A Rigorous Framework for Interactive Robot Control
S.SrrRAMIGIOLI T, E.D.FASSEf and J.C.WLLEMS§

This paper presents a rigorous, analytical framework for interactive control methods such as stiffness
and impedance control. This paper does not present a novel synthesis method for robot control design.
Rather, it presents a proper framework to analyze controllers for robots whose purpose is to interact
energetically with the environment.

First geometrical tools are introduced that are used in kinematic and dynamic analysis of the spatio-
mechanical systems common in robotics. “Port behavior” and “behavioral deviation” are then defined
both intuitively and rigorously. The utility of this framework is demonstrated by a nontrivial example.
Concepts of the behavioral approach are used.

1. Introduction

Most tasks that robotic manipulators should be able to perform involve significant energetic interaction with
the environment. Two active compliant motion control paradigms are currently distinguishable, hybrid po-
sition/force control[(Raibert & Craig 1981) and impedance confrol (Saligbury| 1980, Hogah 1980] Hogan
1985). Many hundreds of scientific papers have been written about both topics. The physical, geometrical,
mathematical foundations of hybrid control are largely in place. The basic idea is intuitive; one controls
translational and rotational motion along/about some directions and controls translational forces and ro-
tational torques along/about other directions. It was originally stated that the directions of commanded
motion and of commanded wrenches were “orthogonal”, assuming interaction with rigid constraints. It has
been pointed out clearly in the literatufe (Lipkin & Duify 1988, DUiffy 1990) that this compatibility condi-
tion is more properly expressed as one of reciprocity. Assuming interaction with frictionless constraints,
commanded motions and wrenches are reciprocal and thus compatible if they produce no work.

The foundations of impedance control are not as well developed. First of all, roboticists, proponents
and detractors included, do not always agree éneiitively what impedance control is! It has been said
to be a kind of force control, said to be a combination of force and position control. Hogan says in his
widely cited paper| (Hogén 1985) that “A distinction between impedance control and the more conventional
approaches to manipulator control is that the controller attempts to implement a dynamic relation between
manipulator variables such as end-point position and force rather than just control these variables alone.”

There is significant literature looking at the geometry of compliance and more generally impedance.
Loncaric| (1987) and Brockett & Loceric| (1986) looked at the geometry of “compliance programming”
using the tools of group theory. They showed that stiffness and compliance matrices could be parameter-
ized in an intuitive way that simplified their selection. Patterson & Lipkin (I)33®93) looked at the
geometry of compliance using the tools of screw theory, building upon wark of [Ball(1900) and Diméntberg
(1965). They classify compliance in terms of screw eigenvalues and eigenvettfrsn & Kumar (1997)
and HowardZefran & Kumar [1995) have also looked at the geometry of compliance, explaining for ex-
ample differences in the structure of the stiffness matrix when defined using different implicitly defined
affine connections.

Prior to defining “control of interactive behavior” of dynamic systems we call attention to two important
considerations:

1. Dynamic interaction is a bidirectional physical phenomenon. The presence of an often poorly char-
acterized environment should be considered explicitly.

2. This environment is a dynamic subsystem and not just a “signal source”.

The first consideration suggests that the analysis and control of interactive systems should be performed
using mathematical tools appropriate for physical systems, and not more abstract tools of mathematical
systems theory. This leads to the use of dual, power-conjugate entities to describe interaction, e.g., twists
and wrenches.
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The duality of twists and wrenches is nicely expressable in the framework of bond graphs (|Paynter
1960). In this work a one-dimensional framework was introduced which was further developed from a ther-
modynamical point of view in (Breedvelld 1284). Further geometrical extensions to twists and wrenches in
bond graphs can be found in (Maschke, Bidard & van der Sghatftl 1994) or (Strafnigioli 2001). The second
consideration suggests that interactive behavior control is different than standard control paradigms, which
by and large consider exogenous variables to be generated by independent signal sources. In this case there
is bidirectional interation between two dynamic subsystems: a robot and its environment.

Consider a robot interacting with a perhaps poorly characterized environment. So that this interation
will be well behaved we want to control the robots “behavior”, which is an intrinsic “something” that
is independent of the environment. What is this “something”? Candidates include the sopoatled
or manifest variables of interaction, twists and wrenches in this case. We eliminate such variables as
candidates because during interaction they depend not only on the dynamics of the robot but also on the
dynamics of the environment, which constrains their values in some poorly characterized way.

The dynamic relation between twists and wrenataesbe controlled independently of the environment.

We therefore adopt a model-matching control paradigm (Nijmeijer & van der $chaft 11990,!|sidori 1995,
Huijberts| 1991), in which the robot dynamic relation emulates a desired dynamic relation. Furthermore,
we formulate the model matching-problem using a behavioral framework (Willems 1991). In this way we
are not forced to assume anything about the causality (input-output structure) of the robot interaction.

1.1 Output Tracking Control and Modéel Matching

Most of the problems addressed in robotics are ofailtput tracking form ([Slotine & Li[1991) in which

a certain force or velocity reference signal should be followed as nearly as possible. We can define the
problem formally as follows. Given sufficently smooth manifaldsindY’, and given a time sét, letU

andY” denote theignal spacesof U andY’, the sets of smooth functions frdfito U andY’, respectively.

The time set is assumed to be a real interval.

Definition1 Map f : UT — Y7 iscausalif given u’,u” € UT suchthat v/(t) = u”(t) for all t < ¢/,
then f(u)(¢) = f(u”)(t').

To define the robot tracking problem, assume flias a set of directly controllable joint generalized
efforts or velocities. Assume th&t is a set of end—effector twists and/or wrenches of interest. We assume
thatY'” is a normed space. L&t/ be a set of measurable variables. Before stating the tracking problem it
is necessary to define the set of admissible controllers for a robot.

Definition 2 Given a robot modelled by a causal mapping, r : U7 — Y7 x M™, wewill definethe set C
of admissible controllers for the robot r, to be the set of causal mappingsc : M7 — U7 for which there
exist one and only one solution (u,y,m) € UT x YT x M to the system with equations (y, m) = r(u)
and u = ¢(m).

The previous definition is important because it is now possible to associate a ynighe’, correspond-
ing to the output of the feedback controlled robot, to ang C. We will indicate the output signaj
corresponding to an admissible controlter C with y(c).

Definition 3 Given a robot described by a causal mapping r, given C' the set of admissible controllers for
r, and given yq € Y7 adesired trajectory. The output tracking problens to find a controller ¢ € C that
minimizes ||yq — y(c)||.

In the tracking paradigm the goal is for output variables of interest to equal a reference signal. This paper
uses the model-matching paradigm (recent references on this topic that are particularly relevant to the
present paper aré (Nijmeijer & van der Schaft 1990, Isidori 1995)), in which the goal is for some input-
output relation to equal a reference input-output relation. To define this problem formally consider

to be the Cartesian product of séts andY>, which can be thought as being the sets of end—effector
velocities and forces. In order to proceed in this input-output framework we hypothesize that the robot can
be modelled as a causal mapping of the form:

U<y — M7 <yl (1.1)



in whichU and M are defined as before. Intuitively this means that we consider the robot dynamics to be
a mapping from the controllable inpuisand the forces (respectively velocitiés) of the end—effector to
some measurable variablé$ and the velocities (respectively forcas) of the end-effector. We are now
ready to state the model matching problem in an input-output framework.

Definition 4 (M odel-Matching Problem) Given arobot modelled by a map of the form([1.1), and a causal
reference mapping r : Y'! — Y2. The model-matching problem (MMRS to find a causal mapping (if it
exists) ¢ : MT — U™ such that

Vyr € Y1, 3m € M7 st. f(y1,c¢(m)) = (r(y1),m) (1.2)

R

Figure 1: Representation of the /0 MMP
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A ¢ solving the MMP is achievable only theoretically. Practically it is useful to have a measure of the
“closeness of this achievement”. A graphical representation of the definition is given i Fig. 1.

