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Synthesis of Dissipative Systems Using Quadratic
Differential Forms: Part Il
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Abstract—in this second part of this paper, we discuss several  In [23], we obtained a precise characterization of the con-
important special cases of the problem solved in Part |. These are: trolled behaviors that can be obtained by interconnecting the full
dlstu_rba_nce attenuation and passivation, the full information case, plant behavior with a controller through the control variakles
the filtering problem, and the case that the to-be-controlled plant . . . .
is given in input—state—output representation. An interesting as- These implementable beh.awors consist exactly of the.behawors
pect is the notion of full information, which we define in terms of K € £ that are wedged in betwegvi and?. Hence K is an
the observability of the to-be-controlled variables from the control  implementable behavior if and onlyAf ¢ £ C P.In[23], we
variables. When the system is given in state space form, we obtain gbtained necessary and sufficient conditions for the existence
conditions for the existence of a controller that renders a system ¢ 5 implementable behaviéf that meets the control specifi-
dissipative in terms of two coupled algebraic Riccati inequalities. . . . S .

The controller turns out to be a feedback system with a transfer catlonf. Such_an_ |mplementable b(_ahawor ex_|sts_ ifand QUM’ if
function that is proper, but, in general, not strictly proper. Another ~ @ndP--= are dissipative and a certain quadratic differential form,
issue that we study in this paper is feedback implementability. We made up by coupling storage functionsfyV/, is nonnegative.

find conditions under which, in the context of synthesis of dissipa-  |n the present part, we discuss some special cases that are of
tive systems, a controlled behavior can implemented by a feedback ,,cp, independent interest. They serve to illustrate the problem
controller. statement and its solution, and the generality and unifying fea-

Index Terms—Dbisturbance attenuation, feedback imple- tures of our approach and of the results.
m.enta.bility, filltering, full information, H.-control, passivation, The first two special cases that we consider have to do with
Riccatl equations, state space systems. the weighting functional)s. Taking for Qs the difference of

two norms, leads to disturbance attenuation. TakingJfaran
I. INTRODUCTION ordinary inner product, leads to passivation. The specifications

N THE SECOND part of this paper, we continue studyingn K can then be expressed as conditions on the transfer func-

) . . - f the controlled system.
the control configuration shown schematically in Fig. 1. Wi on ofthe .
will use the same notation and terminology as in [23]. For OIhR? Eg‘:rd and fotgrtr; sge(t:rl]a:] case ahé - 0 ?nd Pt t:
review of the background material on linear differential syster’r%J (R, RY), respectively. Both have very nice interpretations.

and quadratic differential forms needed in this paper, we ref e first case corresponds to wha_t we cal! full mformatlon
control. In the control literature, full information control is usu-

y taken to mean that the sensor outputs consist of the full state
the plant. Unfortunately, such a definition is not particularly
intrinsic. First, because the state itself is not intrinsic, due to the
possible nonminimality of the state, and second, because in op-
timal H,- or H.-control problems, the state also incorporates
variables that originate from the cost-functional, whose measur-
" ability in terms of sensor outputs is not particularly meaningful.
. . ' In a behavioral context, however, we obtain a very crisp defini-
before control is .apphed;v - . . __tion of full information control. We say that we have full infor-
: th_ehldden behavioV € 2 , consisting of the _traject_orles mation control if the to-be-controlled variables are observable
v in the fu_II plar_1t behavior that are compatible with th?rom the control variables, equivalently; = 0. The fourth spe-
control_ traj_ectoness:_: 0; . _ . cial caseP = €=(R, R"), corresponds to filtering. The fact
* the welgrltmg fur:(xztvlonalglvep by a nonsmgular_matrlx that both full information control and filtering both appear as
E+£ » e R that def_me;, thron_Jgh the Ir‘tegr"’“simple special cases of our general control problem, is a matter
77 Qs(v) dt of the quadrgtlc differential fory s, the f interest.
control pgrformance functional that needs to be maé)eTheﬁnaIspecial case that we consider is the state space case,
nonnegative. i.e., when the full plant behavior is given in input-state-output
representation, and the weighting functional is a constant
Manuscript received February 1, 2000; revised February 12, 2001,August§e’,0'variab|e polynomial matrix. In this case, our general re-
2001, and August 30, 2001. Recommended by Associate Editor M. E. Valchgults of [23] lead to solvability conditions in terms of algebraic
The authors are with the Institute for Mathematics and Computing Scienq®jccati equations and inequalities. This problem has been
‘j@?,vﬁ}gn‘f;‘gg;?g;”;ughﬁl)'“e”‘e”a”ds (e-mall: KL Trentelman@math.1ig- iy ey very intensively in the 1990s, for example, in [1], [4],
Publisher Item Identifier S 0018-9286(02)01096-6. [71, [12]-[15], [3], [18], [16], [17], [5], [6], [9], and [10].

