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Abstract

We study systems whose dynamics are described by systems of linear constant coe0cient partial di2erential equations in
a behavioural framework. Questions about the notion of autonomy and controllability are addressed with special importance
given to the time-evolution. We investigate consequences of time-autonomy for time-controllability. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to study autonomy and controllability of dynamical systems described by linear
constant coe0cient partial di2erential equations in the behavioural theory of Willems (see [11]). Traditionally,
behaviours arising from systems of partial di2erential equations are studied in a general setting in which the
time-axis does not play a distinguished role in the formulation of the de;nitions pertinent to control theory
(see [5–7,9] etc.) However, it is reasonable to suggest that in the study of systems with “dynamics” arising
from (engineering) applications, it is useful to give special importance to the time variable in de;ning system
theoretic concepts. This also highlights the similarities with the de;nitions in the case of 1D dynamical
systems. (For an excellent elementary introduction to the behavioural theory in the 1D case, we refer to
Polderman and Willems [8].) In this paper, we study time-autonomy and time-controllability properties (see
also [1]).
The paper is organized as follows: In Section 2, we give the mathematical preliminaries that we need and re-

call the notion of time-controllability of the behaviours. We establish two main theorems about time-autonomy
of behaviours in Section 3. Finally in Section 4, we study the relationship between time-autonomy and
time-controllability.
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2. Preliminaries

In this section, we recall some facts about distributions and dynamical systems. We shall tailor our choice
of de;nitions and theorems to the needs of the remainder of this paper.
This paper concerns dynamical systems � = (Rm +1;Cw;B), where Cw is called the signal space and B ⊂

D′(Rm +1) is called the behaviour of the system � (see for example [7]).
Let us denote the polynomial ring C[�; �1; : : : ; �m] by A. Consider the polynomial matrix

R=



r11 : : : r1w

...
...

rg1 : : : rgw


∈C[�; �1; : : : ; �m]g×w

with each entry in A. Consider each row of R as an element of the free module Aw. Let 〈R〉 denote the
A-submodule of Aw generated by the rows of the polynomial matrix R. The polynomial matrix R gives rise
to a map DR :Ww → Wg, where W ⊂ D′(Rm +1), which acts as follows:

DR



w1

...

ww


=




∑w

k=1
r1k(

@
@t

;
@
@x1

; : : : ;
@
@xm

)wk

...∑w

k=1
rgk(

@
@t

;
@
@x1

; : : : ;
@
@xm

)wk



:

Such maps will be called di9erential maps in the sequel.
Throughout this paper, it is assumed that behaviours of dynamical systems are actually ones which are

distributional kernels of di2erential maps DR, where R is a polynomial matrix. So in particular, the behaviours
are time-invariant subspaces.
The W-behaviour corresponding to R∈C[�; �1; : : : ; �m]g×w, is de;ned to be BR;W = {w∈Ww |DR(w) = 0}.

Given a W-behaviour, say B, de;ne

〈R〉B = {r = [r1 : : : rw]∈Aw |Dr(w) = 0 for all w∈B}:

It was shown in [5] that given any R∈C[�; �1; : : : ; �m]g×w, 〈R〉BR;W = 〈R〉, if W is C∞(Rm +1;C) or D′(Rm +1).
Let W ⊂ D′(Rm +1). The behaviour B of a dynamical system is said to be time-autonomous with respect

to W if

[
w∈B ∩Ww and

〈w; ’〉= 0 for all ’∈D(Rm +1) with supp(’) ⊂ (−∞; 0)× Rm

]
⇒ [w = 0]:

The behaviour B of a dynamical system is said to be time-controllable with respect to W if for any w1 and
w2 in B ∩Ww, there exists a w∈B ∩Ww and a �¿ 0 such that

〈w; ’〉=
{ 〈w1; ’〉 for all ’∈D(Rm +1) with supp(’) ⊂ (−∞; 0)× Rm;