A problem with this definition is that it forces us to decompds&to two subspaces; (inputs) and
Y5 (outputs). This input/output decomposition is artificial and cumbersome and strictly related to the input
output structure of the reference model. The following one-dimensional example is meant to give intuition
into what is meant by interactive control. This example is derived from an example of {(|Driels 1996).

1.2 Example: a Wave Energy Generator

A wave energy generator consists of stationary and rotating assemblies. The rotor is attached to a large tank
known as auck, which is acted upon by water waves (see Eig. 2). The axis of the generator is assumed
to be perpendicular to the direction of wave propogation. Relative motion of the stator and rotor drives
hydraulic pumps, which is the means of energy extraction. An electric motor between the stator and rotor
is available for control purposes.

Incident wave

Motor Pump

Figure 2: Wave Energy Generator

The waves have a slowly-varying period corresponding to a slowly varying, known frequencyhe
purpose of this system is to generate energy. It does not make sense to say that we want to control the



torque or orientation of the duck. It does make sense to say that we want to control the duck behavior so
that it resonates at the wave frequency. This maximizes the energy transfer from the waves to the duck, and
ignoring inefficiencies, the net energy generation.

1.2.1 Mode of the System

Let 4 be the relative stator-rotor angle, t:= 6 be the associated angular velocity. Suppose that the
mechanical system dynamics can be modelled by the following differential equation:

JQ+B.Q+K.0 =7+, (1.3)
J, is the rotational inertia of the rotoR,. is a coefficient of viscous damping between the stator and the
rotor, K. is the ideal coefficient of possibly existing stiffness between the stator and therasothe
torque produced by the waves, any is the torque produced by the motor. The velocity-dependent torque
B, is due to energy dissipation and to the power-take-off of the pumps.
1.2.2 Desired behavior

We want the system to resonate at the wave frequengyAn appropriate desired behavior is given by the
following second-order differential equation
JQ+B.Q+ Jow?0=r1 (1.4)

w

The desired behavior must contain a dissipative term so that energy can be extracted from the waves.

1.2.3 Model-Based Controller

Suppose we have a model of the system and corresponding parameter estimates. In partidtldoelet
the estimate of(; let J,. the estimate of,.. If we consider a model based design, and ignore uncertainties
in the model, then one possible, albeit simplistic control law that would achieve the desired behavior is

Tm = (K, — Jow?)0 (1.5)

Without having modelled the uncertainties, this control action would achieve exactly the desired result if
we suppose our model to be perfect. This is a standard approach, but thergbéidsking or stabilisation

as usual, but the achievement of a certain behavior.

1.2.4 Achieved dynamics

Supposing to have exact measured values, the controlled system will have the behavior corresponding to
the following differential equation:

JQ+BQ+ (K, — K, 4+ Jw?)d—7=0 (1.6)

1.2.5 Behavior deviation

As a measure of error of model matching consider the following quantity:

e(t) = |1 Q + Jw? 0+ B.Q — 7| (1.7)
= |, Q+ J,w20+ B.Q— 7| (1.8)
= |(Jr = J)winf + (K, — K,)0| (1.9)

The error has dimensions of torque and is therefore easily interpretable. As expected, a perfect model would
achieve the desired behavior exactly resulting in an error of zero. With trivial additional calculations, we
could give quantitative measures of the behavioral tracking error as function of the parameter variations.
Note that the ultimate control algorithmist different than standard control algorithms. What is different

is the goal of control.



1.2.6 Observations

This simple example shows that there are indeed practical control problems that cannot meaningfully be
posed as tracking/regulation problems. It is the goal of control, not the control law algorithm, that dis-
tinguishes a behavioral controller from a tracking controller. In the absence of wave interaction the same
control law [I.5) could be used for position control, but it does not make sense in this context to say that
the goal is to control the position of the duck.

The standard Model-Matching Problem is concerned with abstract systems for which geometry is ir-
relevant, e.g., the one-dimensional system of this example. Fortunately, similar methods can be applied to
mechanical systems with complex spatial geometry like robots.

1.3 Themajor behavioral concept

To conclude the introduction of the paper and point out potential problems explain the difficulty of using
position and/or force control during interaction, consider the simple one-dimensional examplelof Fig. 3. A
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Figure 3: Representation of the /0 MMP

control forcer acts on the mass at positionz. The environment exerts a foréérepresented in the figure

by a hand. The power exchanged between the controlled mass and the environment is tRerefbrie

Using linear control, a certain robot dynamics is achieved, which can be expressed in behavioral framework
(Willems[1991) in the following way:

R(s) (F (5)) —0,  R(s) e RV
whereR(s) is a polynomial matrix. In the same way, the environment has its own dynamics that, assuming
linearity for simplicity, can be represented in a similar way:

re) (50)) =0 o) e wy

Consider two extreme cases:
1. The mass does not contact anythifitft) = 0 V.
2. The mass position is fixed:(t) = 0 Vt.

In the first case, the value oft) depends only o(s), which we can directly control. In this case we can
effectively use what is calleBosition control. In the second case, the valuefoft) depends only oiR(s)



which we can directly control. In this case we can effectively use what is datkexg control. In all other
cases bott'(s) andz(s) depend on both the controlled rob®ts) and the environmerR g(s):

R(s) F(s)\ _ (0
Re(s)) \z(s)) \O
The solution to the previous differential equation gives the unique solutiof forand«(t), whichalso
depends on the imperfectly or poorly characterized environiRests).
We conclude that for interacting tasks it is questionable to codt(e) andz(t), which depend in

part on the variable, imperfectly characterized environment. Instead one can control the only entity that is
intrinsically controllable and independent of the environment: the controlled betfai&or

1.4 Differenceswith usual model matching

From the previous section, it should be clear that for interacting mechanical subsystems it makes no sense to
define a model matching problem in a causal way since the causality could change during a task execution:
from position to force control or the other way around.

Furthermore, in order to assert the quality of the matching, norms are usually defined. These norms are
often extra structures not justified by physical reasons and in the case the dimensions of the input/output
pair is bigger than one, not even coordinate invariant (physical). In this paper we show the reason why it
is NOT possible to define a physical coordinate invariant measure of the mismatch of the behavior and we
will pinpoint this in a geometrical coordinate free setting.

Eventually, it should not be underestimated that multidimensional mechanical systems are complex,
non-linear systems with a lot of structure, and this structure can be used to define matching for these
specific systems.

1.5 Power ports

A major concept which will be used in the paper is the idea of a power port. A power port is the entity
which describes the media by means of which subsystems can exchange physical energy with one another.
A power port can be defined by the Cartesian product of a vector $pacel its dual” *:

P=VxV*

Elements belonging t& are pairge, f) € P. The value ok andf are changing in time and shared by the
two subsystems which are exchaning power through the considered port. The power exchanged at a certain
time is equal to the intrinsic dual product:

Power= (e, f)

This dual product is intrinsic in the sense that elementg dhre linear operators froi to R.

1.6 Motion of Rigid bodies, Twistsand Wrenches

In 3D mechanics, the motion, velocities and forces of rigid bodies are nicely and geometrically expressed
using the concept of finite twists, instantaneous twists and wrenches respectively. The idea of the notion
of a twist comes from a seminal theorem called Chasle’s thedrem (Stramigioli 2001). This says that any
motion of a rigid body can be expressed as a rotation around a line together with a translation along the
same line: a screw motion. For a finite twist, this means that we can bring any rigid body from any position

in space to any other by a twist (screw motion) around and along a fixed axis in space. This axis is called
the axis of the screw. The ratio between the rotation and the translation is called the pitch of the screw. For
this paper, only the notion of instantaneous twists is used. In this case, we consider an instantaneous motion
of a rigid body. Once again it can be seen using Chasle’s theorem that we can describe any instantaneous
motion as a twist around/along an instantaneous axis and having an instantaneous pitch. It can be seen
(Stramigiol|[2001) the space of twists is equivalent in Lie group terms to the Lie alget¥a



The dual of twists (linear operators on twists) are called wrenches. They correspond to the forces/moments
which can be applied to a rigid body. The geometrical intuition of a Wrench is given by Poinsot’s theo-
rem [Stramigiol[ 2001) which dually to Chasles’s theorem says that any system of forces can be expressed
as a force along a line and a moment around the same line.