to [23, Sec. Il, IV.1, and VI.1].
The basic ingredients for the problems discussed in tfﬁ%
two-part paper are 0
« the full plant behaviorPs; € £9F¢, consisting of all
trajectories(v, ¢) that satisfy the equations of the to-be
controlled plant;
« theplant behavior? € £, consisting of the to-be-con
trolled trajectoriess that the full plant behavior allows
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Fig. 1. Plant and controller configuration.
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In Section VI of this paper, we address the importantissue of  d € €<(R, R?), there existsf € €>°(R, R®) such that
feedback implementability. We find conditions under which a (d, f) € K], and(0, f) € K implies thatf(¢) goes to
controller that renders a system dissipative, can be implemented  zero ag — oc;

as a feedback controller. iii) in X, dis input andf is output, and the transfer function
The proofs of the results can be found in Section VII. Gay from d to f satisfies||Ga sl < 1.
[I. DISTURBANCE ATTENUATION AND PASSIVATION B. Passivation

We now discuss the first two special cases of the mainA similar story holds, with disturbance attenuation replaced
problem solved in [23]. In particular, we show how to convetty passivity, wherv = (e, f) (e for “effort,” f for “flow”)
the dissipativity requirement into more classical statemerdadQx(c, f) = ¢ f, with ¢ fi the “power” flowing into the
about the input-output behavior and the transfer function pfant through thesth exogenous port or terminal (see Fig. 3),
the controlled system. It is quite apparent, of course, thahenceX: = 1/2[2 fJ] Here,e = £ = dim(e) = dim(f).
Ho-disturbance attenuation and passivation are special cashe following proposition in turn reformulates the problem in
of our general problem formulation. However, the translatiothis case into a more transparent one.
to the abstract setting of [23] needs some extra work. Proposition 2: Assume that = (¢, f) andQx(v) = ¢! f.

Let K € £7_ .. Then the following conditions are equivalent:

cont "
i) KisX-dissipative ofR_, andm(K) = 0, (¥) (=e = £);
In the important case of{..-disturbance attenuation (see jj) fjc’o T fdt> 0forall(e, f) € KNL,, there is a com-

A. Disturbance Attenuation

Fig. 2) we have; = (d, f) with d exogenous disturbance vari- ponent-wise input/output partitiofu, v) of v = (e, f)
ables,f endogenous to-be-controlled variables, ghd(v) = such that for alll < 7 < e = £, eithere; or f;, is input,
|d|* —|f|>. WhenceY. = diag(la, —I¢). The following propo- and the other is output, arfd, f) € K andu = 0 imply
sition reformulates the problem in this case into a more trans-  that(e, f)|g, is bounded(e, f)|r, denotes the restric-
parent one. tion of (e, f) to R, ];

Proposition 1: Assume that = (d, f) andQx(v) = |dJ* — iii) there is a component-wise input/output partitiom, )
|f]?. LetK € £7__.. Then the following conditions are equiva- of v = (¢, f) such thatforalll < i < e = £, ei-
lent: there;, or f;, is input, and the other is output, and the

i) KisX-dissipative orR_, andm(X) = 0 (2) (=d); transfer matrix@,,—., from « to y in K is positive real,
||) ||f||£2(R,Rf) < ||d||£2(R,Rd) for all (d, f) e KN Ly, ie., Gtu()\) + G?;,_)y(X) > 0 forall A € C, with

the exogenous disturbancésre free ink [i.e., for all Re(A) > 0.
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Fig. 4. Plant and filter configuration.
lll. FuLL INFORMATION CONTROL Consider the signal processing problem depicted in Fig. 4.

