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Abstract

In this paper we consider linear constant coefficient ordinary differential equations of

arbitrary order of the form Rðd
dtÞw ¼ Mðd

dtÞf with R and M given, but otherwise arbi-

trary, polynomial matrices. To these equations we associate a behavior B defined as the

set of all vector-valued distributions w, f that solve the equations themselves. We think

of f as a given distribution, while w is to be found in such a way that the equations

defining the behavior are satisfied. Alongside Rðd
dtÞw ¼ Mðd

dtÞf we also consider initial

conditions obtained by imposing the value at time t ¼ 0 of a linear combination of the

variables w and their derivatives, yielding Sðd
dtÞwð0Þ ¼ Ta with S a polynomial matrix, T

a fixed real matrix, and a a real vector. The three main issues we address are:

(i) Solvability of the behavior, meaning the problem of finding conditions that assure

that corresponding to a (or any) given vector distribution f , a trajectoryw exists such

that ðw; f Þ belong to B. This question is formalized and answered in Section 4.

(ii) The index of the behavior, which means investigating how the smoothness of the

given distribution f is related to smoothness of the solution w. Section 5 is dedi-

cated to this issue.

(iii) Compatibility of initial conditions, in which case the initial conditions Sðd
dtÞwð0Þ ¼ Ta

are considered alongside the behavior B. We first check that Sðd
dtÞwð0Þ is well de-

fined. If it is, we provide conditions under which there exists a (unique) distribution
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w such that w, f belong to B and such that Sðd
dtÞwð0Þ ¼ Ta are also satisfied for a (or

any) given a. This problem is addressed in Section 6.

We show how our results generalize to behaviors defined by equations of arbitrary order

classical properties of behaviors defined by first order systems such as E d
dt wþ Aw ¼ f .

� 2003 Elsevier Inc. All rights reserved.

Keywords: Behaviors; DAE�s; Index

1. Motivation and problem statement

The central object of interest of this paper are systems of linear constant
coefficient ordinary differential equations of arbitrary order of the form
R
d

dt

� �
w ¼ M

d

dt

� �
f ð1Þ
with R and M given, but otherwise arbitrary, polynomial matrices. The be-

havior associated to Eq. (1) is
B ¼ ðw; f Þ 2 D0ðR;RwþfÞjR d

dt

� �
w

�
¼ M

d

dt

� �
f
�

ð2Þ
In the following we think of f as a given distribution, while w is to be found

in such a way that ðw; f Þ 2 B.

Alongside (2) we also consider initial conditions obtained by imposing the

value at time t ¼ 0 of a linear combination of the variables w and their de-

rivatives, yielding
S
d

dt

� �
wð0Þ ¼ Ta ð3Þ
with S a polynomial matrix, T a fixed real matrix, and a a real vector specifying

the initial conditions.

A modeling example presented in Section 2 shows that Eq. (1), together with

initial conditions of the form (3), are a natural outcome of the procedure of
describing a dynamical system and its interaction with the environment. By

simulation problem we mean the problem of computing, if it exists, a trajectory

of the variables w which satisfies both (1) and (3).

Specifically, the three main issues we address concerning the behavior (2)

with initial conditions (3) are:

(i) Solvability of the behavior, meaning the problem of finding conditions

that assure that corresponding to a (or to any) given vector distribution
f , a trajectory w exists such that ðw; f Þ 2 B. This question is formalized

and answered in Section 4.
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(ii) The index of the behavior, equivalently investigating how the smoothness

of the given distribution f is related to smoothness of the solution w. Sec-
tion 5 is dedicated to this issue.

(iii) Compatibility of initial conditions, in which case the initial conditions (3) are

considered alongside (1). We first check whether Sðd
dtÞwð0Þ is well defined;

this means verifying if, for the given f , there exists at least a trajectory w
such that ðw; f Þ 2 B and such that w is sufficiently differentiable for

Sðd
dtÞw to be continuous, so that the value Sðd

dtÞwð0Þ can be computed. In case

Sðd
dtÞwð0Þ is well defined, we provide conditions under which there exists a

(unique) trajectoryw such that ðw; f Þ 2 B and such that Eq. (3) are also sat-
isfied for a (or for any) given a. This problem is addressed in Section 6.

In the course of the discussion we also describe constructive computational

algorithms which enable to check all of the above properties and illustrate them

on the modeling example presented in Section 2.

The three questions we seek to investigate have been classically studied (see

[1,2]) for the special case of behaviors defined by first order differential alge-

braic equations (DAE�s) of the form
E
d

dt
wþ Aw ¼ f ð4Þ
with initial conditions wð0Þ ¼ a for some real vector a. The example from
Section 2 shows that equations of arbitrary order such as (1) together with

initial conditions specified by (3) are a more general and natural way of de-

scribing the trajectories of a dynamical systems. At each step in our discussion

we will take care of pointing out how our results relate to the classical ones for

first order DAE�s.
Although our main interest is in linear models, we hint to how our results

can be set in the framework of non-linear systems.

Section 3 contains an overview of well established results from behavioral
systems theory (see [3,4]) concerning equations of the form
D
d

dt

� �
v ¼ 0 ð5Þ
Notice that Eq. (1) can be written in the form 5 by taking D ¼ ½R	M 
 and
v ¼ ðw; f Þ. It can therefore be expected that studying equations of the general

form (5) will provide us with the main instruments we need in order to analyse

systems of the form Rðd
dtÞw ¼ Mðd

dtÞf .
2. A motivating example

Consider the mechanical system in Fig. 1, which can be viewed as a sim-

plified model of a moving robot. The robot arm is modeled as a rigid body of
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Fig. 1. Cart and arm.
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homogeneous mass density with length 2L and total mass Ma mounted on a

cart with mass Mc on which a force u is exerted. A torque s is available at the

joint between the cart and the arm in order to control the angle h of the arm.
The variables whose dynamic evolution we wish to model are
w ¼

q
h
u
s

0BB@
1CCA
with q the horizontal position of the cart.

The complete model of the above system is, of course, non-linear. However

we study its linearized behavior around the equilibrium u� ¼ 0, h� ¼ 0, q� ¼ 0,
s� ¼ 0. The linearized model is given by
ðMc þMaÞ
d2

dt2
qþMaL

d2

dt2
h ¼ u

MaL
d2

dt2
qþ 4

3
MaL2 d

2

dt2
h 	MaLgh ¼ s
with g the gravitational acceleration. By defining the polynomial matrix
R1ðnÞ ¼
ðMc þMaÞn2 MaLn2 	1 0

MaLn2 4
3
MaL2n2 	MaLg 0 	1

 !
the above equations can be written in compact notation as R1ðddtÞw ¼ 0.
Notice that we end up with two equations in four variables, in other words

the system of equations is underspecified, corresponding to the fact that we are

describing an ‘‘open’’ physical system interacting with its environment.
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Depending on the application one has in mind, there are many possible ways

of adding constraints to the above model. We study the situation in which both
the force u and the angle h are imposed, i.e. u ¼ f1, h ¼ f2 with f1, f2 given

functions of time. This corresponds to asking a desired orientation profile for

the arm (e.g., constant) while the cart is being pulled by an external force, for

example as result of a disturbance (e.g., wind, vibrations), or of a known force

(e.g., a locomotive).

The complete model then becomes Rðd
dtÞw ¼ Mðd

dtÞf with
RðnÞ ¼
2n2 n2 	1 0

n2 4
3
n2 	 g 0 	1

0 0 1 0

0 1 0 0

0BB@
1CCA; MðnÞ ¼

0 0

0 0

1 0

0 1

0BB@
1CCA ð6Þ
As far as initial conditions are concerned, we look for trajectories corre-

sponding to a given initial value of the position and speed of the cart. This

means looking for trajectories w that satisfy the above differential equations

and also Sðd
dtÞwð0Þ ¼ a for
S ¼ 1 0 0 0

n 0 0 0

� �

and a 2 R2 given.
3. Dynamical systems

The aim of this section is to provide the essential background material from

behavioral systems theory which we need in the following, in particular con-

cerning general properties of systems described by Eq. (5). Extensive references

on the subject are [3,4]. Throughout we assume the concept and properties of

module over the polynomial ring R½n
 to be known; an extensive reference on

the subject is [8]. The notation hRi is used to indicate the module over R½n

generated by the columns of the polynomial matrix R.

3.1. Linear differential systems

When modeling a dynamical system one tries to describe how a set of

variables of interest evolve as a function of time. We denote these variables as

vector v. As extensively argued in behavioral systems theory and also pointed

out in the example from Section 2, this typically leads to a set of differential
algebraic equations of the form F ðv; d

dt v; . . . ;
dL

dtL v; tÞ ¼ 0 which the vector valued

time function v ¼ ðv1; . . . ; vvÞ needs to satisfy. If F does not explicitly depend

on t, the system is said to be time-invariant. Most of our attention will be
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devoted to the subclass of systems which have this feature and are also linear.