1.7 Outline of Manuscript

This paper introduces rigorously the concept of dynamic behavioral control using an acausal framework,
thus eliminating the unnecessary input-output structure presented in the definition of the standard MMP.
Sectior 2. introduces the concept of a power port. Setfion 3. introduces the concepts of desired and obtained
behavior of a power port. Secti@nl 4. looks at the control of behavior. Sdclion 5. presents an application of
the theory. Sectionl7. concludes the presentation.

2. Energetic Variable Spaces

Stator magnet
Figure 4: Haptic device example

In this and the following section, the presented concepts will be presented together with an example.
The example is a haptic device (H.D.) depicted in Elg. 4. Haptic devices are an excellent example of robotic
systems that interact with unstructured, poorly characterised environment: human beings. This device has
been implemented and is described in (Hollis, Salcudean & Allan|1991).

The levitated platforngflotor) is made of a lightweight, nonmagnetic material like aluminum. On this
platform there are six flat-wound coils, the currents of which are controlled by servoamplifiers. Three such
coils are indicated in the figure. Mounted to the stationary lfgts#or) of the device are six inner and
outer magnet assemblies. Each assembly consists of two permanent magnets and a magnetic return plate.
The inner and outer magnet assemblies are mounted in pairs forming magnetic circuits. Three of the outer
magnet assemblies are indicated in the figure. Each stator magnet assembly pair interacts with a single
flotor coil, exerting a Lorentz force on the coil. For small motions this force is in the plane of the coil,
independent of the flotor configuration. The magnitude of this force is proportional to the coil current. By
changing the six coil currents it is possible to exert arbitrary forces and moments on the flotor. A human
holds the flotor where the coils are situated and can in this way interact with the device.

2.1 Configuration Spaces

Consider a robot consisting of a linkage of rigid bodies. Qetlenote theconfiguration space of this
linkage, the set of linkage configurations. The dimensio@ @& equal to the number of kinematic degrees

of freedom of the linkage. The configuration spaef H.D. is a bit different than a normal serial linkage.

We can consider it to be the set of longitudinal displacements of each coil with respect to its corresponding
fixed magnet. The robot interacts energetically with the environment via one or more of its link&. Let
denote the configuration manifold (or manifold with boundary) of these links. &factor configuration
manifold is often referred to as theork space. If only one link interacts with the environment we call



this link theend-effector. For a spatial manipulator with an end—effector, the end—effector configuration
manifold can be associated with the six- dimensiah&l3) after a choice of reference frame. For usual
robot manipulators, the spa&&coincides with the angles and positions of the joints. If therenatigid
parts of the robot which can interact with the environment likettips of a robotic hand, one can consider
X =SE(3) x...xSE(3) (n-times). If the dimension of is bigger than the dimension &f, the robot is
said to bekinematically redundant. The H.D. has just one end-effector with which the device can interact,
namely the flotor. This implies that for the H.B. = SE(3), the configuration space of the flotor.

The map from robot configurations to effector configuratidhs Q— X', is called thedirect kinematic
map. This map is readily computable for serial linkages. For certain parallel linkages like the Stewart
platform, the inverse map is easier to compute. The linkage is assumed to be actuated by a number of me-
chanical actuators, each of which has a mechanical configuration mapifald@heactuator configuration
manifold, A = A; x As x ..., is the set of configurations of all of the actuators. If the dimensioA of
bigger than the dimension @, the robot is said to beedundantly actuated. The example H.D. has six
actuators (coil-magnet pairs). One can considerto be the relative longitudinal displacement between
coil ¢ and its corresponding fixed magnet. The map from robot configurations to actuator configurations,
A : Q— A, is called theactuator kinematic map. For typical robot manipulator§ and.A can be identified,
which is the case for the H.D.. In general the spaces can be very different.

2.2 Tangent Dynamic Spaces

In order to study the dynamics of interaction we need to consider dynamic variable spaces associated with
the port configuration manifold. L&t X' be the tangent bundle &f. An elemen{(z, v) of T'. X is a vector
v tangent toX’ at the configuratior:. Examples of energetic tangent vectors are velocity given a config-
uration, (z, v) and infinitesimal displacements given a configurationdz). Let T *X be the cotangent
bundle ofX. An element(z, f) of T*X is a co-vector (dual vectoy) tangent tat’ at the configuration:.
Examples of energetic cotangent vectors are momentum given a configu(atip)),force given a con-
figuration,(z, f), and higher-order derivatives of momentum given a configura([ianfl:f). Tangent and
cotangent vectors are not suitable for use as port variables because they are configuration-dependent; they
are ‘bound’ vectors as opposed to ‘free’ vectors. In the next subsection we define free dynamic variable
spaces that are suitable for use as energetic port variables.

In the example, we could have parameterized the configuration of the flotor by means of a real six-tuple
p € R0 such as three Cartesian coordinates and three Euler angles. The time derivative of these variables
is a numerical vector which is properly interpretable only together with the informationThis means
thatv is a local velocity vector bounded to

2.3 FreeDynamic Spaces

Depending on what is considered to be the work spgcene can define what shall be calkeek flows and
free efforts. These are vector spaces independent of the configuratio®’. This independence is useful
in the description of behaviors. BecauSé&(3) is a Lie group, it has intrinsically associated to it a Lie
algebrase(3) (the set of twists)and its duat*(3) (the set of wrenches) (Gilmdre 1974). More generally
the configuration manifold i& = SE(3) x ... x SE(3).

Definition 5 The set of free flowsfor a robotic system interacting with » links is the following vector
space:
F =se(3) x...x se(3) (2.10)

n times

In the example, the sdf = se(3) would be the set of twists of the flotor with respect to the stator. The
important thing is that a twist is independent of the particular configuration of the flotor. The corresponding

1Consider the human upper limb, which has an approximately seven-dimensional configuration manifold. The actuator configu-
ration manifold is the set of muscle configurations. The configuration manifold of each muscle is ideally a real fnteovidlat
.A = Il X IQ X



diachronic spadkis F7, theset of diachronic (free) flows. Similarly, a free co-vector is defined to be the
set of duals tdF". Energetic covectors are often referred teffarts.

Definition 6 The set of free effortsfor a robotic system interacting with n links is the following vector
spacedual to F:
E =se"(3) x...x se"(3) (2.11)

n times

In the exampleE = se*(3) is the set of wrenches that the human applies to the flotor. This wrench
has both a torque part and a linear force part. Spatasd E' are geometrically and energetically dual,
F = E*. We can next define thgort outcome space:

Definition 7 The port outcome spacéV is the product of the free flow and effort spaces:
W=FxE (2.12)

Port outcomes are expressily independent of configuration. To account for configuration we define an
extendend port outcome space.

Definition 8 The extended port outcome spad¥, is the set
W=XxW (2.13)

The port outcome space is a vector space, the extended port outcome space is not. In this way, we have
separated the configuration information from the geometrical description of the energetic varianlds

F. The corresponding diachronic spaces Hfé andW”. The duality of £ and F makes it possible to

define the instantaneous physical power of a port outcome.