Consider the plant shown in Fig. 1, and recall its descripticgq this set—u;k)), thqal_ant re(ljates_tt;)rlee typgs of variadbleﬁ_f,tlérl—
as discussed in [23, Sec. II], with the formal definitions of thB2Ncest, to-be-estimated variables, andmeasured variables

full plant behaviorPyy, the manifest plant behavid®, and the Y- The problem is to designfdéter that relates the measured vari-

hidden behavia\'. The controller is assumed to act through th@P!esy to theestimatef, such that thestimation erroe = f— f
control variables:. is small in an appropriate sense. Denote the number of compo-

In keeping with the behavioral definition of observability (se8€NtS 01 by d, of f (and hence ande) by £, and ofy by y. The
[23, Sec. VI.1]), we call the to-be-controlled variablesbserv- variables of mte_rest whose relationship we are trying to shape
ablefrom the control variablesin Py if (v1, €), (ve, ¢) € Pry 0¥ Me@NS Of & filter aréd, ¢). .
impliesv; = vy, equivalently if there exists a polynomial matrix  Define thefull plantbehaviorPsy, to be the signal&d, f, v)

F e R™[¢] suchthatv, ¢) € Pgayimpliesy = F(d/dt)ec. that the plant allows, themanifest plant behav_lofi?, to be the
We call this situatiorfull information control,since in this case Signals(d, f) that the plant allows, hence with the measured
knowledge of the control variables allows to reconstruct corMariablesy eliminated, and thaidden behaviotV', to be those
pletely the to-be-controlled variables. In particular, the controll§ignals(d, f) that are compatible with the plant equaticre
then has complete information of the exogenous disturbancedVih the measured variables equal to zero. Define furer

is as ifthe constraint that the controller is restricted to act throu§fte disturbance behaviotp be the signalg that are possible,
the control variables is inoperative. In particular, if we considévhence withf andy eliminated froniPg1. The formal defini-
the control variables as being measured, these measuremté@sof these behaviors is hence

allow to deduce all relevant to-be-controlled signals acting on

the plant. The following proposition relates full information ~ Pen = {(d, f, v) € €= (R, R***) [ (d, f, v)

control to the hidden behavior. satisfies the plant equatiops
Proposition 3: Full information control holds if and only if - att
In the case of full information control, our main result ([23, such tha(d, f, y) € Pfuu}

Th. 5]) immediately specializes to the following theorem. oo it
Theorem 4 (Full Information Control)Let? ¢ £7_, and N ={(d f) e & (R, R™)[(d, £, 0) € Prun}

¥ = ¥* € R"*" be nonsingular. Then there exigtse £, D={de > R,R)|[3(/, v)
such that such thatd, f, ) € Prun} -
1) £ c P (implementability;
2) K is X-dissipative orR_ (dissipativity); i ) , i
3) n(K) = 04 (%) (livenes; We assumgothroughout this section thatgy d is free, i.e.,
if and only if PL= is (—X)-dissipative onR_, equivalently, thatp N Q (R, R )'. .
if and only if there exists a two-variable polynomial ma- A filter is a dynamical system that relates the measured vari-

. v XT ablesy to the estimatef of f. The filter imposes a relation
trix W RY* , such thatQy > 0 and ) o . -
X Zpus € [c, 7], su @u,up (0) 2 on the variablegy, f). We take this to meafy, f) € F,

1s
(d/dt)Qu ., (v) 2 Qz(v) forv e P>, vw'th F € &1 the behavior of the filter. Before the filter

This theorem is an immediate consequence of [23, Th. 5]. ' » . .
. . acts, the variabled, f, y, f ande are constrained to satisfy
is actually the main result of [19], where, however, a much moE% £, ) € Prar ande = f f However. with the filter in ac
» Jo full = — ] y -

involved proof was given. tion, tﬁey have to obey algg, f) € F.Thisyields the manifest

behavioré of the variablegd, ¢) in the interconnected system
shown in Fig. 4, formally defined as