In this case we deal with a set of constant coefficient linear differential equa-
tions
D0vþ D1

d

dt
vþ � � � þ DL

dL

dtL
v ¼ 0 ð7Þ
with Di 2 Rp�v, i ¼ 0; 1; . . . ; L, where p denotes the number of equations.

Notice that algebraic constraints are included in the above class of equations.

With the polynomial matrix DðnÞ ¼ D0 þ D1n þ � � � þ DLn
L 2 R½n
p�q

, we can

write Eq. (7) in the shorthand form (5)
D
d

dt

� �
v ¼ 0
The set of solutions to the above equations represents all admissible tra-

jectories for the v variables, in other words the dynamic behavior of the

physical system being modeled. In general we take v a distribution, therefore

the behavior B specified by (7) is formally defined as:
B ¼ v 2 D0ðR;RvÞjD d

dt

� �
v

�
¼ 0 in distributional sense

�

where D0ðR;RvÞ denotes the set of Rv valued distributions on R. For obvious

reasons, we call (5) a kernel representation of B, and write B ¼ kerðDðd
dtÞÞ.

It turns out that, while D uniquely specifies B, the converse is not true, in

other words different polynomial matrices may induce a kernel representation

of the same behavior. In fact, if D, D1 are both polynomial matrices with w

columns,
ker D
d

dt

� �� �
¼ ker D1

d

dt

� �� �
() hDTi ¼ hDT

1 i
In other words, any behavior admits many different kernel representations,
but is associated with one and only one submodule of Rv½n
; namely the

module generated by the transposes of the rows of one (and therefore all) of its

possible kernel representations.

Two different kernel representations of a same behavior are called equiva-

lent. Among all equivalent representations of B ¼ kerðDðd
dtÞÞ we call minimal

those corresponding to polynomial matrices with cðBÞ rows, where cðBÞ is the
minimal number of generators for the submodule hDTi. It can be shown that

minimal representations correspond to polynomial matrices D which are of
full row rank (that is, D 2 RcðBÞ�v½n
 has a cðBÞ � cðBÞ submatrix with non-

zero determinant) and that if D1 induces a minimal representation for

B ¼ kerðDðd
dtÞÞ then D ¼ U

D1

0


 �
with U an unimodular polynomial matrix
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(that is, a matrix U which admits a polynomial inverse or, equivalently, such

that detðUÞ is a non-zero constant).
As shown by the example in Section 2, we are typically dealing with under-

specified sets of equations, corresponding to the fact that we model open dy-

namical systems. It can be shown that the difference v	 cðBÞ between number

of variables and number of rows of a minimal kernel representation of a be-

havior exactly corresponds to the number of components of v which are left

unconstrained. These variables are, for obvious reasons, called free variables

and can be intuitively interpreted as inputs in the traditional sense. Although the

number of free variables is fixed, notice that we leave unspecified which among
the variables are actually free; in general, in fact, many possible subsets of the v�s
with v	 cðBÞ elements can play this role, in other words the variables which are

inputs to the systems can be chosen in many possible ways. This simple ob-

servation is in fact one of the main motivations of the behavioral approach.

3.2. Latent variables

When analysing systems it is often useful to be able to characterise the set of

trajectories obtained by projecting a given behavior onto a subset of system
variables. We call manifest variables those on which we project, while the re-

maining ones are called latent variables.

If we indicate by vm the manifest and by vl the latent variables, then the

original behavior B consists of all trajectories v ¼ ðvm; v‘Þ that satisfy a set of

differential equations of the form:
F vm;
d

dt
vm; . . . ;

dL

dtL
vm; v‘;

d

dt
v‘; . . . ;

dN

dtN
v‘; t

� �
¼ 0
In the linear time invariant case these become
G0vm þ G1

d

dt
vm þ � � � þ GL

dL

dtL
vm ¼ C0v‘ þ C1

d

dt
v‘ þ � � � þ CN

dN

dtN
v‘ ð8Þ
for suitable real matrices Gi 2 Rp�vm and Ci 2 Rp�vl where vm and vl denote
the number of manifest and latent variables respectively. Notice that
B ¼ ker G
d

dt

� �
�
	 C

d

dt

� ���
� D0ðR;Rv

m þ vlÞ
The behavior Bm obtained by projecting B on variables vm is defined as
Bm ¼ vm 2 D0ðR;RvmÞj9‘ 2 D0ðR;RvlÞ such that G
d

dt

� �
vm

�
¼ C

d

dt

� �
v‘

�
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In the following we often refer to Bm as the manifest behavior obtained by

projecting B onto vm; B itself is then referred to as the full behavior.
It turns out that Bm can be deduced in a very crisp way from the equations

defining B. In order to do so we define the set SYZðCÞ of syzygies of the rows

of a polynomial matrix C 2 Rp�w½n
 as:
SYZðCÞ ¼ fn 2 Rp½n
 : nTC ¼ 0g
It is easily seen that SYZðCÞ � Rn is a module over R; in the algebraic lit-
erature it is referred to as the syzygy module of the rows of C (see [8]). There

holds:

Theorem 1. Let Bm be the manifest behavior obtained by projecting on variables
vm the behavior described by Gðd

dtÞvm ¼ Cðd
dtÞv‘. Then
ðvm 2 BmÞ () ðn 2 SYZðCÞÞ
�

) nT
d

dt

� �
G

d

dt

� �
vm

�
¼ 0

��
As a consequence of the module structure of HC, the above is equivalent to

ðvm 2 BÞ () ðNTðd
dtÞGðddtÞvm ¼ 0Þ for N any matrix such that hNi ¼ SYZðCÞ;

in other words Bm ¼ kerðNTðd
dtÞGðddtÞÞ. The importance of this remark is cru-

cial, showing that if we start with the solution set to a system of linear dif-

ferential equations and project it on a subset of the variables involved, what we

come up with can again be written as solution set of a new system of linear

differential equations; therefore Theorem 1 is often referred to as the elimina-
tion theorem.

Constructive algorithms to build N starting from C are described in the

literature (e.g. [7,10]) and will not be repeated here. We assume available a
procedure N ¼ SyzygyðCÞ, that has a polynomial matrix C as input and

computes a matrix N such that hNi ¼ SYZðCÞ (see e.g. the command axb of

[12] for a possible implementation). This way, Theorem 1 also provides a

constructive way of building a kernel representation of a behavior starting

form its specification using latent variables. One can, in fact, easily write a

procedure Elim that has polynomial matrices G and C as input and outputs a

polynomial matrix D such that Dðd
dtÞvm ¼ 0 is the kernel representation of the

manifest behavior of Gðd
dtÞvm ¼ Cðd

dtÞv‘.

Algorithm 2

D ¼ ElimðG;CÞ;

N ¼ SyzygyðCÞ;
D ¼ NTC;
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Although the original rationale for introducing latent variables in behav-

ioral systems theory stems from issues related to modeling of intercon-
nected systems (see [3]), we shall see in the sequel that, thanks to Theorem 1

and Algorithm 2, they also provide a very powerful instrument when it comes

to manipulation and analysis of linear differential equations and their solu-

tions.
4. Solvability

We now address the solvability of Rðd
dtÞw ¼ Mðd

dtÞf , namely establishing

conditions under which this differential equation admits a solution w for a

given, or for any, f . Although rather standard, these results are a necessary

prerequisite to discussing problems of smoothness of solutions and compati-

bility with initial conditions.
The first question we address is the solvability of the behavior, defined in the

following:
Definition 3. Let R 2 Rp�w½n
, M 2 Rp�f½n
 and B ¼ fðw; f Þ 2 D0ðR;RwþfÞj
Rðd

dtÞw ¼ Mðd
dtÞf g. B is said to be solvable for given f 2 D0ðR;RfÞ if there exists

w 2 D0ðR;RwÞ such that ðw; f Þ 2 B. If this holds for any f 2 D0ðR;RfÞ, then B

is said to be solvable for any f .

We refer to behaviors that are solvable for any f simply as solvable be-

haviors. In terms of the equations defining the behavior, this means that for

any distribution f there exists a distributional solution w to the system

Rðd
dtÞw ¼ Mðd

dtÞf . It is not difficult to see that this also implies the existence of a

classical solution w (i.e., ðRðd
dtÞwÞðtÞ ¼ ðMðd

dtÞf ÞðtÞ8t 2 RÞ whenever f is taken

sufficiently smooth, in particular, when f 2 C1ðR;RfÞ. This way, our defini-

tion of solvability fully covers the one used in the classical literature on first

order DAE�s (see [1,6,2]) where an equation F ðw; d
dt w; tÞ ¼ 0 is defined to be

solvable on an open interval ! � R if there exists a w which is continuously

differentiable on ! such that F ðt;wðtÞ; d
dt wðtÞÞ ¼ 0 8t 2 !.

