R+.
However, it is possible to give rather general conditions on Q; F; P and K(0) so that

a solution exists on at least the half line R+. The following result (by no means the
best of its type) is adequate for the purposes of this paper.

Proposition 7. Assume that Q; F; P; K0 ∈Rn×n satisfy (i) Q=Q� ¡ 0, (ii) P=P� 4
0, (iii) K0 = K�

0 ¡ 0. Then the Riccati di9erential equation (26) with initial con-
dition K(0) = K0 has a solution for t¿ 0. This solution is unique, symmetric, and
non-negative de1nite: K(t)=K(t)� ¡ 0 for all t ∈R+. If K0 =K�

0 � 0, then, in fact,
this solution is symmetric and positive de1nite: K(t) = K(t)� � 0 for all t ∈R+.

The proof is an exercise in the theory of di9erential equations (see, for example,
Brockett, 1970, p. 165).
It turns out that for the !ltering Riccati equation used in Theorems 3 and 5, existence

of solutions is guaranteed by the above proposition. However, for the control Riccati
di9erential equation used in Theorem 5, existence is left as an unresolved condition that
needs to be established independently. Of course, application of the above proposition
gives L= L� ¡ 0; Q = Q� ¡ 0 as a suEcient condition for existence.

16. The algebraic Riccati equation

When considering control or !ltering problems over an in!nite horizon, there is a
nonlinear algebraic equation that takes over the role of the Riccati di9erential equation.
This algebraic equation is

Q + FK + KF� + KPK = 0: (27)

This equation should again be viewed as an equation in the unknown matrix K ∈Rn×n,
with Q; F; P ∈Rn×n !xed parameter matrices. This equation is called the algebraic
Riccati equation. This name, while being a natural consequence of calling (26) the
Riccati di9erential equation, may seem a bit strange. Indeed, (27) is a system of
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quadratic equations, which, in the case n = 1, reduces to the quadratic equation that
is studied in detail in high school algebra. This special case immediately shows that
there may not exist real solutions, and, if a real solution exists, it is likely that it is
not unique. Interestingly, the suEciency conditions for existence involve controllability
and observability considerations, more precisely, stabilizability and detectability.

Proposition 8. Assume that Q; F; P ∈Rn×n satisfy (i) Q = Q� ¡ 0, (ii) P = P� 4
0, (iii) (F;Q) stabilizable, and (iv) (F; P) detectable. Then there exists a solution
K ∈Rn×n to the algebraic Riccati equation (27). This solution is (in general) not
unique, but there is a unique solution that is symmetric and non-negative de1nite:
K = K� ¡ 0. In other words, there is a unique solution to

Q + FK + KF� + KPK = 0; K = K� ¡ 0: (28)

Moreover, this solution is such that F + KP ∈Rn×n is Hurwitz.

Note that the solutions of (27) are the equilibria of (26). As such, it is not surprising
that the asymptotic behavior of the Riccati di9erential equation is very much related
to the solutions of the algebraic Riccati equation. The following result to this e9ect is
used in the theory of in!nite-time !ltering.

Proposition 9. Assume that Q; F; P ∈Rn×n satisfy (i) Q =Q� ¡ 0, (ii) P = P� 4 0,
(iii) (F;Q) stabilizable, and (iv) (F; P) detectable. Let K∞ ∈Rn×n be the unique
solution to the algebraic Riccati equation (28). Let K0 ∈Rn×n satisfy K0 = K�

0 ¡ 0.
Then the Riccati di9erential equation (27) with initial condition K(0) = K0 has a
unique solution K :R+ → Rn×n, and K(t) → K∞ for t → ∞. In other words, the set
of non-negative de1nite symmetric real n × n matrices is included in the domain of
attraction of the equilibrium K∞.
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