The problem discussed in [23] solves some interesting system
theoretic problems that are, properly speaking, not control prab= < (d, ¢) € €*°(R, R***) | 3(f, v, f) € € (R, RT7+Y)

lems. It turns out, in fact, that the “dual” of full information con- N .
trol is filtering. such thald, f,y) € Pran. (v, f) € Foe= [ — f} :

IV. FILTERING
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The behaviof€ is calledthe estimation error behavioObvi- that our result does not involve any particular representation of

ously, by the elimination theorend, € £+, If, for a given the full plant behavior, nor aa priori given input/output parti-

elemente € £, there exists¥ € £Y1* such that the above tion. For systems in state space representation, a similar result

relation holds, then we say that the filtérimplementst. The is found in [7] and [8]. We also refer to [9] and [11].

question what’s are implementable is answered in the fol- We remark, without going into the details, that theorem 6

lowing theorem. is readily extended to the case of weight#d,-norms. It is
Theorem 5 (Filter Implementability TheoremYhe behavior a simple matter to include frequency weighting in the formu-

& € £ isimplementable by a filteF € £/ ifand only if |ation of the filtering problem, by lettingl and e be related

N C €. Moreover, if€ is implementable, and if is inputand:  to the “physical” exogenous input disturbanéeand endoge-

is output in&, then it can be implemented by a filtér € 27 ous estimation errar = 1= f' by Q(d/dt)d = P(d/dt)d,

such that inF, y is input andf output. N(d/dt)e = D(d/dt)e', with P and D square, nonsingular,
The problem that we consider is to find a filter that renders thgnd Hurwitz.

estimation error behavior dissipative with respect to a QDF in We emphasize that the problem with which we deal here is

the variablegd, c). We consider only the case tf..-filtering. filtering, in contrast tasmoothing The smoothing problem cor-

The following theorem shows when such a filter exists. responds to the case théis dissipative w.r.t|d|? — |c|? onR

(instead ofR_). Equivalently, the problem solved in theorem

6, but without condition 4, the stability requirement. Whgn

s s . d+f ;

Theorem 6 (?{W'Flltderfmg)' Assume thatV' € £.0. | s dissipative w.r.tld|? — |e|? on R, then there exists for each
Then there exist§ € £, such that d € L,(R, RY), ac € L,(R, RY), such tha(d, ¢) € £. How-

1. N C &€ (implementability) ever, in order to obtain this, the initial conditions of the cor-

respondingF should be chosen well, and this choice involves

2. the disturbancegd are free in€ (liveness) both the past and the future df

3. (d, e) € EN Lo implies|e|lc, r re) < ||d]l2. (R, Re) Assume that the dissipativity condition on the hidden be-
(disturbance attenuation) havior A/ of theorem 6 is satisfied. Then there exists an imple-

4. (d, e) € £andd(t) = 0fort > 0 impliese(t) — oo mentableS such that conditions 2, 3, and 4 are satisfied. By [23,
(stability) Prop. 2], condition 3 implies that{£) < d. Together with con-

dition 2, this yields that irf, in fact,d is input ande is output.

it and only if AV is X-dissipative orR_, with Thus, by applying Theorem 5 we find that there exists a filter

¥ = diag(lq, —I¢), equivalently, if and only if there which implements, and hag as input andf as output. In other
exists a two-variable polynomial matrix words, there exists a filter that acts asignal processothat ac-
Wy € REOFDXE+D ¢ p] - such thal)y ,, (d, ¢) > 0 cepts any input signa) € €>(R, RY) and produces as output
and(d/dt)Qu . (d, ¢) < |d|?> — |e|? for (d, ¢) € . the estimatq? of f. There is naa priori reason, of course, for

the transfer function of this signal processor frgrto f to be
proper, since singular filtering is very much part of our setup.