Definition 3 can be recast in the language of latent Variables introduced

earlier. If one defines Bm as the manifest behavior obtained by projecting B on

variables f , then solvability for given f is equivalent to asking f 2 Bm, while

solvability for any f is equivalent to Bm ¼ D0ðR;RfÞ. This way, the conditions
for solvability follow as a straightforward corollary to Theorem 1.
Corollary 4. B defined as in (2) is solvable for a given f 2 D0ðR;RfÞ if and only
if
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ðn 2 SYZðRTÞÞ ) nT
d

dt

� �
M

d

dt

� �
f

�
¼ 0

�

It is solvable for any f 2 D0ðR;RfÞ if and only if
ðn 2 SYZðRTÞÞ ) ðnTM ¼ 0Þ
The condition for solvability for a given f can be interpreted as asking that

all linear differential relations which hold for the rows of G should also hold for

vector Mðd
dtÞf , while the condition for solvability for any f asks that the linear

relations which hold for the rows of R should also hold for the rows of M .

Algorithm 2 can be used to check solvability in terms of the polynomial ma-

trices R and M .
As a special case of the above situation, we obtain that if R is a full row rank

polynomial matrix (equivalently, if the only n 2 Rp½n
 such that nTR ¼ 0 is

n ¼ 0), then solvability of the behavior defined by (1) is assured for any f . It
follows that we can always rewrite a solvable system in an equivalent (i.e.

defining the same full behavior) form RrðddtÞw ¼ MrðddtÞf with Rr of full row

rank. In the following we always consider solvable behaviors; when needed, we

also assume, without loss of generality, that the equations defining B have Rr

of full row rank.
This being the standard assumption in most of the paper we wish to sketch a

possible way in which Rr and Mr can be obtained starting from the given R and

M .

The algorithm builds a unimodular matrix U such that UR ¼ Rr

0


 �
with Rr

of full row rank; the existence of such an U follows from Section 3. As a

consequence of NM ¼ 0 it follows that UM ¼ Mr

0


 �
; moreover because U is

unimodular we know that ðw; f Þ are such that Rðd
dtÞw ¼ Mðd

dtÞf if and only if

RrðddtÞw ¼ MrðddtÞf .
In order to build U we use the fact that if N is a matrix Whose columns are a

minimal set of generators for SYZðRÞ then N admits a right inverse, in other

words, there exists a polynomial matrix L such that NL ¼ I (see e.g. [13] for a

proof). If, in turn, Nr is a matrix such that hNT
r i ¼ SYZðLÞ, then U ¼ Nr

N


 �
is

unimodular and such that NrR ¼ Rr is of full row rank; it follows that

Mr ¼ NrM .
The following pseudocode procedure called Reduce accepts polynomial

matrices R and M as input, and outputs polynomial matrices Rr and Mr

computed according to the algorithm just described:
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Algorithm 5

½Rr;MR
 ¼ ReduceðR;MÞ;

N ¼ SyzygyðRÞ;
I ¼ eyeðcoldimðNÞÞ; %I ¼ Identity matrix

L ¼ SolveðN ; IÞ; %L ¼ right inverse of N
Nr ¼ SyzygyðLÞ; %Nr ¼ Syzygy L
Rr ¼ Nr � R;
Mr ¼ Nr �M

In the above code, X ¼ SolveðA;BÞ is a procedure which we assume

available to find a solution X to the polynomial equation AX ¼ B for given

polynomial matrices A and B. For a possible implementation thereof see, for

example, the command axb from [12] and the related literature.
5. The index

For a solvable behavior B, we now wish to investigate how the smoothness

of the given forcing function f affects the smoothness of the corresponding

solutions w. Establishing this relationship formally leads us to define the index
of a behavior. This concept also turns out to be crucial in the next section in

order to establish what initial conditions are well defined for the given behavior

and function f .
Definition 6. Let B be defined as in (2) and assume it is solvable according to

Definition 3. Define
J ¼ fðj1; . . . ; jfÞ 2 Zmj8f with fi 2 Ckþji9w 2 Ck such that ðw; f Þ 2 Bg
where Ck for k < 0 is the set of all distributions whose jkjth integral is a con-
tinuous function. Let, moreover, � be the partial ordering on Zf defined by

ða1; . . . ; afÞ � ðb1; . . . ; bfÞ () ai 6 bi8i. If the set J contains a minimal element

l ¼ ðl1; . . . ; lfÞ with respect to such a partial ordering we then define l to be

the multi-index of B and m ¼ maxi li to be its index.

The multiindex therefore establishes the minimal differentiability require-

ment on each component of f which assures that a sufficiently differentiable

trajectory w can be found; the index provides an upper bound valid for all
components of vector f .

The following result shows that J always has a minimal element with respect

to the partial ordering � so that the multi-index of B can always be defined.
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Theorem 7. Let B be defined as in (2) with R 2 Rp�w½n
 a full row rank poly-
nomial matrix. Let P be a square submatrix of R of maximum determinantal
degree. Let dij be the difference between the degree of the numerator and of the
denominator of the ði; jÞth entry of the matrix of rational functions P	1M . The
multi-index of B is given by ðl1; . . . ; lfÞ with lj ¼ maxi dij.

Example 8. Consider the behavior described by the first order equations
d
dt wþ Aw ¼ f corresponding, in our notation, to RðnÞ ¼ nIw�w 	 A, MðnÞ ¼
Iw�w. The matrix ðnIw�w 	 AÞ	1

is a matrix of proper rational functions.

Moreover the difference in degree between the denominator and numerator of

all its diagonal entries is equal to 1. It follows that the multi-index is

ð	1; . . . ;	1Þ and hence the index is )1. This is in line with the known fact that
any f 2 Ck results in a solution w 2 Ckþ1.

Example 9. Consider a system E d
dt wþ w ¼ f with E 2 Rw�w a Jordan block of

the form
0 0 � � � 0 0
1 0 � � � 0 0

..

. ..
. ..

. ..
.

0 0 � � � 1 0

0BB@
1CCA
In our notation this corresponds to
RðnÞ ¼

1 0 � � � 0 0
n 1 � � � 0 0

..

. ..
. ..

. ..
.

0 0 � � � n 1

0BBB@
1CCCA
and MðnÞ ¼ Iw�w.

Since
R	1 ¼

1 0 � � � 0 0

	n 1 � � � 0 0

..

. ..
. ..

. ..
.

ð	1Þw	1nw	1 ð	1Þw	2nw	2 � � � 	n 1

0BBB@
1CCCA
it follows that the multi-index is ðw	 1; . . . ; 0Þ and the hence the index is w	 1.

This is consistent with the fact that the solution w ¼ ðw1; . . . ;wwÞ can be ex-

plicitly expressed in terms of f ¼ ðf1; . . . ; fwÞ and its first ðw	 1Þ derivatives as
wj ¼ fj þ
Xj	1

i¼1

ð	1Þj	i d
j	i

dtj	i
fi; j ¼ 1; . . . ;w
showing that any f such that fi 2 Ckþw	i results is w 2 Ck.
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Example 10. Consider the system E d
dt wþ Aw ¼ f with
R ¼ En þ A ¼

	1 n 0 � � � 0 0

0 	1 n � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 	1 n

0BBB@
1CCCA 2 Rðw	1Þ�w½n

The square minor P of maximal determinantal degree of R corresponds to

the last w	 1 columns and is such that
P	1 ¼

n	1 0 � � � 0 0

n	2 n	1 � � � 0 0

..

. ..
. ..

. ..
.

n	ðw	1Þ n	ðw	2Þ � � � n	2 n	1

0BBB@
1CCCA
It follows that the multi-index is ð	1; . . . ;	1Þ and thus the index is 	1. This

coincides with the fact that the equations we are considering are
d
dt wj ¼ wj	1 þ fj	1, j ¼ 2; . . . ;w showing that any f such that fi 2 Ck	1 results in

w 2 Ck (e.g. take solutions corresponding to w1 ¼ 0).