〈��w2; ’〉 for all ’∈D(Rm +1) with supp(’) ⊂ (�;∞)× Rm:
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w is then said to concatenate w1 and w2. Roughly speaking, a time-invariant dynamical system is time-
controllable if it is controllable with respect to the open sets (−∞; 0) × Rm and (�;∞) × Rm (see [7] for a
de;nition of controllability).
We will denote the interval (0;∞) by R+ in the sequel. Given w∈D′(Rm +1), de;ne w|t¿0 ∈D′(R+ ×Rm)

as follows:

〈w|t¿0; ’〉= 〈w; ’〉 for all ’∈D(Rm +1) with supp(’) ⊂ R+ × Rm:

W|t¿0 is the set {w|t¿0 |w∈W}. Suppose that W|t¿0 is a topological vector space. The behaviour B of a
dynamical system is said to be approximately time-controllable with respect to W if for any w1 and w2 in
B ∩Ww, and for any neighbourhood of w2|t¿0, there exists a w∈B ∩Ww and a �¿ 0 such that

〈w; ’〉= 〈w1; ’〉 for all ’∈D(Rm +1) with supp(’) ⊂ (−∞; 0)× Rm and (�−�w) |t¿0 ∈N:

It is easy to see that if a behaviour is time-controllable with respect to W, then it is approximately time-
controllable with respect to W. If W=D′(Rm +1), then one simply speaks of time-autonomy, time-controllability
or approximate time-controllability.
If T ∈D′(Rm+1), then one can associate a continuous linear map �T :D(R) → D′(Rm) as follows:

〈(�T ) (’);  〉 = 〈T; ’ ⊗  〉 for all ’∈D(R) and  ∈D′(Rm). We recall below the Schwartz kernel theorem
(see for instance [4, p. 128, Theorem 5:2:1] or [10]).

Lemma 2.1 (The Schwartz kernel theorem). The map T �→ �T is an isomorphism from D′(Rm+1) onto
L(D(R);D′(Rm)).

We abbreviate B ∩ C∞(Rm +1;C)w by BC∞ . The smooth null behaviour of a dynamical system is de;ned
as the set

B0
C∞ = {w∈BC∞ |w|t60 = 0};

where w|t60 is the restriction of the function w to the closed left half-space {(t; x)∈Rm +1 | t6 0}. By BC∞ |t¿0

we mean the set

{w∈C∞(R+ × Rm;C)w | ∃w0 ∈BC∞ such that w0|t¿0 = w};
where w0|t¿0 is the restriction of the function w0 to the open right half-space {(t; x)∈Rm +1 | t ¿ 0}.

Lemma 2.2. The behaviour B of a dynamical system is approximately time-controllable with respect to
C∞(Rm +1;C) if

B0
C∞ = BC∞ |t¿0;

that is, the closure of the smooth null behaviour in the topology of (E(R+ × Rm))w is the restriction of the
smooth behaviour to the open right half-space t ¿ 0.

Proof. Let w1 and w2 belong to BC∞ , �¿ 0, and N be a neighbourhood of w2|t¿0. Then −w1(• + �) +
w2(•)∈BC∞ , and −w1(•+ �) + N is a neighbourhood of (−w1(•+ �) + w2(•))|t¿0. From the hypothesis, it
follows that there exists a null solution w̃ approximating (−w1(•+ �) +w2(•))|t¿0 in (E(R+ ×Rm))w, that is
w̃(t)=0 for all t6 0, and w̃|t¿0 ∈−w1(•+�)+N . De;ning w=w̃+w1, we have that w∈BC∞ , and moreover,
w(t) = w1(t) for all t ¡ 0, and w(• + �)|t¿0 ∈N , hence establishing the approximate time-controllability of
the behaviour with respect to C∞(Rm +1;C).
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3. Time-autonomy

In this section, we study the notion of time-autonomy behaviours, and we will establish two main results
about the time-autonomy of a partial di2erential equation with constant coe0cients.