We now explain the meaning of these conditions. The id‘l’-i’owever, properness may be obtained by imposing some ad-

is that before the filter acts, the variablgs c) are free: fore, gjtional structure on the plant. We will return to this issue in
this is trivially so, and ford, it holds by assumption. With the ggction VI.

filter put into place, as shown in Fig. 4, the variablds ¢) are
constrained to belong t6. The first condition is thus merely
the implementability condition of Theorem 5. The second con-
dition states that the filter is not allowed to restrict the free In this section we apply the results of [23] to the special
exogenous disturbances the interconnected systems shouldase that the plant is given in input/state/output representation.
still be allowed to accept arbitrarys. By [23, Prop. 2], and We shall see that our results and proofs concerning the general
with also the third condition, this is equivalent#¢£) = d. problem set-up lead to a solution for the state space case, analo-
The third condition expresses disturbance attenuation: for glus to those on the standakd, problem obtained in [1]. This
(d, e) € £N L, there should holtj:’;<> le|? dt < ff;’: |d|? dt. double Riccati equation solution and its variations have been the
The fourth condition states that without the disturbances actirsybject of very intensive research, see, e.g., [7], [18] and gener-
the estimation error must go to zero. Actually conditions 3 aradizations in [12], [13], [16], [17], [9], [10], [5], [6], and [3].
4 combined are equivalent ¥r-dissipativity of€ onR_: for all Whereas most of the existing literature deals with the problem
(d, ¢) € £ND there should hoqufC><> le|? dt < ffoo |d|? dt. of finding an internally stabilizing controller such that the,
The theorem therefore states that dissipativithobnR_, an  norm of the closed loop transfer functionsgrictly less than
obvious necessary condition (sinké C &), is also sufficient. 1, we deal with the problem of making thé., norm of this
Theorem 6 shows that, in a sengé,.-filtering is a rather transfer functioress than or equab 1, see [4], [14], [15]. Also
easy problem. It is possible to obtain disturbance attenuatithtis problem turns out to admit a solution in terms of two Riccati
from d to ¢ if and only if disturbance attenuation already holdequations, together with a coupling condition. A difference with
from d to ¢ wheny = 0. The content of Theorem 6 is to showthe strict suboptimal problem is, that the dimension of the state
that this obvious necessary condition is also sufficient. We natpace of the controller depends on the solutions of the Riccati

V. THE STATE SPACE H..-PROBLEM
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Fig. 5. Feedback control.

equation, and may be smaller than the dimension of the st&ar aim is to derive conditions for the existence and algorithms

space of the plant.

for the computation of the controller parameter matrices

The structure of this section is as follows. In Section V-AwéA., B., C., D.) such that the controlled system has the
state the problem, and in Sections V-B—V-H we derive condiellowing properties:
tions for the existence of suitable controllers, and convenienty) disturbance attenuatiomith gain factor normalized to

representations for them. Finally, in Section V-l we summarize
these results in a theorem. Connections with the double Riccati

equation solution from [1] are discussed in Section V-J.

A. Plant Description

Consider the plariPr,; given in input-state-output represen-

tation by
d
%sza:—i—Bu—i—Gd,
y =Cz + + Dd - @)
f =Hz+ Ju.

Assume that the following three regularity conditions hold:
A.1) D is surjective and is injective;
A2) (A-GDT(DDT)-'C, G(I; — DY(DDT)~'D))is
a controllable pair of matrices;
A3) (A-BJTN"YITH, (I; — J(JY.D)~YJTH) is an
observable pair of matrices.
In terms of the usual feedback diagram (see Fig: &je the
inputs to the actuatorg,are the outputs of the sensaighe ex-

1, ie, for all(d, f) € Lx(R, R***) for which there
exist (u, y, =, z.) satisfying both the plant equations
(1) and the controller equations (2), there should hold
I llcom,me) < [ldllco(r, me);

2) internal stability, meaning that in the controlled system
d = 0 should imply that the signalg, ., », f) all go

to zero ag — oc.

Note that in the controlled systeitk,; given by the combined
equations (1) and (2) is free. This implies thaf is also free in

K. Hence, from Proposition 1, it follows that conditions 1 and
2 above are equivalent to requiring that the controlled system
is internally stable and has transfer functi6i—. ; satisfying
||Gdi—>f||Hm <L

In terms of the notation used in [23], we have= (d, f) as
the to-be-controlled variables,= (u, y) as the control vari-
ables, and® = diag(l;, —I¢) as the weighting matrix. In this
section, hence; = diag(ly, —I¢).