In the literature on first order DAE�s many different concepts of indices have

been defined, among which the most relevant appear to be the differentiation
(see [1,5] and related papers), the strangeness (see [2] and related work) and the

perturbation (see [15]) index. A thorough discussion of these concepts is outside

the scope of this chapter. We do recall, however, that the strangeness index s of
a time-varying DAE EðtÞ d

dt w ¼ AðtÞwþ f ðtÞ is defined as the smallest integer

such that the given equation can be rewritten in the equivalent form
d
dt w1 ¼ bAAðtÞw3 þ g1ðtÞ, w2ðtÞ ¼ g2ðtÞ for w ¼ ðw1;w2;w3Þ, bAA a matrix of suitable
dimensions, and g a function of the first s derivatives of f . This implies, in

particular, that DAE�s as those in Examples 8 and 10 have strangeness index

s ¼ 0, while those in Example 9 have strangeness index s ¼ w	 1. The

strangeness index of a generic time-invariant DAE E d
dt w ¼ Awþ f ðtÞ with

En þ A a full row rank polynomial matrix then follows from the three special

cases shown in the above examples by transforming the pencil En þ A into

Kronecker canonical form (see [2,9]). Thus we see that one has m ¼ s whenever
mP 0; our definition of index as a smoothness relationship between f and w,
however, also allows m < 0, corresponding to situations in which s ¼ 0. We

refer to the literature for further discussion of the relation between differenti-

ation and strangeness indices and for extensions to the non-linear case.
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5.1. Computing the index

We can now sketch an algorithm , based on Theorem 7 that allows to

compute the multi-index of a system Rðd
dtÞw ¼ Mðd

dtÞf with R a full row rank

polynomial matrix. Before doing so, we briefly recall the concept of row re-

duced (or row proper) form of a polynomial matrix.

Given R 2 Rp�q½n
, we define its highest row coefficient matrix Rhc to be the

real matrix whose ith row equals the coefficient vector of the highest power of n
that occurs in the ith row of R. For example,
R ¼ 3n2 þ n þ 1 2

2n n þ 1


 �
) Rhc ¼ 3 0

2 1


 �

The polynomial matrix R is defined to be row proper if the rows of Rhc are

linearly independent. If R is not row proper, a row proper form of R is defined to

be any row proper polynomial matrix Rrp such that the modules hRi and hRrpi
are the same, and such that Rrp is row proper.

It is easily seen that any matrix R actually admits infinitely many row proper

forms Rrp. Classical algorithms for finding one row proper form Rrp starting

from R are described in the literature (e.g. in [10]). We assume available a

function Rrp ¼ rowredðRÞ whose output Rrp is a row-proper form of the input

matrix R; a possible implementation thereof is the function Rrp ¼ prowredðRÞ
from [12]. Which of the infinitely many row proper forms of R is actually

computed depends on the algorithm used. We do not dwell further on this issue
because all the considerations we do in the following are valid for any row

proper form of R.
We can now show how to compute the multi-index of a system

Rðd
dtÞw ¼ Mðd

dtÞf ; In order to simplify the exposition, we split the algorithm in

two subprocedures.

(1) Finding a square minor of R with maximum determinantal degree. We

now show how this task can be carried out using a row proper form Rrp of R.
Because both R and Rrp are of full row rank, there exists a unimodular

matrix Urp 2 R½n
p�p
such that UrpR ¼ Rrp, therefore the degrees of the deter-

minants of the p � p minors of R are equal to those of the corresponding mi-

nors of Rrp. Moreover, if we let di, i ¼ 1; . . . ; p be the degree of the ith row of

Rrp and P any p � p minor of Rrp, then the degree of its determinant is smaller

or equal to d ¼
Pp

i di. In particular, if Phc 2 Rp�p is a non-singular minor of the

highest coefficient matrix of Rrp (such a minor always exists because Rhc
rp is of

full row rank) and P is the corresponding minor of Rrp, then the degree of

detðPÞ is equal to d and therefore maximal. The problem of finding a square
minor of Rrp with maximum determinantal degree is thus reduced to that of

finding a non-singular minor of the real matrix Rhc
rp; this can be done by

standard linear algebra techniques (see e.g. the Matlab command rank). In the
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following we assume available a procedure m ¼ minorðHÞ that accepts a real

matrix H of full row rank as input and outputs a vector m containing the
indices of the columns of R that correspond to a non-singular minor of R.

Summarizing what said until now we can sketch a procedure P ¼
maxdetðRÞ with output P being a square minor of maximal determinantal

degree of the full row rank input polynomial matrix R.

Algorithm 11

P ¼ maxdetðRÞ

Rrp ¼ rowredðRÞ; %Rrp ¼ Row Reduced Form of R
HC ¼ highdegðRrpÞ;
%HC ¼ Highest coefficient matrix of Rrp

m ¼ minorðHCÞ;
P ¼ selectðR;mÞ; %Select columns of R

In the above code, HC ¼ highdegðRÞ is a procedure that returns the
highest coefficient matrix (HC) of the input polynomial matrix R (see pdegco

from [12] for possible implementation). P ¼ selectðR;mÞ, instead, stores in

the output matrix P the columns of the input matrix R indexed by the vector m.
(2) Computing the maximum difference of numerator and denominator

degree of the entries of each column of a matrix of rational functions of the

form P	1M . We sketch a procedure that accepts polynomial matrices P and M
with P square and non-singular as input and returns a vector of integers d such

that the ith component of d corresponds to the maximum difference of nu-
merator and denominator degree in the entries of the ith column of P	1M .

Algorithm 12

d ¼ maxdiffðP ;MÞ

P1 ¼ adjointðPÞ;
dp ¼ determinantðP Þ;
P2 ¼ P1M ;

cd ¼ Degrees of columns of P2;
p¼Degree of dp

d¼cd-p;

What the above procedure effectively does, is write P	1M as 1
detðP Þ P1M with P1

the adjoint of P . If p is the degree of detðP Þ and cd is the vector of integers

whose ith entry is the degree of the ith column of P1M , then subtracting p from
each entry of d results in a vector whose ith entry is the maximum difference of

numerator and denominator degree of the entries of the ith column of P	1M .



836 T. Cotroneo, J.C. Willems / Appl. Math. Comput. 145 (2003) 821–851
We refer to the literature (e.g. [14]) for a description of algorithms that com-

pute determinants and adjoints of polynomial matrices; possible implementa-
tions thereof are the commands pdet and adj in the Polynomial Toolbox [12].

The two procedures we have designed can be easily combined to produce an

algorithm whose output is the multi-index d of the systems Rðd
dtÞw ¼ Mðd

dtÞf
described by the input polynomial matrices R and M .

Algorithm 13

d ¼ multiindexdðR;MÞ

P ¼ maxdetðRÞ
d ¼ maxdiffðP ;MÞ
6. Initial conditions

As discussed in the introduction, we now study when, corresponding to a
given f , one can find a trajectory w such that ðw; f Þ are in the behavior B

defined in (1) and such that the initial conditions (3) are satisfied. In this case

we say that the initial conditions are compatible with the given B and the

given f .
The trajectory w is, in general, a distribution. Therefore, before investigating

compatibility of (3) with B and f , we need to establish conditions under which

Sðd
dtÞw is continuous so that asking for its value at a t ¼ 0 makes sense. This

leads to the following definition of well-posedeness.

Definition 14. Let B be defined as in (1). The initial conditions Sðd
dtÞwð0Þ are

said to be well-posed for B and a given f 2 D0ðR;RfÞ if there exists a

w 2 D0ðR;RwÞ such that Rðd
dtÞw ¼ Mðd

dtÞf , and such that Sðd
dtÞw 2 C0ðR;RsÞ.

The following theorem gives a condition for well-posedeness in terms of the

polynomial matrices R and M defining B, of the polynomial matrix S defining
the initial conditions and of the given distribution f .

Theorem 15. Let B be defined as in (1) and
Bs ¼ ðs; f Þ 2 D0ðR;RsþfÞj9w 2 D0ðR;RsþfÞ such that
�
ðw; f Þ 2 B and S

d

dt

� �
w ¼ s

�

Then Sðd

dtÞwð0Þ are well posed initial conditions for B and given f 2 D0ðR;RfÞ
if and only if fi 2 Cli with ðl1; . . . ; lfÞ the multi-index of Bs.
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Notice that, using Theorem 15, well-posedeness can be effectively checked

using algorithms for elimination from Section 8 and those for computing the
index of the previous section.