3.1. All time-autonomous scalar behaviours with respect to �−1L(D(R);E′(Rm))1

The space of distributions with compact support is denoted by E′(Rm). In the sequel, we denote the Fourier
transform from E′(Rm) to E(Rm) by the symbol F.

Theorem 3.1. The behaviour corresponding to p∈A is time-autonomous with respect to �−1L(D(R);E′(Rm))
i9 p �=0.

Proof. Let p=a0(�)+a1(�)�+· · ·+aN(�)�N, where a0; : : : ; aN ∈C[�]. Let w∈ �−1L(D(R);E′(Rm)) ⊂ D′(Rm +1)
be a solution of

0 = p
(

@
@t

;
@
@x

)
w =

∑N

k=0
ak

(
@
@x

)
@k

@tk
w = 0 (1)

with 〈�w; ’〉= 0 if ’∈D(R) and supp(’) ⊂ (−∞; 0). For ’∈D(R) and y∈Cm, de;ne

(Fw) (’; y) := (F〈�w; ’〉) (y) = 〈〈�w; ’〉; e−2�i〈•;y〉〉= 〈w; ’⊗ e−2�i〈•;y〉〉: (2)

Then (Fw)(’; •) is analytic in y and (Fw)(•; y)∈D′(R). From (2), we infer[
F

(
@
@t

w
)]

(’; y) =
〈
w;−@’

@t
⊗ e−2�i〈•;y〉

〉
=
(
F

〈
d
dt

�w; ’
〉)

(y);

[
F

(
@
@xk

w
)]

(’; y) = 〈w;−’⊗ (−2�yk)e−2�i〈•;y〉〉= 2�yk

(
F

〈
d
dt

�w; ’
〉)

(y):

The di2erential equation (1) thus implies∑N

k=0
ak(2�iy)

dk

dtk
(Fw)(•; y) = 0 for all y∈Cm:

If aN(2�y) �=0, then the distributional solution (Fw)(•; y)∈D′(R) of this nonzero ordinary di2erential equation
is indeed analytic and therefore zero since it is zero on (−∞; 0) by assumption. Hence

(Fw)(’; y)aN(2�iy) = 0 for all ’ and y:

For ;xed ’ this is a product of analytic functions. Since aN(2�i•) �=0 and since the rings of local or global
analytic functions have no zero-divisors (power series rings are integral domains) this implies

(Fw)(’; y) = 0; F(〈�w; ’〉) = 0; 〈�w; ’〉= 0 and w = 0:

3.2. All time-autonomous scalar behaviours

Our main result in this section is Theorem 3.4. In order to establish this result, we recall a few notions
from the theory of linear partial di2erential equations.

1See Theorem 2:1.
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Let p∈C[�1; : : : ; �n] be of the form

p=
∑

|(�1 ;:::;�n)|6N

a(�1 ;:::;�n)�
�1
1 : : : ��nn

with a(�1 ;:::;�n) �=0 for some (�1; : : : ; �n) with |(�1; : : : ; �n)|= N. The degree of p, denoted by deg(p), is N. The
principal part of p (denoted by pN) is de;ned by

pN =
∑

|(�1 ;:::;�n)|=N

a(�1 ;:::;�n)�
�1
1 : : : ��nn :

The hyperplane with normal n̂∈Rn, that is, {x∈Rn | 〈x; n̂〉=0} is said to be characteristic with respect to p
if pN(n̂) = 0.
We quote the following from HQormander [4] (Theorem 8:6:8, p. 312):

Lemma 3.2. Let X1 and X2 be open convex sets in Rn such that X1 ⊂ X2, and let p∈C[�1; : : : ; �n]. Then
the following conditions are equivalent:

1. Every T ∈D′(X2) satisfying the equation DpT = 0 in X2 and vanishing in X1 must also vanish in X2.
2. Every hyperplane which is characteristic with respect to p and intersects X2 also intersects X1.