Observe that internal stability is a slightly stronger stability
notion than the one used in the disturbance attenuation problem
treated in Section II-A. There it is only required that= 0
implies f(t) — 0 ast — co. We refer to this latter property as

ogenous disturbances, arfathe endogenous to-be-controllecexternal stability
outputs. The problem is to find a controller acting on the con-
trol variables(«, ) such that the controlled system meets ceg. calculation of Subbehaviors

tain specifications. We are looking for a controller that is also in
state representation, more exactly, in input—state—output repre-
sentation, withy the input,u the output, and with the controller

state denoted as.:

d
% LTe = Acxc + ch

u = chc + Dcy (2)

In order to apply [23, Th. 5], we first derive the various be-
aviors that are involved. In particular, for the full plant be-
havior P represented by (1), we will derive specific repre-
sentations for the manifest plant behavimand its>:-orthog-
onal complemerP+=, and the hidden behavigy and its¥:-or-
thogonal complement. Subsequently, we will derive conditions
under whichP and A satisfy the conditions of [23, Th. 5].
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Eliminating(w, ) from (1), yields the following driving vari-
able representation for the plant behaviar
d

%J}p = Azxp —I—[B G]dp,

H J 0 '
in which case the quadratic form on the subspace equals
Puttingu = y = 0 yields the following output nulling represen-
tation for the hidden behavioy’:

Lemma 7:Let M = M7, N, P, Q be real matrices of ap-
propriate dimensions, and assume t9as surjective. Then the
quadratic forme? M1 + 227 Nz + 23 25 is nonnegative on
the subspace defined Bz + Qz2 = 0 if and only if

0<M-NNT"+(P-QNT Q") (P-QN")=L"L

|Las]” + o2 + N [fr_or @om)-10)-

Using [23, Prop. 3], we know that-dissipativity of /' is equiv-
alent to the existence of a storage function. It is implied in [23,
Prop. 10] that a storage function is a state function. Hevide

%x/\/zAa:N—i—[G 0]un,
0— C n D 0

T lH|™Y 0 —I|" Y-dissipative if and only if there exists a mati&y = K3, €

R~ [with n = dim(x)] such that

Assumptions A.2) and A.3) made in the beginning of this sec-

tion ensure that the behavioks and? are controllable. More-

over, their state space representations obtained above are con-

trollable and observable. for all (v}, v},, zx) satisfying the equations fok’, equiva-
From these equations and the relations between an outgisy

nulling representation and driving variable representation of a

behavior and its orthogonal complement (see [23, Sec. V.1 |* — 2(vi) T GT Knznr — [Han|?

d
lanlh, < Tl = [l?

we obtain the following output nulling representation ot =

d

7 7P =—AT2p +[0 —HTvpis,

BT 0o Jt
0 = GT zp + —I 0 U’PLZ
and driving variable representation faf->

d
5N =AY +[CT HT|dps,

GT D7
UNLy:|:O:|Z/\/+|: 0 _I:|dNL;.

These equations immediately yield the following output nullin

representation fa” + P1=:

dlzy| [ A —-GGT|[an G 0
dt|zp | |H'H —-AY || 2p 0 _HT |"N4PLes
e —DGT | [za D 0
0= —.]TH BT 2p 0 ’]T UN_l_fPJ_E

and driving variable representation fBrn /L=

dlanv]| _[-AT —HTH| [z
dt l’p___GGT A xp
ct —HTJ
+|:—GDT B :|d73r1/\/*27
(GT 0] [z -DT 0
Upawvis =g H:||:$7D:|+|: 0 g |PPows

We frequently use the obvious partitions = (v}, v%), etc.,
for thews, and the analogs for thés.

C. Verification of Dissipativity

The next step, after cataloging these behaviors, is to ver

Y-dissipativity of V" and (—X)-dissipativity of P+=. The fol-
lowing lemma comes in useful in these verifications.