Definition 9 Given = (f, e) € W we definethe instantaneous powef @, I1(1), to be the annihilation
of f ande:

n

(@) = (e, f) =Y (e fi) [ €se(3),e; € s (3) (2.14)

i=1

Notice that this definition of power is independent of the configuratiorin the example, this power
corresponds to the power that the human interacting with the H.D. supplies to the system.

2.4 Integration of Free Vectors

It is possible to define the temporal integral of a diachronic flow given an initial instant and corresponding
initial configurationz(to) € X'. Suppose corresponding to initial instagte T the initial configuration is

z(tp) € X and the initial flow isf (t¢) € F. By means of the Lie group operation of right translation, one
can associate a unique element 7. X, ;) to f(to). We choose right translation because the free vector
space is assumed to be expressed in the inertial coordinate frame. Bedsasangent velocity vector it
makes sense to write(to + dt) = x(to) + vdt. Integrating this differential relation we obtain the desired
definition. The formal definition follows:

Definition 10 The temporal integral of diachronic flow'(-) € FT, giventime set T > t,, and initial
effector configuration zy € X', denoted fTM F(7)dr, isthe diachronic effector configurationz(-) € X7
suchthat R 1) (x(t), 2(t)) = (e, F'(t)) and 2(to) = x0, where R, (-) denotesthe right translation of
and e isthe identity element of the Liegroup SE(3) x --- x SE(3).

2Diachronic functions are variously referred to as ‘signals’, ‘histories’, ‘trajectories’, etc. Willems refers to them as ‘signals’ in his
behavioral framework, but ‘signal’ is also commonly used to refer to a time-varying entity for which there is no significant associated
power flow, such as control, measurement, and other information signals.



3. Port Behavior

The goal of ‘dynamic behavioral control’ is to ‘control dynamic behavior'. This implies (1) that there is
some sort of ‘desired dynamic behavior’ corresponding to the reference model of the input-output model
matching; and (2) that the mechanical system has some ‘actual dynamic behavior’ that a control system
influences in such a way as to make it more like the desired behavior. This section defines these concepts.

The universe of port outcomes, U, is the set of defined port outcomes given a time set under a cer-
tain constraint. Using the behavioral framework, the behavioral universe is defined to be the set of all
combinations of diachronic port outcomes.

Definition 11 The universe of port outcomas the set
U={(z, fe)ecWT; (Ryp-1(ay). (x(t),2(t)) = (e, f(t)) Vt € T}. (3.15)

This is indeed well defined. For each instantz(t), #(t)) € T. X, is a velocity vector tangent at(t).

The Lie group magR,-).(-) applied to a vectofz, -) € T,.X, gives a vector tangent at the identity

X. In the example, this represents all the possible evolutions between the twist, wrench, and configuration
during any interaction of a human with the H.D.. There is at least one other candidate definition for the
universe of outcomes. Defining to be T*X, the cotangent bundle of, would simplify describing
behavior using Hamiltonian methods. The faip, po) would then correspond to a reference configuration
and momentum at the reference instant. The major problem with this definition is that ‘momentum’ is not
an inherent attribute of a linkage of rigid, ideally non-inertial, bodies, and possibly redundant. Similar to
(Willems[T991), gport behavior is defined to be a subsBt C U. The port behavior defines which port
outcomes are compatible.

3.1 Port Jet Spaces

Defining port behavior to be a subsetois conceptually sufficent. For practical reasons, it is useful to be
able to describe a certain behavior by means of differential equations. This can be done using jet spaces
(Olven 1993). Lelg be a manifold. Given a sufficently smooth functigin) € G7, its n-th derivative with

respect ta is well defined. Let7; denote the set of all possible instantanestistemporal derivatives for

any possiblg(-). One can then define the 8t = G x G x ... x G,,. Points inG(™ are denoted by

g™ Consequently, there is an induced functidf (-) = pr(™) g(t) called then—th prolongation of g(-),

which is defined by the equation:

g™ (@) = (9(t), 91(t), -, gu(t)) (3.16)
where e
gnlt) = 2 (3.17)

Thuspr(™g(-) is a function fromT to the space ™). We define a port jet space according to the theory
of differential equations.

Definition 12 The n-th order port jet spacef T' x W is defined to be the space T x W (™), where W is
defined in Def. [7]

The port jet space is insufficient because it does not contain configuration information. Configuration
information is necessary to describe static, compliant behaviors. We thus define an extended port jet space.

Definition 13 The extended—th order port jet-spade defined to be the space T x W ("), where W (%) =
X x W,

It is now possible to associate with each pointdra unique element of the extendeeth order port jet
space by means of prolongation. In general given &seet2 ¢ is the set of functions fror§ to the binary
set2 = {0, 1}. Interpreted as membership functions, elemenotlefine subsets . Thus se2® can
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be identified with the set of subsets®f Defineprojection onto the extended n-th order port jet spaceto
be the mapping,, : U — 27" defined by the recipe

ma(2(-), @(-) = {(t,w™(t) s t € T} (3.18)
More explicitly the projection map is

T (2(+), (")) = ma((-), f(-), () =
{(t,a:(t),(f(t),e(t)),..., (%{ . % t)) e T} (3.19)

In the H.D. example, the projection of ordegives therefore at each time the configuration of the flotor,
its twist, the applied wrench by the user and all their time derivatives up to arder

Definition 14 Behavior B C U isrepresentable by a differential equation (RDE behavfdhere exists a
continuous function AB : T x W — R called an associated differential equati¢a 3 such that the
subset of T x W (™) defined by

Sag = {(t,w™); ATt w™) = 0%} (3.20)
isequal to 7, (B).

The definition of behavior as a subsetlpis extremely general and there is no certainty whatsoever that
one could find a compact definition that would characterise all the signals belondghgtsubset of all

the possiblg3 can be given a compact form as the kernel of a function. This subset is the one referenced
in the previous definition.

Definition 15 An RDE behavior is of ordern if n is the minimumn € N such that there existsa A B -
T x W™ — R satisfying the previous definition: S5 = m,, (B).

" W

T

interaction

Figure 5: A simple port behavior

3.1.1 Example

To illustrate these last concepts, consider the system shown inlFig. 5. This is a system with trivial geometry
and a work spac&’ of dimension one. The equations describing the systems dynamics and interaction
force are:

{ Mi+K(x—x,) =0 (3.21)

E,=K(z—xp)
wherez,, indicates the configuration of the port. To get a port description independent of the internal states,
differentiateE, twice to obtain:

1 .
ME” +3,) =0 (3.22)

This is a scalar equation, implying that= 1 in Def. [14. Furthermore, the highest derivative of the port
variables f, e) = (&,, E,) is second order, requiring a second-order jet space descripti).(It follows

that
df de\ [d2f d?e Pe K df
At el (g ) o ae ) = ae ¥ ore ™ M (323)
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3.2 Time-Varying and I nstantaneous Behavior

The instantaneous behavior of a robot could vary with time in order to let the robot react differently de-
pending on the situation. This concept s related to the fact that the port behavior will in general not be time
invariant. In the H.D. example, this could mean that the stiffness that the user would feel would change
from one moment to another. A formal definition of what is meant with time invariant behavior can be
found in Sed_8P.

Time varying behavior is useful for describing robot function. Changing the end—effector equilibrium
configuration and changing principal stiffness directions are examples of behavioral changes. It is compu-
tationally useful to parametrise what is called instantaneous behavio” betsome set of parameters.
One can consider parameters varying with time witRinAt each instant there is a time-invariant behav-

ior determined by the instantaneous parameter. In[Sek. 8dftheential equation structure is formally
defined. It is a differential equation parameterised by the a parameteP. If it is possible to param-
eterise an RDE behavior, then its parameter function at any particulat tileeermines a time-invariant
behavior. This behavior corresponds to the actual behavior only at the instaas it will be called the
instantaneous behavior at timet. A formal definition of this can be found in Sdc. B.4.