Let us denote by — the homomorphism

p(�; �1; : : : ; �m) �→ p(�; 0; : : : ; 0) :C[�; �1; : : : ; �m] → C[�]:

Lemma 3.3. The hyperplane with the normal n̂ mbox:= (1; 0; : : : ; 0)∈Rm +1 is characteristic with respect to
p∈C [�; �1; : : : ; �m] i9 deg(p) �=deg(—(p)).

Proof. If

p=
∑

�∈N;"∈Nm

a�;"���"; then p(�; 0) =
∑
�6N

a�0��:

Furthermore,

pN =
∑

�;";�+|"|=N

a�;"���" and pN(1; 0) = aN0:

Consequently, pN0 = 0 i2 aN0 = 0, that is, i2 deg(p(�; 0))¡ N = deg(p).

With X2 = Rm +1 and X1 as the half-space {(t; x) | t ¡ 0}, we obtain the following theorem:

Theorem 3.4. The behaviour B corresponding to 0 �=p∈C[�; �1; : : : ; �m] is time-autonomous i9 deg(p) =
deg(—(p)).

Proof. Let X2 =Rm +1 and X1 be the half-space {(t; x1; : : : ; xm) | t ¡ 0} in Lemma 3.2. Then item 1 in Lemma
3.2 is exactly our de;nition of time-autonomy of the behaviour B corresponding to p. Every hyperplane
intersects the whole space X2 = Rm +1. Moreover, every hyperplane, with the exception of the one with the
normal n̂= (1; 0; : : : ; 0), intersects the half-space X1. Consequently, time-autonomy of B is equivalent to the
hyperplane with the normal (1; 0; : : : ; 0) being not characteristic with respect to p. Thus in light of the Lemma
3.3 above, the desired assertion is proved.



150 A.J. Sasane et al. / Systems & Control Letters 45 (2002) 145–153

Example 3.5. The following table gives some simple examples.

Time-autonomous Not time-autonomous

C[�]\{0} C[�1; : : : ; �m]
� + �1 + · · · + �m �(�1 + · · · + �m)
�2 − (�21 + · · · + �2m) (1 + �1 + · · · + �m) + (1 + �1 + · · · + �m)�

This table shows that �−1L(D(R);E′(Rm))-time-autonomy is di2erent from D′(Rm +1)-time-autonomy.

Next, we discuss the following refractory example, which shows that the underlying space is crucial in
discussing time-autonomy.

Example 3.6 (The di2usion equation). The behaviour corresponding to the polynomial

p= �− (�21 + · · ·+ �2m)

is not time-autonomous. Indeed, deg(p) = 2 �=1 = deg(—(p)).

1. We give the construction of a smooth nonzero trajectory with zero past. The following example of a
C∞(R2;C) solution to the di2usion equation with one 1D space is based on A.N. Tychonov’s example,
which can be found for instance in [2] (Example 2, pp. 50–51):

w(x; t) =
∞∑
k=0

f(k)(t)
x2k

(2k)!
; −∞¡x; t ¡∞

with

f(t) =

{
e−1=t2 for t ¿ 0;

0 for t6 0:

2. However, with an “appropriate” choice of the space of solutions, for instance �−1C∞(R+; L1(R;C)), the
Cauchy initial value problem for the di2usion equation is well-posed:[

@
@t

− @2

@x2

]
w = 0 and w(0; x) = w0(x)

has the unique solution in �−1C∞(R+; L1(R;C)) given by the Weierstrass formula

w(t; x) =
1

2
√
�t

∫ ∞

−∞
e−(((x−�)2)=4t)w0(�) d� for all t ¿ 0

if w0 ∈L1(R;C), guaranteeing time-autonomy with respect to C∞(R+; L1(R;C)).
In this case, if w0 ¿ 0, then one can prove that ||w(t; •)||1 = ||w0(•)||1 for all t¿ 0, which conforms with
the physical intuition that in a di2usion process, matter is conserved. We remark that the anomaly of
nonuniqueness is a consequence of the fact that the plane t=0, carrier of the initial data, is a characteristic
of the di2usion equation.