We are now ready to address the last issue we planned to tackle, namely

establish under what conditions there exists a (unique) solution to Rðd
dtÞw ¼

Mðd
dtÞf which also satisfies Sðd

dtÞwð0Þ ¼ Ta. We start by looking at the existence

problem. In order to establish the general result, we first investigate a special

case which is of interest in its own right.
Lemma 16. Let B be defined as in 1 and assume it is solvable. Let f 2 D0ðR;RfÞ
be such that wð0Þ are well posed initial conditions for B. Then there exists a w
such that ðw; f Þ 2 B and wð0Þ ¼ a if and only if
ðn 2 Rw; b 2 Rp½n
; nT ¼ bTRÞ ) nTa
�

¼ bT
d

dt

� �
M

d

dt

� �
f ð0Þ

�

In the more general case we have:
Theorem 17. Let B be defined as in (1) and assume it is solvable. Moreover, let
f 2 D0ðR;RfÞ be such that Sðd

dtÞwð0Þ are well-posed initial conditions. There
exists a w such that ðw; f Þ 2 B and such that Sðd

dtÞwð0Þ ¼ Ta if and only if
ðn 2 Rs; b 2 Rp½n
; nTS ¼ bTRÞ ) nTTa
�

¼ bT
d

dt

� �
M

d

dt

� �
f ð0Þ

�

In particular, if
ðn 2 Rs; b 2 Rp½n
; nTS ¼ bTRÞ ) ðnTT ¼ bTM ¼ 0Þ
then the existence of a w such that ðw; f Þ 2 B and such that Sðd
dtÞwð0Þ ¼ Ta is

guaranteed for all a 2 Rc and all f 2 D0ðR;RfÞ such that Sðd
dtÞwð0Þ are well-

posed initial conditions.

In order to obtain an intuitive feeling of the above theorem, notice that we

are considering conditions that have to hold over the whole real line (the dif-

ferential equations defining (1)) alongside pointwise constraints (the initial

condition (3)). The differential equation, however, also implies pointwise re-

quirements on the solution w; if b 2 Rp½n
 and w is a solution to Rðd
dtÞw ¼

Mðd
dtÞf smooth enough so that bTðd

dtÞRðddtÞwð0Þ is defined, then bTðd
dtÞRðddtÞwð0Þ ¼

bTðd
dtÞMðd

dtÞf ð0Þ. On the other hand, nTS ¼ bTR implies nTSðd
dtÞwð0Þ ¼ bTðd

dtÞ�
Rðd

dtÞwð0Þ. The requirement nTTa ¼ bTðd
dtÞMðd

dtÞf ð0Þ can thus be interpreted as
asking the initial conditions (3) to be compatible with the pointwise constraints

implied by the differential equation. In this sense, it is easily seen that

the condition from Theorem 17 is necessary for w to solve both Rðd
dtÞw ¼ Mðd

dtÞf
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and Sðd
dtÞwð0Þ ¼ Ta. The interesting point is that the condition actually turns

out to be also sufficient.
In order to present conditions under which the solution w satisfying given

initial conditions is actually unique we need a short intermezzo to show how

the concepts of state and state representation of a system are introduced in the

behavioral framework we have been using all along (see [11] for more details).
Definition 18. A system Gðd
dtÞv ¼ Cðd

dtÞx with latent variables x and manifest

variables w is said to be a state system if there exist real matrices E, F , H such

that its behavior B admits an equivalent representation which is first order in x
and of order zero in w, i.e., a representation of the form
E
d

dt
xþ Fxþ Hw ¼ 0 ð9Þ
In this case variables x are called state variables. If Bm is the manifest be-

havior obtained by projecting B on v, Eq. (9) are called a state representation of
B.

If B ¼ kerðDðd
dtÞÞ, a polynomial matrix X is said to induce a state map for B

if the system with latent variables
D
d

dt

� �
w ¼ 0

X
d

dt

� �
w ¼ x

ð10Þ
is a state system.

It can be shown that any B ¼ kerðDðd
dtÞÞ admits a state map, in other words

a set of latent variables having the state property can always be obtained as a

function of the manifest variables v.
State representations of a behavior B are, of course, not unique. However,

the minimal number of state variables associated to B is well defined. In other
words to any B corresponds a number nðBÞ such that any state representation

of B requires at least nðBÞ state variables. The number nðBÞ is often called

the dynamic order, or McMillan degree, of B. State maps with exactly nðBÞ
rows are called minimal. We are now able to formulate conditions that the

trajectory w corresponding to a given f and to given initial conditions is ac-

tually unique.
Theorem 19. Let B be defined as in (1) and assume it is solvable. Moreover let
f 2 D0ðR;RfÞ be such that Sðd

dtÞwð0Þ are well posed initial conditions. There
exists a unique w such that ðw; f Þ 2 B and such that Sðd

dtÞwð0Þ ¼ Ta if and only if
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1. rank ðRÞ ¼ w,
2. ðn 2 Rs; b 2 R½n
p; nTS ¼ bTRÞ ) ðnTTa ¼ bTðd

dtÞMðd
dtÞf ð0ÞÞ,

3. S induces a state map for kerðRðd
dtÞÞ:

In particular, if conditions (1) and (3) hold together with n 2 Rs, b 2 R½n
p,
ðnTS ¼ bTRÞ ) ðnTT ¼ bTM ¼ 0Þ, then existence of a unique w such that
ðw; f Þ 2 B and such that Sðd

dtÞwð0Þ ¼ Ta is guaranteed for all a 2 Rc�1 and all
f 2 D0ðR;RfÞ such that Sðd

dtÞwð0Þ are well posed initial conditions.

Comparing the above theorem to Theorem 17, we see that it is condition 2
which assures that a solution exists; conditions 1 and 3, therefore, are those

needed to guarantee uniqueness. If w1 and w2 were both solutions, their dif-

ference e ¼ w1 	 w2 would have to satisfy Rðd
dtÞe ¼ 0, together with

Sðd
dtÞeð0Þ ¼ 0. The fact that rankðRÞ ¼ w means that none of the components of

e can be chosen freely; while the fact that S defines a state map for kerðRðd
dtÞÞ

implies that e is a trajectory corresponding to an initial state equal to zero in

any state representation of kerðRðd
dtÞÞ. As shown in the proof of Theorem 19,

this is necessary and sufficient to ensure that e ¼ 0.
We now illustrate these results by showing that classical results on

initial value problems for first order DAE�s can be obtained as special

cases.

Example 20. Consider the behavior defined by the first order differential

equation E d
dt wþ Aw ¼ f , with detðEn þ AÞ 6¼ 0 and initial conditions

wð0Þ ¼ a. In our notation this corresponds to RðnÞ ¼ En þ A, SðnÞ ¼ T ¼
MðnÞ ¼ Iw�w. The condition detðEn þ AÞ 6¼ 0 assures that the behavior

is solvable; its multi-index, instead, depends on the degree of ðEn þ AÞ	1
.

However, for any f such that w is a continuous function, Lemma 16 tells
us that a trajectory w satisfying the given initial condition exists if and only

if
ðn 2 Rw; b 2 Rw½n
; nT ¼ bTEn þ bTAÞ ) nTa
�

¼ bT
d

dt

� �
f ð0Þ

�

It is not difficult to see that bTEn þ bTA is a real vector if and only if bT is

itself a vector in the left null space of E. If B is any matrix whose rows span

this space, then a solution exists if and only if BAa ¼ Bf ð0Þ. In particular if E
is non-singular (equivalently, if B ¼ 0) then a solution exits for arbitrary a
and f .

In order to investigate uniqueness of the solution, note that RðnÞ ¼ En þ A
is a square matrix, and S ¼ Iw�w by definition induces a state map for
the first order system E d

dt wþ Aw ¼ 0. Conditions 1 and 3 of Theorem 19

are thus satisfied, and we deduce that the solution, if it exists, is also

unique.
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6.1. Compatibility of initial conditions

We now show algorithms which enable to check the conditions just set

forward in Theorems 17 and 19.

Before proceeding we recall that given a polynomial matrix.

R ¼ R0 þ R1n þ � � �RLn
L 2 Rp�w½n
, its coefficient matrix eRR is defined as the

real matrix eRR ¼ ½R0 R1 � � �RL
 2 Rp�Lw. In the following we assume available

procedures R ¼ polynomialðeRRÞ and eRR ¼ coefficientðRÞ that transform
a polynomial matrix into its coefficient matrix and viceversa (see e.g. com-

mands ppck and punpck from [12]).
In order to check the condition from Theorem 17 one must notice that given

R 2 Rp�w½n
 and S 2 Rs�w½n
, the set
KðR; SÞ ¼ fðn; bÞ; n 2 Rs; b 2 Rp½n
; jnTS ¼ bTRg
is a real vector space. Because ðn; bÞ 2 KðR; SÞ implies that the degree of b is

smaller or equal to pLþ k for k the degree of S, it also follows that KðR; SÞ is
finite dimensional. We are now going to show how to build a real matrix N and

a polynomial matrix B such that the columns of ½N B
T are a basis for KðR; SÞ.
Verifying the condition from Theorem 17 is then equivalent to checking

NTa ¼ Bðd
dtÞMðd

dtÞf ð0Þ.
By defining d ¼ pLþ k and introducing the real vector ~bbT ¼ ½bT0 bT1 � � � bTd 


with bi 2 Rp together with the polynomial matrix
Rs ¼

R
nR
..
.

ndR

0BBB@
1CCCA
one obtains that ðn; bÞ 2 KðR; SÞ if and only if nTeSS ¼ ~bbTeRRs. The problem of

finding a basis ½N B
T for KðR; SÞ is, this way, reduced to that of first finding a

basis ½N eBB
 for the left null space of the real matrix
eSS

	fRsRs

� �
, and then re-

covering matrix B starting from its coefficient matrix eBB. The first of these two

tasks can be performed by standard linear algebra techniques (see e.g. the
Matlab comand null). The second one is essentially a matter of book keeping

which we assume performed by our procedure polynomial.