4. Port Behavior Control

The previous section defined port behavior and its representation by means of differential equations. This
section looks first at specifying desired behavior, using for example a differential equation structure, and

then using control to make the actual behavior approximate the desired behavior. Broadly one can break
the design of a behavioral controller into three steps:

1. Specify a desired port behavior.
2. Define a meaningful measure of deviation of the actual behavior from the desired behavior.

3. Specify control actions to be taken to keep the behavioral deviation within acceptable limits.

4.1 Desred Behavior

Desired behavior can be expressed by means of instantaneous behaviors using parametrized differential
equations. Formally this means a differential equation strudtr} and its associated parameter space

P need to be defined. For a stiffness controller the parameters might be principal stiffness axes, principal
stiffnesses, location of a center of stiffness, and an equilibrium configuration. The principal axes, principal
stiffnesses and location of the center of stiffness might be piecewise constant, changing only at discrete
intervals. The equilibrium configuration might move continually. This is what is done in practice. This
process will be discussed in detail in the example of §éc. 5..

4.2 Behavioral Deviation

The importance of a measure of the deviation of the achieved behavior from the desired behavior is twofold:
first it could be used as a measure in order to apply optimal control techniques for control synthesis,
second it is useful for verification of the performance of a particular controller, or for comparison of the
performance of different controllers.

Conceptually one could proceed as follows. Defining a metric on the gpaoene could then use
an infinity norm to define the distance between different behaviors, elemebts @iven a measure
of distance ori/, it would be straightforward to define a Hausdorff pseudometfric ( Abraham & Marsden
1992) on the set of subsetsi@f This pseudometric is the intuitive metric between subsets induced by a
metric between points. This would then directly give a measure of the distance between behaviors, which
could theoretically be used as a measure of behavioral deviation. There are two major problems with this
approach. First, given a metric a#7, although the Hausdorff pseudometric is well defined theoretically
it would be practically uncomputable and thus of little use. Second, as proven Ipali@n1985), there
does not exist an intrinsic, rigid-body-transformation-invariant metric on the set of twi$fy, This set,
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describing both infinitesimal translations and rotations, is inhomogeneous. As such there is no intrinsic
positive-definite metric ¢hiv = SE(3) x se(3) x se*(3), which is important for spatial manipulators. As
such the resultant Hausdorff pseudometric is not intrinsically defined and thus of lesser theoretical interest.
Because of these problems a more pragmatic, computable measure of deviation will be given.

Suppose the desired behavior is specified by means of a differential equation st{dctirand its
associated parameter spa@eand parameter functiop. Let w,,(t) denote the measured port variable
at time¢. A measure of deviation of the achieved behavior from the desired one can then be defined as
follows:

Definition 16 The behavioral deviatiomt time ¢, e(t), of w,,(-) from a desired RDE behavior of order n
represented by { A} is defined to be

e(t) = 1A (¢, pr™wn ()| (4.24)
where || || isthe Euclidean normon R?.

The behavioral deviation is appropriately zero at instafand only if w ,,,(-) satisfies the instantaneous
behavior att. By means of the previous definition it is also possible to determine which instantaneous
behavior best describes the measured port variables. To this end consider the set of parameters minimizing
the instantaneous behavioral deviation:

Py (t) = argmin [| AL (¢, pr™w,, (1))]] (4.25)
pPE

In generalP,,(t) is a set containing multiple that minimize the behavioral deviation. In the case that

P,,(t) consists of a singlg(t), one could define the instantaneous behavior correspondiﬁéﬁ% to be
the measured instantaneous behavior at timet.

4.3 Behavior Control

As illustrated in Fig[b, a robot system can be decomposed into four major subsystems: a mechanical
linkage, a set of actuators, a set of sensors, and a control system. While typical, this decomposition is
somewhat artificial. For example, one can imagine sensorimotor components that are neither strictly sen-
sors nor strictly actuators.

— Interface port

—»( Act. 1
A
- w

Gct. n

Controller

Figure 6: The Complete Controlled Schema

The energetic port of interaction with the environment is associated with the end—effector. The behavior
of this port clearly depends on dynamics of the various subsystems. Kibure 6 uses bond-graph notation.
Half arrows indicate power bonds. Normal arrows indicate ideal signals, which do not involve significant
power.

30nce a reference configuration is chosen one can ide§ifify3) with X', the end-effector configuration space.
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4.3.1 Robot Mechanical Linkage

Details of the power port of the linkage end—effector have already been discussed. Besides the end—effector
power port, the linkage interacts energetically with its actuators. Associated with this interaction are power
ports in the spacd (see Sed.2]1). Usually each actuator has one degree of freedom. The total actuator con-
figuration space is in general a subset of the Cartesian product of the individual actuators one-dimensional
configuration spacesd = A; x ... x A,,. For each actuator configuration spaég the corresponding

scalar flow (velocity) isf; € Fla,; the corresponding scalar effort (force)ds € E4,. The instanta-

neous power supplied by actuatoro the mechanical linkage H(w;) = f;e;. The individual actuator

port outcome space is théii,, = F, x E4,. The corresponding extended port outcome space is then
Wy, = A; X WA, The universe of port outcomes for actuats then

UA% = {(ai, fi7 ei) S (WA%)T S.t. fi = at} (426)

The universe of port outcomes for all actuators is tlen=Ua, x ... X Uy, ,.

The linkage external univerée? = U x U4 will therefore describe all the energetic ports of the mechanical
linkage.

Again, letq € Q denote linkage configuration (see SEcC] 2.1). 4} € QT be a joint configuration
signal. Analogous to previous definitions one can definéttrepolongation of;(-) to beq *) = pr(*)¢(t)

and indicate withQ(*) the set of all possible prolongations of orderfThe internal configuration universe
can be defined adg = QT corresponding to all the possible configuration trajectories as functions of
time. We engage in an abuse of notationdpconsidering it to be both an element@for Q 7 when the
meaning is obvious from context. The full linkage behaviBur represents all possible relations between
manifest variables like the port ones of the actuators and of the workspace and the so called latent variables
(Willems[1991) corresponding to the joint configuration:

By c Uy :=UEF xUg (4.27)

The external (or manifest) behavioBY c U can be defined as:

BE = {(w,wa) € UF|Fq(") € Ug S.t. (w,wa,q) € Br}

For analytical purposes one can follow a procedure similar to the one i Def. 14 to define a kernel represen-
tation of the full linkage behavior by means of a differantial equation (see[Sdc. 8.5). Such a representation,
is a function of the form

ABL T W™ x WP x QO — R

whose kernel corresponds to the behavior:

ABr (™ P g0y = v (4.28)
wherew54 € WA X ... X W
It is important to reallse that the Imkage behavior is a design constraint. Any possible dynamical evolution
of the controlled system projected o, will be in By..

4.3.2 Exampleof aLinkage Description

Suppose to have andegrees of freedonmdof) robot in which the actuators are located at thpints

and therefor&® = A. By choosing a reference configuration of the end—effector it is possible to identify

each end—effector configuration with an elementSd#(3), and thus a homogeneous matfik.. This

is achieved by identifying any chosen end—effector configuration with the rigid body motion (element of
E(3)) relating the fixed reference configuration to the chosen configuration. It is then possible to express

the direct kinematics as follows:

L:Q— SE®3): g H, = (Reo(q) pﬁf‘”) (4.29)
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where R.(q) is an orthonormal matrix ang.(¢) € R3. The derivative of this map i®L : T.Q —
T.SFE(3). Using the Lie group right translation 6fE(3), each element df'.SE(3) can be mapped to a
twist belonging tose(3), defining the so-called geometric Jacobian (Murray, Li & Sdstry 1994):

Ja(q) : T,Q — se(3)

Dually, the transpose aof,(¢) (corresponding to the pull-back of the map) associates with each wrench
E, € se’(3) a corresponding linkage effoft, 7) = (¢, JI (q)E,) € T*Q.