3.3. A necessary condition for time-autonomy with respect to C∞(Rm +1;C) of a scalar behaviour

We quote the following from HQormander [4] (Theorem 8:6:7, p. 310):
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Lemma 3.7. Let the plane hyperplane with normal n̂ be characteristic with respect to p∈C[�1; : : : ; �n]. Then
there exists a w∈C∞(Rn;C) such that Dpw = 0 and supp(w) ={x∈Rn | 〈x; n̂〉¿ 0}.

An easy application of this lemma yields the following corollary:

Corollary 3.8. If the behaviour corresponding to p is time-autonomous with respect to C∞(Rm +1;C), then
p �=0 and deg(p) = deg(—(p)).

4. Time-autonomy versus time-controllability

4.1. Time-autonomy versus exact time-controllability

Lemma 4.1. If the behaviour B of a dynamical system is nontrivial in Ww and time-autonomous with
respect to W, then B is not time-controllable with respect to W.

Proof. The proof is immediate from the de;nitions.

Example 4.2. The behaviour B of the dynamical system corresponding to p = � + �∈C[�; �] is not time-
controllable: indeed, this is now easy to see from the above theorem, since from Theorem 3.4 of the previous
section, we know that B is time-autonomous. Moreover, the behaviour is nontrivial since it contains for
instance the nonzero trajectory e x−t .

Theorem 4.3 (A necessary condition for time-controllability). The behaviour B of a dynamical system cor-
responding to R∈C[�; �1; : : : ; �m]g×w is time-controllable only if

@[∃'∈Aw \ 〈R〉 and ∃(0 �=)p∈A such that p · '∈ 〈R〉; and deg(p) = deg(—(p))]: (3)

Proof. Suppose that (3) does not hold and B is time-controllable. Then there exists an element '∈Aw \ 〈R〉
and a p∈A such that p · '∈ 〈R〉, and deg(p) = deg(—(p)).
Clearly the trivial zero trajectory w1:=0 belongs to B. Since ' is not in 〈R〉, it follows that it does not kill

every element in B. Let w2 ∈D′(Rm +1)w be a trajectory such that D'w2 �=0.
Let w be a trajectory in B which concatenates w1 and w2. De;ne u= D'w. Since p · '∈ 〈R〉, and w∈B,

it follows that Dpu = 0. But since 〈w; ’〉 = 0 for all ’ with support in (−∞; 0) × Rm, it follows from the
de;nition of u that 〈u; ’〉 = 0 for all such ’. Hence it follows from Corollary 3:4 that u must be zero. But
this a contradiction since u matches the nonzero future of D'w2 (w2 might have to be shifted in order to
achieve this). This completes the proof.

Remarks. 1. The above theorem says the following: If there exists a row vector ' in Aw which is not in
〈R〉 and there exists a nonzero polynomial p satisfying deg(p) = deg(—(p)) such that p · '∈ 〈R〉, then the
behaviour corresponding to R is not time-controllable.
2. We observe that (3) implies that the C[�]-module Aw=〈R〉 is torsion free, and hence we recover the

necessary condition for time-controllability, Theorem 3:9 in [1]. Note that 〈R〉 is a A-submodule of the
A-module Aw. Hence Aw=〈R〉 makes sense as an A-module. But since C[�] is a subring of A, Aw=〈R〉 is
also a C[�]-module: indeed, we simply restrict scalar multiplication to elements belonging to C[�] instead of
the full ring A.
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Example 4.4. Let B be the behaviour of the dynamical corresponding to p = ��∈C[�; �]. Since deg(p) =
2 �=1 = deg(—(p)), it follows from Theorem 3.4 that B is not time-autonomous. B is not time-controllable,
since the C[�]-module A=〈��〉 is not torsion free. For instance, T� is a nonzero torsion element.

Example 4.5. The following table gives some simple examples.