To summarize this discussion we sketch a Matlab procedure called incond

that builds matrices N and B starting from given polynomial matrices R and S
following the steps we presented.
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Algorithm 21

½N ;B
 ¼ incond ðR; SÞ

k ¼ degreeðSÞ; %k ¼ Degree of S
Rs ¼ shiftðR; kÞ; %Build Matrix RseRRs ¼ coefficientðRsÞ;eSS ¼ coefficientðSÞ; %Coefficient matrices s

K ¼ nullð½eSS ;	eRRs
Þ; % Basis null space

N ¼ K½:; 1 : cdimðSÞ
; % Extract N from K

B ¼ polynomialðKÞ; % Extract B from K

In the above we assumed available an auxiliary procedure shift that

computes Rs based on the original matrix R and on the degree of S.
In order to check conditions from Theorem 19 we now need to be able

to decide if a polynomial matrix S induces a state map for kerðRðd
dtÞÞ for R

square and non-singular. In the following we assume available a procedure

X ¼ smapðRÞ that accepts a polynomial matrix R as input, and outputs X , a
minimal a state map for kerðRðd

dtÞÞ. A detailed description of how this can be

achieved is to be found in [11].

As a preliminary remark we recall that there exist unique polynomial ma-

trices Y and V such that
S ¼ YRþ V ð11Þ
with VR	1 a matrix of strictly proper rational functions. Algorithms to compute

Y and V from R and S are described in [10]; we assume available a procedure

½Y ; V 
 ¼ divisionðS;RÞ that performs the computation (see pdiv from [12]

for an implementation).
A result from [11] states that if the polynomial matrix X induces a minimal

state map for kerðRðd
dtÞÞ, then any polynomial matrix S can be written as

S ¼ WX þ YR for Y a polynomial matrix, W a real one and WXR	1 a matrix of

strictly proper rational functions. From 11 it follows that WX ¼ Y , therefore
the real matrix W can be computed from X and Y using W ¼ SolveðX ; Y Þ.
Again from [11] it follows that S defines a state map for kerðRðd

dtÞÞ if and only if

W is a full column rank matrix a property which can be verified by standard

linear algebra techniques (see e.g. the Matlab command rank).
We now summarize this discussion in a procedure ss ¼ issmapðR; SÞ that

accepts a square and non-singular polynomial matrix R and a polynomial

matrix S as inputs and outputs a boolean variable ss which is true if S defines a

state map for kerðRðd
dtÞÞ.
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Algorithm 22

ss ¼ issmapðR; SÞ

X ¼ smap ðRÞ; %X ¼ minimal state map for R
½Y ; V 
 ¼ divide ðS;RÞ; %S ¼ V þ YR; VR	1 strictly proper

W ¼ Solve ðX ; Y Þ; % Solve Y ¼ WX
ss ¼ ðrank ðW Þ ¼ cdimðW ÞÞ %Compare rank and column dimen-

sion of W
6.2. Simulating trajectories

As discussed in the introduction, our final aim is that of simulating (i.e.
computing) trajectories of a dynamical systems. The algorithms discussed until

now allow to analyze properties of system (1) (solvability, index) together with

initial conditions (3) (compatibility). In case the system is solvable and the

initial conditions are compatible, one is faced with the task of actually com-

puting a trajectory w that satisfies both (1) and (3). A way of doing so in a

numerically reliable way is by introducing state variables that allow to rewrite

system (1) as a set of first order ordinary differential equations and initial

conditions (3) as a set of constraints on the initial value of the state. In this
section we sketch algorithms that perform this rewriting; one can then use

classical and very reliable numerical techniques to simulate first order equa-

tions with initial conditions (see, e.g. the Matlab command lsim).

To keep the discussion more flexible we now discuss in detail the special

case in which R is a square and non-singular matrix. The general case can be

tackled along the same lines, as shown in the proof of Lemma 16 presented in

Section 7.

The key step in the procedure is using ½Z; V 
 ¼ divideðM ;RÞ to compute
the unique polynomial matrices Z and V such that R	1M ¼ Z þ R	1V with

R	1V a matrix of strictly proper rational functions. The system Rðd
dtÞw ¼ Mðd

dtÞf
is then equivalent to Rðd

dtÞe ¼ V ðd
dtÞf , e ¼ w	 z with z ¼ Zðd

dtÞf (notice that if

ðl1; . . . ; lfÞ is the multi-index of Rðd
dtÞw ¼ Mðd

dtÞf and fi is the ith component of

f then z will contain derivatives of fi up to order li, in particular z ¼ 0 and

e ¼ w if m < 0).

Because Rðd
dtÞe ¼ V ðd

dtÞf has index smaller than zero, we can find state

variables x ¼ XwðddtÞwþ Xf ðddtÞf and real matrices A, G, C that allow us to write

it in the equivalent form dx
dt ¼ Axþ Gfe ¼ Cx. As a consequence we obtain

dx
dt ¼ Axþ Gfw ¼ Cxþ z, z ¼ Zðd

dtÞf as an equivalent representation for

Rðd
dtÞw ¼ Mðd

dtÞf .
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Notice that we have managed to reduce a problem with index greater than

zero to one of index smaller or equal to zero, by explicitly computing deriva-
tives of the forcing function f . This feature is shared by the classical algorithms

discussed in [6] to transform first order systems of higher differentiation index

into systems of differentiation index 0. Reliable numerical or symbolic tools to

perform differentiation are, of course, needed for these methods to be effective.

The final step before simulation is transforming the initial conditions.

Sðd
dtÞwð0Þ ¼ Ta into a set of conditions on the initial value of the state x. This

can be done using the fact that from the representation dx
dt ¼ Axþ Gf

w ¼ Cxþ z it follows that
dkw
dtk

¼ CAkxþ
Xk	1

i¼0

CAiG
di	kþ1w
dti	kþ1

þ dkz
dtk
Using this expression, one can compute a real matrix W and a polynomial
matrix Y such that the initial conditions Sðd

dtÞwð0Þ ¼ Ta are equivalent to

Wxð0Þ ¼ Taþ Y ðd
dtÞf ð0Þ þ Sðd

dtÞzð0Þ. We assume available a procedure

½W ; Y 
 ¼ stateincondðS;A;G;CÞ to perform these computation.

We summarize the discussion of this last section with a pseudocode proce-

dure ½A;G;C; Z;W ; Y 
 ¼ simuldataðR;M ; SÞ that accepts polynomial matri-

ces R, M and S as inputs and outputs real matrices A, G, C and W and

polynomial matrices Z, X and Y such that the system Rðd
dtÞw ¼ Mðd

dtÞf with

initial conditions Sðd
dtÞwð0Þ ¼ Ta can be written as dx

dt ¼ Axþ Gf w ¼ Cxþ z,
z ¼ Zðd

dtÞf with initial conditions on x satisfying Wxð0Þ ¼ Taþ Y ðd
dtÞf ð0Þþ

Sðd
dtÞzð0Þ.

Algorithm 23

½A;G;C; Z;W ; Y 
 ¼ simuldataðR;M ; SÞ

½Z; V 
 ¼ divideðM ;RÞ; %Reduction to index 0

X ¼ smapð½R	 V 
Þ; %X ¼ Minimal state map for ½R	 V1

½A;G;C
 ¼ ssrepðR; V1;X Þ; %State space representation

½W ; Y 
 ¼ stateincondðS;A;G;CÞ %Initial conditions on

state

Notice that the above procedure outputs Z ¼ 0 if the system Rðd
dtÞw ¼ Mðd

dtÞf
has index m < 0.

We now return to the example presented in Section 2 and apply the main

results of the paper to it. We will take Ma ¼ Mc ¼ 1 kg and L ¼ 1 m.