— 23 (AT Ky + Ky Az >0

for all (v, xpr) satisfyingCxzpr + Dv), = 0. We now ex-
press this as an inequality in terms of the system matrices. Using
Lemma 7, it follows that-dissipativity of A is equivalent to

the existence of a matrikyy = K3, € R**® such that the al-
gebraic Riccati inequality

0< —ATKy — KyA—HTH — Ky GGT Ky
+(CY + KyGDTYDDT)=HC + DG K )

= L% Ly 3)
rgmlds, in which case
!’ 2 1112 d 2
ol = Tkel” = = i,

= |U.$\/ - GTKN$N|%[_DT(DDT)—1D) + |L/\/a}/\/|2.

Similarly, (—32)-dissipativity of 1= is equivalent to the exis-
tence ofKp = K% € R**® such that

o lepli, < —lhus P+ s P
for all (v,.,, v}.,, zp) satisfying the equations fopL>.
Using lemma 7 again, it readily follows that E)-dissipativity

of P1= is equivalent to the existence &fp = K% € R**®
such that the algebraic Riccati inequality

0< AKp + KPAT - GGT - KPHTHKP
(B — KpHTJ)(JTJ) (BT — JITHKp)
= I5Lp

(4)

holds, in which case
i d
L N L

= [Wpis + HEp2p|f_ yigr gy-14my + [ Lp2p]*.



76 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 1, JANUARY 2002

Now apply [23, Th. 5], using the interpretation of K x-zns D. Specification of the Controlled Behavior

T : 1 3
andzp Kpzp as storage functions fdv andP—> respectively,  next we derive an inequality that makes it evident in the state

and the fact that the rTlinimaI_ statgsy, ZPT) appearinTg inthe gpace case how to specify the controlled behavior, using ideas
equations fot\" and P> satisfy (d/dt)(zxrzp) = vAXvp  from the proof of [23, Th. 5]. Introduce the variabigsy € R

It follows that a necessary and sufficient condition for the exg, 4 impose the constraifit" ] = K'[°]. Note that this equa-

) . T t N

istence of a controlled behavid? satisfying A" ¢ K C P, merely expresses th@f] must belong tam(K). Com-
Y-dissipativity, external stability, and free in K, is that there bined with the equations fdi/‘; N A=, this constraint actually
exist solutiond(,r and K'p to the algebraic Riccati inequalitiesdefines the behaviaM introduced in'the proof of [23, Th. 5]

(3), (4) such that In the regular case [which correspondgifo> 0, since for the
case at hand it is readily shown thigt+ A= = P + PL= =
K= {KN I } >0 €>(R, R**)] the existence of#, x) obviously imposes no
I —Kp conditions on(zxr, zp ), but in the singular case, it does. A
straightforward calculation using the algebraic Riccati inequal-
This nonnegativity is easily seen to be equivalent to the corities yields

bined inequalities T
/ 2 1" 2 d 9 9
1) Ky > 0; [Vprnts [T = [Vpapes [T — dt | x X
2) Kp < 0; —|d DDTY Y (C + DGT K02 — | Lact)?
3) Ky > (—Kp)™t,ie.,p(KxyKp) > 1, wherep denotes = ldpans —( ) (C+ A ppr =Ly
the spectral radius. — |dpoprie + (I THBY = JTHEp)X[r,

The theory of the algebraic Riccati equation and its relation + |Lpx/|?
with the algebraic Riccati inequalities allows to analyze the sity- , " e .
ation further. The final conclusion becomes that a necessary 4g2" (UﬁﬂN*E’ Upaes s 27 Tp) Salisfying the equations
sufficient condition for the existence of a required controlled b&2f NN =, andwith[ 2] = K[ ]. Combining this equality

havior K is that the two algebraic Riccati equations with the analogous ones derived in Section V-CA6andp =
yields that foruy € N, vprs € P2, andvpqps € PN
—AT"Ky — KyA— H'H — KyGGY Ky NL= with zar, zp, 2ar, p, the variables introduced in the state
- i i ] = K[7], there
L (O 4+ KnGDEVDDTY-HC 4 DGT KA — 0 (5) 'epresentations of these behaviors, and | [°].
(€7 + KnGDT (DD =0 (5) [P 4] = K[