Time-autonomous @ time-autonomous @ time-autonomous
and and and
@ time-controllable time-controllable @ time-controllable

C[�] \ {0},
� + �1 + · · · + �m, C[�1; : : : ; �m] �(�1 + · · · + �m)
�2 − (�21 + · · · + �2m)

4.2. Time-autonomy versus approximate time-controllability

Theorem 4.6 (A necessary condition for approximate time-controllability). The behaviour B of a dynamical
system corresponding to R∈C[�; �1; : : : ; �m]g×w is approximately time-controllable with respect to
C∞(Rm +1;C) only if (3) holds.

Proof. Suppose that (3) does not hold and the behaviour is approximately time-controllable with respect to
C∞(Rm +1;C). Then there exists an element '∈Aw \ 〈R〉 and a p∈A such that p · '∈ 〈R〉, and deg(p) =
deg(—(p)).
As ' is not in 〈R〉, it follows that, it does not kill every element in BC∞ . Let w0 ∈BC∞ be a trajectory

such that D'w0 �=0. Without loss of generality, we may assume that (D'w0)|t¿0 �=0 (otherwise w0 can be
shifted to achieve this). Since the topology of E(-) is Hausdor2, it follows that there exists a neighbourhood
N in (E(R+ × Rm))w of (D'w0)|t¿0 that does not contain 0.
Since the map D' : (E(R+×Rm))w → E(R+×Rm) is continuous, it follows that there exists a neighbourhood

N1 in (E(R+ × Rm))w of w0|t¿0 such that w1 ∈N1 implies that D'w1 ∈N . Consequently (D'w1)|t¿0 �=0.
Let �¿ 0 and let w∈BC∞ be such that w(t) = 0 for all t6 0, and w(•+ �)∈N1. De;ning u= D'w, we

have u|t¿0 �=0.
Since p · '∈ 〈R〉, and w∈BC∞ , it follows that Dpu= 0. But since w(t; •) = 0 for all t ∈ (0;∞), it follows

from the de;nition of u that u(t; •) = 0 for all t ∈ (0;∞). Hence it follows from Theorem 3.4 that u must be
zero. But this a contradiction since u �=0. This completes the proof.

In the case of the scalar behaviour of a single partial di2erential equation, the necessary condition for
approximate time-controllability also turns out to be su0cient. This is a corollary of Theorem 1, p. 255 from
HQormander [3].

Theorem 4.7. If p∈C[�; �1; : : : ; �m] is such that each irreducible factor pi of p satis=es deg(pi) �=deg(—(pi)),
then the behaviour corresponding to p is approximately time-controllable with respect to C∞(Rm +1;C).

Proof. From Theorem 1 [3, p. 255], it follows that B0
C∞ = BC∞ |t¿0. Consequently, from Lemma 2.2 we

have that the behaviour corresponding to p is approximately time-controllable with respect to C∞(Rm +1;C).
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Example 4.8 (The di2usion equation). The di2usion equation is approximately time-controllable: indeed �−�2

is the only irreducible factor, and deg(�− �2) = 2 �=1 = deg(�).

Concluding remark. The main feature of a di2erential equation as a mathematical model of a physical
phenomenon is the “local” nature of the law. In the case of an ordinary di2erential equation, “local” usually
refers to “local in time”, while for a partial di2erential equation, “local” refers to “local in time and space”.
The question arises if for PDEs this point of view is adequate. As we have seen, the di2usion equation
(@=@t)w=(@2=@x2)w, with solutions in C∞(R2;C), shows odd behaviour. The variable w is not free and hence
there are no inputs, but nevertheless the system is approximately controllable! However, if a global condition
(for example the requirement that w(•; t) is bounded for all t) is added, this odd behaviour disappears: the
only solution compatible with w(•; t) = 0 for t6 0 is the zero solution. It is clear, however, that what global
condition is reasonable to impose will depend on the speci;c physical system that is being modelled and on
the speci;c question one wishes to analyse. Is there a general way to proceed?
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