Example 24. Matrix R in (6) is square and non-singular (its determinant is

	2n2), therefore the system is solvable in the sense defined in Section 4. Hence,
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given any orientation profile for the arm and any force acting on the cart, there

exist trajectories for the torque and the position of the cart that satisfy the
model equations.

Further,
R	1M ¼

1

2n2
	 1

2

0 1

1 0
1
2

5
6
n2 	 g

0BBB@
1CCCA
showing that the multi-index of this system is (1,3). Hence the solution w will

be continuous if the force exerted on the cart is itself continuous, and the

prescribed trajectory h for the arm is twice continuously differentiable.

As for initial conditions, assume one wants to simulate a trajectory with a

given initial value of the torque s, corresponding to ðð 0 0 0 1 ÞwÞð0Þ ¼ s0.
Since ð 0 0 0 1 Þ ¼ bTR for bT ¼ ð1

2
	 1 1

2
5
6
n2 	 gÞ, we know from Theorem

17 that this will be possible if and only if s0 ¼ ðf1
2
þ 5

6

d2f2
dt2 	 gf2Þð0Þ.

Assume, instead, we were looking for a given initial value of the position

and speed of the cart; equivalently for solutions such that
S
d

dt

� �
wð0Þ ¼ a for S ¼ 1 0 0 0

n 0 0 0

� �

for a given a 2 R2. It can be seen that there exist no non-trivial real vector n
and polynomial vector b such that nTS ¼ bTR. Therefore, by Theorem 17, a

solution exists for arbitrary initial values a. It can also be seen that S induces a

state map (actually, a minimal one) for kerðRðd
dtÞÞ, thus Theorem 19 assures

that such a solution is even unique.

We now wish to simulate the trajectory corresponding to zero initial posi-

tion and velocity for the cart (i.e. a ¼ ð 0 0 ÞT), to a given sinusoidal force
u ¼ f1 ¼ 0:1 cosð10tÞ applied on the cart and to a fixed angular position

h ¼ f2 ¼ p
6
for the arm. In order to do so we first apply Algorithm 23 to write

the system in first order form. The matrix of rational functions R	1M can be

written as V þ Z with
ZðnÞ ¼

0 	 1
2

0 1

1 0
1
2

5
6
n2 	 g

0BBB@
1CCCA
a polynomial matrix and
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V ðnÞ ¼

1

2n2
0

0 0

0 0

0 0

0BBB@
1CCCA
a matrix of strictly proper rational functions. It can be shown that a minimal

state map for kerð½Rðd
dtÞ 	 Rðd

dtÞV ðddtÞ
Þ is induced by
X ¼ n 0 0 0 0 0

1 0 0 0 0 0

� �

yielding a state space representation
d

dt
x ¼ Axþ Gf ;w ¼ Cxþ z with A ¼

0 0

1 0

� �
;

G ¼
1
2

0

0 0

� �
; C ¼

0 1

0 0

0 0

0 0

0BBB@
1CCCA and z ¼ Z

d

dt

� �
f ¼

	 f2
2

f2
f1

f1
2
þ 5

6

d2f2
dt2 	 gf2

0BBBB@
1CCCCA
From this it also follows that the required initial conditions
wð0Þ
dw
dt ð0Þ

� �
¼ 0

0

� �
� �
are equivalent to xð0Þ ¼ 0

0
.

Fig. 2 shows the trajectories for cart position and torque resulting from the

simulation, carried out with Matlab command lsim.
7. Proofs

Proof of Theorem 1. )Þ If vm 2 Bm there exists a distribution v‘ such that

Gðd
dtÞvm 	 Cðd

dtÞv‘ ¼ 0. Given any n 2 Rp½n
 this of course implies nTðd
dtÞðGðddtÞw	

Cðd
dtÞ‘Þ ¼ 0. Therefore n 2 SYZðCÞ ) nTðd

dtÞGðddtÞw ¼ 0.

(Þ Let
U ¼ U1

U2


 �

be an unimodular matrix such that
UC ¼ U1C
U2C


 �
¼ 0

C2


 �
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Fig. 2. Cart position and torque.
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with C2 2 Rp0�l½n
 a full row rank polynomial matrix; such a U always exists.

Then B ¼ kerð½Gðd
dtÞ 	 Cðd

dtÞ
Þ ¼ kerð½Uðd
dtÞGðddtÞ 	 Uðd

dtÞCðddtÞ
Þ. Since C2 is of

full row rank, it can be shown that C2ðddtÞ is a subjective map from D0ðR;RlÞ to
D0ðR;Rp0 Þ, thus the equations C2ðddtÞv‘ ¼ G2ðddtÞvm admit a solution v‘ for any

vm. The only constraint on vm is hence given by G1ðddtÞw ¼ 0, showing that

Bm ¼ kerðG1ðddtÞÞ.
The columns of UT

1 belong to SYZðCÞ. From the hypothesis nTðd
dtÞGðddtÞw ¼ 0

for any n 2 SYZðCÞ it follows U1ðddtÞGðddtÞw ¼ G1ðddtÞw ¼ 0, equivalently w 2 Bm

as claimed.
Proof of Theorem 7. We first prove that ðl1; . . . lfÞ 2 J, meaning that 8f with

fi 2 Cliþk9w 2 Ck such that Rðd
dtÞw ¼ Mðd

dtÞf . By linearity it is easily seen that it

suffices to prove that 8fi 2 Cliþk9w 2 Ck such that Rðd
dtÞw ¼ miðddtÞfi, with mi the

ith column of M .

Because it is enough to prove it for any k, we choose kP 0 and such that
li þ kP 0; this way we only have to work with functions which are at least

continuous.
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The rational polynomial vector P	1mi can be written as P	1mi ¼ si þ ni with
si a strictly proper rational vector and ni a polynomial one. If li P 0 then ni is
non-zero and has degree li, otherwise it is zero and the smallest difference in

denominator and numerator degree in the elements of si is jlij.
If we indicate by y the components of w corresponding to P , by u the re-

maining ones and by 	Q the corresponding columns of R, the equation can be

written as P ðd
dtÞy ¼ Qðd

dtÞuþ P ðd
dtÞsIðddtÞfi þ P ðd

dtÞnIðddtÞfi, or P ðd
dtÞy ¼ Qðd

dtÞuþ
P ðd

dtÞsIðddtÞfi þ Pðd
dtÞhi with hi ¼ nIðddtÞfi 2 Ck. Because P is full row rank it fol-

lows from Theorem 1 and Corollary 4 that u, fi, hi can be chosen freely in the
equations.

u can thus be chosen freely, therefore also Ck. From Theorem 3.3.13 of [3]

and the fact that P	1Q, P	1PSi and P	1P are all proper rational functions,

follows that if li P 0 than y will be as smooth as hi, therefore C
k. If li < 0 then

Ni is zero and, again by the same theorem, it follows that y will be jlij time

smoother than f , thus still Ck.

The same argument shows that if we had taken f such that fj ¼ 0, j 6¼ i and
fi 2 Ckþli	1 then w 62 Ck, thus proving that ðl1; . . . ; li 	 1; . . . ; lfÞ does not
belong to J, therefore that ðl1; . . . ; lfÞ is the smallest element in J.

Proof of Theorem 15. By Theorem 1 Bs can be described as all ðf ; sÞ solving
equations F ðd

dtÞf ¼ Lðd
dtÞs for suitable polynomial matrices F and S. These

equations are easily seen to be solvable as a consequence of solvability of

Rðd
dtÞw ¼ Mðd

dtÞf . One can then define the sets
Ji ¼ j 2 Zj8h 2 Ckþj	19w : R
d

dt

� �
w

�
¼ mi

d

dt

� �
h and S

d

dt

� �
w 2 Ck

�

and, applying the definition of manifest behavior, verify that li ¼ minJi with

l ¼ ðl1; . . . ; lfÞ the multi-index of F ðd
dtÞf ¼ Lðd

dtÞs. Applying Definition 6 and

the arguments from Theorem 7 if follows that fi 2 Cli if and only if

s 2 C0ðR;RsÞ.

Proof of Lemma 16

)Þ Trivial.
(Þ In order to prove this implication we use the concept of state map and

state representation introduced in Definition 18.

Because of the smoothness assumption on f we know that a continuous

solution w exists; we now need to show that we can find one satisfying

wð0Þ ¼ a.
Assume, without loss of generality, that R ¼ ½P 	 Q
 with P square and

having maximal determinantal degree among all square minors of R. Ac-

cordingly, let w ¼ ðy; uÞ and a ¼ ða1; a2Þ. Also assume that M ¼ PV þ PZ with

V a matrix of strictly proper rational functions and Z a polynomial matrix.
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This can always be achieved by writing the matrix of rational functions P	1M
as the sum of a polynomial matrix Z and a matrix of strictly proper rational
functions V . The equation Rðd

dtÞw ¼ Mðd
dtÞf can then be rewritten as
P
d

dt

� �
e ¼ Q

d

dt

� �
uþ P

d

dt

� �
V

d

dt

� �
f ð12Þ
with e ¼ y 	 z and z ¼ Zðd
dtÞf .