Assume that the actuator configuration spalcean be identified with the linkage configuration space
Q. Let(q,¢,74) denote an element @f, the universe of actuator port outcomes. (ék.,F,, E,)
denote an element f, the universe of end—effector port outcomes. The linkage behavfsr can then
be described using Lagrangian dyanamics and the forward kinematics as follows:

M(q)g+C(q,4)q + 71,4(:4) — T + J¢ (9) Ea
ABE(tw®, 0 ¢®) = { Fy — Ju(g)d (4.30)
He - L(q)

whereM (q) is a configuration-dependentmass matfiXq, ¢)¢ is a tuple of Coriolis and centripetal terms,

and 7y 4(q,q) is a tuple of friction and gravity terms. In this example= 24 because there are six
scalar Lagrangian dynamic equations, six scalar differential kinematic equations, and 12 scalar, dependent
kinematic equations (nine for rotation and three for translation).

4.3.3 TheActuators

The actuators (including necessary power amplifiers) and sensors are the interface between energetic and
signal domains. Each actuatohas a single-dimensional power pd¥t4, connected to a corresponding

port of the mechanical linkage. The behavior of each actuator varies with time and is modulated by its
input signals. Denote the;-tuple of inputs for actuator by w; = (w1, 2, ..., uin,). The set of all

possible inputs for actuataris denoted byl/;. The set of alhn actuators’ inputs will be defined as
U="U x...xUp,.LetU! be the signal space for the actuat@ontrol signals:;(-). The full i-actuator
behavior3 4,, will be a subset ofV’{ x U". The set of behaviors is restricted to those that can be described

by means of a (generally nonlinear) function of the following form:;

ABA T U % Wf‘") R

This is a restriction as we do not consider all the possible dependencies bedz\f/g(ie}wnduZ e U;as a
consequence of eventual dependenmes of partial derivatives (|Olver 1993). One can then consider the total
actuator behavioB4 = B4, x ... x Ba,, for thep actuators, defining:

m

ABa T x U x W) —RF,

(t,u,wl(g)) — A,UlAl (t,ul,w(Anll)) X AU;Q (t, us w(nz)) Lo Aiﬁ"" (t,up,wgn’”)) (4.31)
wherek := vy +va + ... + Uy, § := max{ny, na, ..., N} ande‘j) = Wi‘jl) X ... X W,E\J;i-

Example 1 Atorque servoactuator behavesideally as an effort source modulated by a single input, so that
u; = U1 = Tdes, the desired torque. The corresponding port behavior is

AfAi (ta Tdes» U’f}) = €; — Tdes (432)
which isindependent of f;.

The next example refers to a so-called ‘variable impedance actuator” ([Fassé 1995, Fasse 1994), which is
an electromagnetic motor for which the equilibrium configuration, rotational stiffness and damping can
be changed independently by changing electrical currents. Briefly, it is possible to change the equilibrium
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configuration open-loop by changing the direction of of the stator magnetic field. Itis possible to change the
stiffness by changing the magnitude of the stator magnetic field and the magnitude of a rotor current. It is
possible to change the damping by changing the magnitude of damping by changing the stator current only.
Velocity-dependenttorques are generated by means of rotor currents induced by motion of the rotor relative
to the stator field. While this actuator has been realized in the laboratory, it has not been further developed
because the range of impedances achieved open-loop is smaller than that achievable using feedback control
techniques.

Example 2 A variable impedance actuator behavesideally as a rotational, mechanical system modulated
by three inputs. These inputs can be identified with the desired virtual equilibrium angle, stiffness and
damping, so that u; = (u;1, wi2, ui3) = (6,, K, B) The corresponding first-order port behavior is

AfAi (t,ui,wg?) :M% +Bfi+K(@O; —0,) —e; (4.33)
where §; and M arethe actual configuration and intrinsic rotational inertia of the actuator, respectively.

LetU = U; x ... x U, be the set of inputs for all the actuators, whgiis the number of actuators.
For example, using torque servoactuators each eleméniap-tuple of desired torques.

43.4 TheControl Law

In general a control law can be considered to be a causal map from measured variables and desired behavior
parameters to actuator input signals:

c: MT x PT - U” (4.34)

SpaceM is the set of measured variables and can be considered to be a sub§étlok Wf({”). Set
P is the set of potentially time-varying desired behavior parameters. If fot anyl” the actuator input
u(t) depends only omn(t) andp(t) then one can write : M x P—U. If the map does not depend on
measured variables then the control is said to be open-loop. For example, the effective end—effector inertia
of a redundant manipulator could be changed by reconfiguring the linkage without feedback.

SetP can be considered the set of inputs of the controlled system, corresponding to paranieiar set
Def.[20. Typical parameters are equilibrium configuration and stiffness, damping and inertia matrices.

Example 3 Let x, be a desired virtual equilibrium configuration of the end—effector in Cartesian coor-
dinates using chart ¢. Let K, be a desired Cartesian end—effector stiffness matrix. Let B4 be a desired
Cartesian end—effector damping matrix. Let L4 be the analytic direct kinematic function, mapping joint
anglesto generalized coordinates. Let J 4 be the corresponding analytic Jacobian, relating joint velocities
and generalized velocities. Assume that joint configuration and velocity are measured, and that the robot
is actuated by torque servoactuators. A suitable control law is:

c: M"x PT - U” ; (((L(j); (K¢’B¢amv)) = Jg(Q)[Kqﬁ(% - L¢(q)) - B¢J¢(q)(j] (4.35)

435 TheBehavioral Control Objective

The definition of a control law was not specific to behavioral control. Before giving a formal definition of
the behavior Control Problem, let us define the set of solutions of the controlled system.

Definition 17 (Controlled Solution Set) Given (1) a robotics linkage with behavior 5 1, represented by a
differential equation A5z (-) asin Sec[4.31 and (2) a set of actuators with behavior B 4 represented by a
differential equation A *(-) asin Sec4.3.3) then the set of solutiongor the controller ¢ with parameters
Pistheset Bo(e, P, Ba, Br) := {(w(-),wa(-),q(-)) € Ur st. Ae, Pw(-),wa(-),q(-)) = 0°T*} where

(4.36)

_ ABL (1w, w® ) )
Ale,p,w(+),wal(+),q()) =
(e,p,w(-),wa(-),q(+)) <:£A(

t,e((w™, w)(1), P)(t),w)
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For anyB C U, one can define its natural projectitin, oni/ in the following way:

Iy (B) == {w(-) e U|Fwa(-) € Ua,q(-) € Ug S.t. (w(-),wa(-),q(-)) € B} (4.37)

The objective of behavioral control can then be defined.

Definition 18 (Behavioral Control Problem) Given a robotics system with linkage behavior B ;, and ac-
tuator behavior 4. Given a desired behavior B represented by a differential equation structure {A? }
with given bounds a, b € R*. The behavioral control probleris to find a controller ¢ such that Vw s (+) €
(B (e, p, Ba, Br)) the behavioral deviation e = ||AZ (pri™wg(t)|| will be bounded by —a and b for
altime i.e, —a < e(t) <b.

5. Example: Spatial Compliance Control

This section presents a nontrivial example to illustrate the utility of the framework for analyzing spatially
complex interaction controllers. “Spatial compliance control” (Fasse & Brognink|1997) is a Euclidean-
geometric method for controlling the mechanical compliance of a robotic end-effector. Unlike well known
compliance control methods this method does not use generalized coordinates, so it cannot be analyzed
using conventional methods. Only enough detail is given to motivate the need for a rigorous analytical
framework. Publications on this topic have used both body-relative and absolute twists and wrenches.