As discussed in the proof of Theorem 7 the variables u are free in the above

equations. Therefore u can be taken a continuous function satisfying the initial

constraint uð0Þ ¼ a2. Now let ½X1 X2 X3 
 induce a minimal state map for
ker½ P ðd

dtÞ 	Qðd
dtÞ 	P ðd

dtÞ V ðd
dtÞ 
. As a consequence of P	1Q and Z being

matrices of proper rational functions, it can be shown that a state represen-

tation of (12) can be found having the form
d

dt
x ¼ Axþ Buþ Ef ; y ¼ Cxþ Duþ z ð13Þ
with z ¼ Zðd
dtÞf and with A, B, C, D, E suitable real matrices. Notice that under

the given smoothness hypothesis on f , z is a continuous function.

Given any distributions u and f , and any vector x0 the distribution
xðtÞ ¼ eAtx0 þ

R t
0
eAðt	sÞðBuðsÞ þ Ef ðsÞÞds is a solution to d

dt x ¼ Axþ Buþ Ef .
Assume now we choose any continuous u and any f which satisfies the

smoothness assumptions of the theorem; then y ¼ Cxþ Duþ z with z ¼ Zðd
dtÞf

is a continuous function whose value at t ¼ 0 is yð0Þ ¼ Cx0 þ Duð0Þ þ zð0Þ
(notice that x need not be continuous even if f satisfies the required smoothness

assumptions; Cx, however, will be continuous).

We now proceed to show that, under the given assumptions, we can always

find an x0 such that Cx0 ¼ a1 	 Da2 þ zð0Þ and thus that we can always find a
solution which also meets the initial constraint on y. Classical linear algebra

tells us that in order to do this we need to show that whenever k is a real vector

of suitable dimension such that kTC ¼ 0 then kTa1 	 kTDa2 	 kTzð0Þ ¼ 0:
As a consequence of ½X1 X2 X3 
 inducing a minimal state map for

ker½ P ðd
dtÞ 	Qðd

dtÞ 	P ðd
dtÞ V ðd

dtÞ 
, we can conclude that there exists a poly-

nomial matrix G of suitable dimensions such that ½ I 	D 0 
 ¼
C½X1 X2 X3 
 þ G½ P 	Q 	PV 
. Assume now that k is a real vector such

that kTC ¼ 0. This implies kTGPV ¼ 0 and ½ kT 	kTD 
 ¼ kTG½ P 	Q 
. By
the hypothesis of our theorem, with nT ¼ ½ kT 	kTD 
 and bT ¼ kTG, the last

statement also implies kTa1 	 kTDa2 ¼ ðkTGðd
dtÞMðd

dtÞf Þð0Þ. Write, as above,

M ¼ PV þ PZ, use kTGPV ¼ 0 and kT ¼ kTGP to obtain ðkTGðd
dtÞMðd

dtÞf Þð0Þ ¼
kTzð0Þ and thus the statement.
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Proof of Theorem 17. )Þ Trivial.
(Þ We are looking for an element ðw; f Þ 2 ker
R
d

dt

� �
	M

d

dt

� �
t

with f given and such that Sðd
dtÞwð0Þ ¼ Ta. This is equivalent to looking for a
ðw; f ; sÞ 2 Bf ¼ ker
Rðd

dtÞ 	Mðd
dtÞ 0

Sðd
dtÞ 0 	Is�s

" #

where f is given and sð0Þ ¼ Ta. As at the end of Section 4, we can consider Bf

as the full behavior of a latent variable representation with latent variables w
and manifest variables ðf ; sÞ. Let B ¼ ker½ F ðd

dtÞ 	Lðd
dtÞ 
 for suitable matrices

L 2 Rr�s F 2 Rr�f be the manifest behavior. The problem is to find ðf ; sÞ 2 B

with f given and sð0Þ ¼ Ta.
Since Rðd

dtÞw ¼ Mðd
dtÞf is solvable, so is Lðd

dtÞs ¼ F ðd
dtÞf . Moreover because of

the smoothness hypothesis on the given f , a continuous solution s exists. Now

apply Lemma 16, and conclude that a continuous solution s satisfying

sð0Þ ¼ Ta exists if and only if ðn 2 Rs; k 2 R½n
r; nT ¼ kTLÞ ) ðnTTa ¼
kTðd

dtÞF ðddtÞf ð0ÞÞ.
Since B is the manifest behavior corresponding to Bf , the elimination

theorem shows that there exist polynomial matrices R1, M1, M2 such that the
transpose of the rows of
R 	M 0

S 0 	I


 �

generate the same module M as the transpose of the rows of
R1 M1 M2

0 F 	L


 �

In particular, given n 2 Rs there exists k 2 Rr½n
 such that nT ¼ kTL if and

only if ½ 0 kTF nT 
T 2 M and thus if and only if there exists b 2 Rp½n
 such
that nTS ¼ bTR and kTF ¼ 	bTM .

The condition ðn 2 Rs; k 2 Rr½n
; nT ¼ kTLÞ ) ðnTTa ¼ kTðd
dtÞF ðddtÞf ð0ÞÞ is

therefore equivalent to ðn 2 Rs; b 2 Rp½n
; nT ¼ bTRÞ ) ðnTTa ¼ bTðd
dtÞM �

ðd
dtÞf ð0ÞÞ, and the claim is proven.

Proof of Theorem 19. From Theorem 17 we know that condition 2 is necessary

and sufficient for existence of a solution. Therefore we now have to prove that
conditions 1 and 3 are necessary and sufficient for uniqueness. By linearity this

is equivalent to showing that they are necessary and sufficient to ensure that

Rðd
dtÞw ¼ 0 and Sðd

dtÞwð0Þ ¼ 0 only admits w ¼ 0 as a solution.
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)Þ Recall we are working under the assumption that R is a full row rank

polynomial matrix. The fact that R needs to be square then follows since
otherwise the variables w would contain free components, thus contradicting

uniqueness.

Now let X 2 Rn�w½n
 induce a minimal state map for kerðRðd
dtÞÞ; it can be

shown that the corresponding state representation has the form d
dt x ¼ Ax,

w ¼ Cx for suitable real matrices A and C. Because x ¼ X ðd
dtÞw we conclude that

w ¼ 0 ) x ¼ 0 and, in particular, xð0Þ ¼ 0; vice versa the only solution to
d
dt x ¼ Ax satisfying xð0Þ ¼ 0 is x ¼ 0, implying w ¼ 0. We can thus conclude

that w ¼ 0 () xð0Þ ¼ 0.
From the fact that there exists a unimodular matrix U such that
R 0

X 	In�n


 �
¼ U

Iw�w 	C
0 nIn�n 	 A


 �
it also follows that there exists a real matrix W and a polynomial matrix Y such

that S ¼ WX þ YR. The solutions to Rðd
dtÞw ¼ 0 satisfying Sðd

dtÞwð0Þ ¼ 0 corre-

spond to those that satisfy Wxð0Þ ¼ 0. Because this equation has to admit

xð0Þ ¼ 0 as the unique solution, we conclude that W is injective. From Chapter

6 it follows that S induces a state map for kerðRðd
dtÞÞ.

(Þ If G is square and S induces a state map for kerðGðd
dtÞÞ it follows from the

definition of state that trajectories which satisfies Gðd
dtÞw ¼ 0 and Sðd

dtÞwð0Þ ¼ 0

need to satisfy d
dt x ¼ Ax, w ¼ Cx, xð0Þ ¼ 0 for d

dt x ¼ Ax, w ¼ Cx a state repre-

sentation of kerðGðd
dtÞÞ. It is trivial that the only trajectory for the variables w

which satisfies d
dt x ¼ Ax, w ¼ Cx, xð0Þ ¼ 0 is w ¼ 0.
8. Conclusions

In this paper we have discussed the problem of simulating trajectories of

dynamical systems. The models we have considered are described by linear

differential equations of arbitrary order. The three key issues we have ad-

dressed have been those of solvability of the equations, smoothness of solutions

(i.e. index) and compatibility of initial conditions. These problems have been

classically addressed for first order differential equations and we show how they

can be defined in the more general case we are looking at.

The section dedicated to computational algorithms shows how the proce-
dure of analyzing properties of a model and numerically simulating its tra-

jectories can be tackled with help of standard existing software (e.g. Matlab

and related toolboxes).
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