5.1 Desired Behavior

The primary goal of control is to achieve a desired compliant behavior, which behavior is parametrized by
spatial and nonspatial parameters. Eetbe a homogeneous matrix representing the configuration of the
end—effector. Letd, be a homogeneous matrix representing a desired virtual equilibrium configuration
of the manipulator. The virtual equilibrium configuration is a control parameter, not necessarily a desired

configuration. It corresponds to an actual equilibrium in the absence of interactiofi.Let [ f  m] ] 4

be the wrench exerted by the end—effector on a fictitious compliant elemeniFl.dbe the small, finite,
absolute twist takind?,, to H.. Mathematically this can be computed by

[6F,] =In(H.H,") (5.38)
whereln denotes the matrix logarithm. The desired compliant behavior for small displacements is

wy & [Igt [go] oF, (5.39)

where matrices<; and K, are symmetric stiffness matrices. Matiik, = R;I';R] is thetranslational
stiffness matrix. Columns ofR; = [elt €eat egt] are theprincipal axes of translational stiffness. Matrix
T, = diag(v1t, Y2, vat) is @ matrix ofprincipal translational stiffnesses. A displacement along any one of
the principal axes results in a linear force along the same axis.

Matrix K, = R,I', R is therotational stiffness matrix. Columns ofR, = [e1, €2, e3,] are the
principal axes of rotational stiffness. Matrix ", = diag(y10, 20, ¥30) iS @ matrix ofprincipal translational
stiffnesses. A rotation about any one of the principal axes results in a moment about the same axis.

For analytical purposes it is useful to defingatational co-stiffness matrix, G, = ROAOROT =
%tr(KO)I — K,. Matrix A, is a diagonal matrix oprincipal rotational co-stiffnesses. It follows that
K, =tr(Go)I — G,.

Given an antisymmetric matrid it is possible to find a unique vectefA) € R3 such thatA is the
cross-product matrix of (A). This defines a map associating antisymmetric matrices and elements of
3. A configuration-wrench map that achieves the desired stiffness is then

fa_KtApzo

5.40
mq —v(2as(R.RTG,)) =0 (5.40)

17



whereAp = p,. —p,. The same stiffness could be achieved in different ways. This particular configuration-
moment map has a particularly simple transformation properfy.|fR, andR, are all subject to a rotation
thenm, is rotated by the same amount. Because of this parametessd R, can be chosen independently
of I',. Similarly, parameters,, and R; can be chosen independentlylof.

It is useful to distinguish between spatial and nonspatial parameters of compliance derbte the
set ofspatial parameters, with elements ofS beings = (p,, R:, R,). Let N denote the set afonspatial
parameters, with elements ofV beingn = (T';,T',). So doing the desired behavior is given by

s,n _ fa - KtAp _
AG (HevaEa) - (ma *V(Z&S(RTRZTGO)) =0 (5-41)

5.2 TheMode of the system

Let ¢ € Q indicate the generalized coordinates representing the robot configuratientaadssociated
generalized forces. Suppose that the linkage is such that the actuator4pacesponds to the joint
space@. The dynamics of the robot are assumed to be dominated by (1) inertia, (2) load-independent,
configuration dependent joint friction, and (3) gravity. The robot is actuated by a set of variable-effort
actuators and interacts energetically with its environment via the end-effector. The efforts of the actuators,
T4, are assumed to be the generalized forces corresponding to the generalized velocities.

This corresponds to the model given in Sec. 4.3.2. The forward kinematics are givén yL(q).
Absolute twists are determined from the linkage velocities by the Jacobians J,(q)¢. The linkage
behavior is given by[(4.30).

5.3 Control Law and Achieved Dynamics

Assume that linkage configuration and velocitgndg, are measured or otherwise estimated. Assume that
body-relative wrenches;, are measured, from which absolute wrenclhgscan be computed. The set of
measured variable®l can then be identified with', Q@ x se*(3). Let 7 4(q, ¢) be a model-based estimate
of the friction and gravity terms. A suitable control law is:

TA = _7A-f,g (Q7 Q) — Teomp + Tff (542)
where

Tip = (a = 1)J] (q)wa (5.43)
for some scalatv > 1 and

Using this control law and the robot dynamic equatibn (4.30) the achieved dynamics are

(nJ;bb) - éJa_T[M(Q)fi +C(¢,@)q+ 71.9(0,4) = Tr9(a:4)] + (v(2 asgﬁ%Gg))) (5.45)

5.4 Behavioral Deviation

The resulting behavioral deviation is

1 .. o\ - . . .
e(t) = |~ Jo " (M ()i + Cla,d)d + 77,6(a:4) = T1.9(a: )] (5.46)
The static behavioral deviation is simply

(1) = 12T (0 (0:0) — 19 a- ) (5.47)

This shows that a large value @fresults in (theoretically) better behavioral tracking by reducing the effects
of error in the model-based term compensating friction and gravity.
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Figure 7: The main model of the Wave generator

6. A simulation example

To further illustrate the way in which the behavioral deviation can be used to measure the performance of a
system controlled with a behavioral controller, a simple one dimensional simulation has been done which
models and simulates the system reported in[fig.2. This simulation has been kept simple on purpose in
order to show the basic concepts which can be easily extended to a multidimensional case.

Due to its simplicity, there is no three dimensional geometry involved. The interaction takes place
through the energy exchange between the waves and the duck as explainefin Sec. 1.2. The chosen physical
values areJ, = 2 Kg m?, B, = 3.5 Nm secandK, = 20 Nm.

6.1 Desired behavior

The desired behavior for the system is reported here again for convenience:
J.Q+ B.Q+ J,-wi@ =T

Parameters like the resonance frequency could be estimated from an observer extracting the funda-
mental component (the one with the major energy content) from the wave frequency spectrum. This is
nevertheless out the scope of the paper.

6.2 Thecontrol schema

Different control synthesis could be used, but the goal of this work is not to present new synthesis tech-
nigues, but rather analysis tools to measure the behavior deviation as presented in the paper. For matter of
simplicity, the model synthesis used is a model based one which was discussedin Sec.1.2.3. The control
law used to achieve the desired behavior is:

Tm = (K, — j,.d)?

w

)0

If the controller parameterﬁ,, J, and&,, match exactly with the parameters of the dudk @nd K,.)
and with the wave frequencw(,) the desired behavior is achieved, otherwise there is a certain distance
between the desired behavior and the actual one.

6.3 Thebehavioral deviation

The total system has been modeled and simulated with the pa2kegenfrom Control Lab Products

BV, which is able to handle port interconnection of systems. The main model is shown [ Fig. 7. The
block on the left generates a wave profile which exites a spring damper system (Waves). The other side of
the mass-spring system is connected to the energy generator (Duck) through a power bond using the bond
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Figure 8: Period sweep with correct values of the other parameters (left) and with an error in the stiffness
model value.

graph formalism. Note that indeed the arrow connecting the Waves submodel to the Duck submodelis not a
normal arrow, but a ‘half arrow’ indicating a bi-directional signal exchange of power conjugate vafiables
Eventually, the behavior deviation is evaluated following the line explained if Sed. 1.2.5. A multiple run
simulation has been performed in which a span of the period used in the model base controller is varied
from 1 to 10 seconds (10 lines per plot are visible in the pictures). The result is shown[ih Fig. 8 (left). The
value corresponding to the correct wave period@fc is shown with a thick line which is to be found on

the0 distance axis. As expected, with the other parameters having an exact value, the behavior deviation is
zero if the frequency is corresponding to the one of the waves. On the other hand, if the period is not well
known, some deviations can be seen. Each curve on the graphic represents the deviation of the behavior of
the system from the desired one, calculated by means df Elj.(1.9). As the wave period used in the control
law (w,,) gets closer to the real value, the deviation gets smaller and smaller and when the period is equal to
5sec we have that the desired behavior is achieved and that the deviation is zero (the thick line on the graph.

Another simulation has been performed by choosing a wrong estimation of the model stiffness of
10 Nm and using the same period sweep as before. The result is now shown[ih Fig.8 (right) where
it is now possible to see, that a correct estimation of the wave period gives again the best performance
corresponding to the minimum behavior deviation, but nevertheless is not equal to zero. By looking at
the two plots, it can also be observed that for bigger errors of the estimated period, the difference in the
overall performance changes because of the mismatch befeand K,. which influences the behavioral
mismatch and, therefore, the distance between the real behavior and the desired one.

7. Summary

There are two distinguishable active compliant motion control paradigms: hybrid position/force control and
interactive behavior control (impedance, admittance contfol) ( Stramigiolil1998). Currently the physical,
geometrical, mathematical foundations of hybrid control are better established than those of interactive
behavior control. This paper has presented an analytical framework for the behavior control of spatio-
mechanical robots using geometrically sophisticated control laws.

The output tracking and model matching paradigms were briefly presented. Hybrid control can be con-
sidered to be an example of the output tracking paradigm. Behavior control is related to the model matching
paradigm, but the causality assumptions inherent to the model matching paradigm were considered unde-
sirable in general. The goal of model matching control is to achieve a desired map from exogenous inputs
to exogenous outputs. For interactive control there is a natural choice of exogenous variables: conjugate
power variables. There will not in general be a natural choice of ‘inputs’ and ‘outputs’.

4For details concerning the notation, the reader is addressed to standard literature of physical modeling using bond graphs.
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A geometrically simple, non-robotic wave energy generator example was given to motivate the idea that
there are practical control problems that are not well described by the output tracking and model matching
paradigms. For this system the goal of control was for the controlled duck (rotating tank) to resonate at the
frequency of the incident waves. It was the goal of control, not the control law, which distinguished this
controller from, say, an output tracking controller.

An essential feature of spatial robots is the nontrivial geometry of such spaces as the robot linkage
configuration space and the robot end—effector configuration space. The kinematic maps relating these
spaces are typically highly nonlinear. Sect[oh 2. defined the necessary configuration spaces and tangent
dynamics spaces necessary to define energetic ports. Although the presentation is unique, the material in
Sec[2. is not new.

Sectiong 3[=b. present new material. Sedfidn 3. defined port behavior and related concepts. Initially
port behavior was to defined abstractly to be a subset of the universe of port outcomes. For practical reasons
we want to describe behavior more succinctly, using in particular differential equations. To this end port jet
spaces and differential equation representations of behavior were defined. These concepts were illustrated
using a geometrically trivial example. It is difficult to define “time-varying” and “instantaneous” behavior
in a meaningful way. Definitions of these elusive concepts were proposed.

Defining behavior control is more difficult than defining, say, output tracking control. In the output
tracking control paradigm the ‘outputs’ are assumed to be well defined and determinable at each instant in
time. Intuitively one would like to say that the goal of interaction control is for the actual instantaneous
behavior to track the desired instantaneous behavior as closely as possible. Béction 4. defined behavioral
deviation as an index of fidelity. Behavioral deviation was defined in such a way that it could be computed
for any instant given a set of measured, extended port variables. The behavior control of a robot was
defined, which robot consists of a mechanical linkage, a set of actuators with variable behavior, and a set
of sensors. The robot behavior was defined in a way consistent with current models (e.g., using Lagrangian
dynamic models of the linkage). Finally the behavioral control problem of a robot was defined.

The utility of the framework was illustrated in Sdc]l 5.. A geometrically nontrival desired behavior
was assumed. The behavior was nontrivial because of the desired, compliant orientation-torque relation.
The behavioral deviation corresponding to a particular control law was computed and shown to depend
strongly on one particular control parameter. This shows that the various proposed definitions were in fact
defined in computable and thus useful ways. This particular, spatial controller motivated the development
of the framework in the first place, because geometry cannot be ignored as it often is in discussions of
generalized-coordinate-based, “Cartesian” impedance control. It is hoped that elements of the proposed
framework will be useful for the development and systematic comparison of geometrically sophisticated
interaction controllers of complex, spatio-mechanical robots.

8. Appendix

8.1 Notation

Q Configuration space

X Work space

A Actuator configuration space
U Actuator signal input space
M Measurable variable space
E Euclidian Space

T.X Tangent bundle of’

T*X Cotangent bundle ot

T, sX Tensor bundle of typér, s)
T. X, Tangent space of atp € X

21



T*X, Cotangent space of atp € X

T, s X, Tensor space of type-, s) atp € X

C Affine connection oY’

lc Parallel w.r.t. connectio@’

F Free flow space

E Free effort space

pr(™ n-th prolongation

W Port outcome space

w Extended port outcome space

U Universe of port outcomes

B Port behavior

T x W™ n-th order port jet space

T x W Extendedh-th order port jet space

T Projection of port outcomes onto the ex-
tendedn-th order port jet space

AB Differential equation representing behav-
ior B

{AP} Differential equation family indexed by pa-
rametermp

€ Behavioral deviation

AB Set of applications fronB3 to A

]z € Ty Equivalence classes of curves tangent at

0v Column vector ofy zeros

8.2 Timevaring behavior

The following definition describes invariant behavior Given a port behd¥iar &/ we will say that the
port behavior is time invariant if it is invariant for local group translation of the time set. A more formal
definition follows. Let(T + 7) = [t1 + 7, t2 + 7] be the intervall” = [t1, t2] shifted byr.

Definition 19 A behavior B C U is time invariantiff for any (z(-), w(-)) € B, and for any 7 such that
TN(T+7)#0,then
(@7(),w™ () € BTN (T +T)) (8.48)

wherez” (t) = x(t —7), w™ (t) = w(t — 7),and B/T N (T + 1) istherestriction of the behavior to the set
TN (T +7).

Botha™ andw™ are well defined on the s&tn (7 + 7). This definition is independent from any differential
equation description of the behavior. For behavior representable by a differential equation the following is
true.

Theorem 1 Given an RDE port behavior 3 and an associated differential equation, A 2, then the behavior

istime invarianiff AB(t;,w(™) = AB(ty, w™) for anyty, s € T. Inthiscasewewrite AB : W) R,
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8.3 Parameterizablebehavior

Definition 20 Let {A?} be a family of differential equationsindexed by parameter p € P. This family is
said to be a differential equation structuia an RDE port behavior B iff there exist a diachronic parameter
p(-) € PT suchthat

APD (¢ ™) = AB(t,0™) (8.49)

where AZ is a differential equation representation of B. Set P is the parameter setf the differential
equation structure. Function p(-) isthe parameter functioof the behavior.

8.4 Instantaneous port behavior

Definition 21 Given a parametrisable RDE n-th order behavior B with parameter set P, parameter func-
tion p(-), and differential equation structure {A?}, then the instantaneous port behaviar time ¢ is the
behavior B;(t) C U such that

m(Br(t)) =8

AP®) (8.50)
where

Spp = {(#,w™); AN (%, w(M) = 0} (8.51)

Note that in the previous definition# t*: ¢ indexes the instantaneous behavior at tiraadt* indicates
the time of any possible solution of the time invariant differential equation.

8.5 Full linkage behavior

Definition 22 We will say that the full linkage behavior B, is representable by a differential equation
(RDE behavior) if there exist integers n, p, ! and v such that there exists a continuous function A Bz -

Tx WM x WP x 9 — R such that the subset of T x W™ x W x Q) defined by:

SA,?L = {(f'a ,w(n)7 w,(f) ) q(l)); AEL (f’a ,w(n) ) wff)7 q(l)) = OU} (852)

isequal to m, ,,;(Br), where
anpyl(w(')va('% q()) = {(ta w(n)awi{))v q(l)) pte T}
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