AKp + Kp AT - GGY — KpHY'HKp

2 2
LB KpHT )TN B— JTHEp) =0 (6) TR e [ b s |

have symmetric solution& s = K1, andKp = K%, and that dt || »p X

. . - + - .
the m@flmal real symmetric solupdﬁj_\/ of (5) combined _Wlth = v — GTKN‘TN|%I—DT(DDT)*1D) + |Lyczar|?
the minimal real symmetric solutiol; of (6) should satisfy

K

— [Wpis + HEpzp[(_ s yr py-1my — |Lp2pl®

+dpnrs = (DDT)THC + DGT K0} pr

— [Lw b = ldpprs + (JT )7

There are actually fouk” matrices which may be obtained from (BY = JTHEp)x|5ry + [ Lpx|*. (7
combining the storage functions fav" and P+> that are all Inthe case under consideration, we hAje P L= + PN Ls =
four relevant in our development. One is alyderived from €=(R, Ri+1). The above equation shows how the right hand
storage functions obtained from algebraic Riccati inequalitie§qe can be made nonnegative, thereby achieviigiissipative

The second is the one obtained by substituting both the &i.pehaviok of €>(R, R***). Indeed, we should make sure
treme storage functions obtained from algebraic Riccati equfz;

tions. The third and fourth are obtained by substituting one ex-
treme storage function. We denote these four cases as

+
[KN I

}20.
I -Kjp

1) vpiy = 0, andzp = 0; this ensures that only/, the
Y-dissipative part ofV + P1=, is incorporated irk;

Ky I Kj\'/ I 2) L = 0;this is achieved by takingd s = Kj(/, yielding
A AR I
I —Kp I —Kp 3) dfpiw = —(JTI)THBY — JTHKp)x; this ensures
Kt [Kj\; I } K [KN I } that only a>.-dissipative part o> " A/= is incorporated
- I _KP - I —K; ) in K.

It goes without saying that there is also a dual construction. Note
Obviously, K < K+ < Kt, K < K_ < K*. The condition that also here, as was the case in the proof of the main result in
K > 0is necessary and sufficient for the existence of a coff3], one of the storage functions needs to be an extreme one,
trolled behavior’C. However, in order to construét, we need while the other is arbitrary. In the case at hand, this corresponds
Kt (or, in the dual casek_). The standard solutions of theto taking a solution of an algebraic Riccati equation combined
state spacé{..-problem work withK ™. with a solution of an algebraic Riccati inequality.
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The resulting controlled behaviditis obtained by combining ALy = —(JE* Y4BT — JTHKp)x,
the_se relations with the equations fgr+ P+ andP N A+L>. vk = (GTan + vy — DTd/Pm/\/J-E 7
This yields o
Hapn + Hop + Jdjpris)
_ /
N T Azy + Guy, Now introduce new state variables= zx + zp, z = 2x —
0 =Cxn + DV, I{j\—/l’?,?n’d the new variables = ..., d = GTzy +
d . [6 —AT _—HTH] _,[6 Uy = D7 dp iy = Co + Dd. Rewritten in terms of these
p M elea A K x new variables, the equations firbecome
CT  —HTJ[dpapss d B
+[—GDT B }Ll’;) M , dta:—Aa:—i—Bu—i—Gd, ve = (d, Hx + Ju),
! = —
_ y=Cz + Dd,
pewes = (TN THBY - JTHKR)x, d e o
v = (GE (K0 4+ x) + v — DTy e s 57 =A@ KLGGET )z = (C7 + KGGDT)
Hay +H(0 — Kpx) + Jdppis) «(DD"Y Yy - DG*z) — (H'J + K}B)u,
as a state-space representatioffoSpecializing (7) taC leads 7=+ Kf\L/KP)X,
to w=—(JTI) (BT — JTHKp)x,
2 d
ekt~ || 7 =06+ (A4 GG Kfar
dt X .
= |vhy — GTKNafN|2B+ +Bu+ GDY(DDT)™!
y y (I;D—T1(DDT)71D)T 2 ((y = DG"2) — (O + DGTK{)wp),
Fldpnes = (DD7)7(C + DG Kn)bp pr o= Kpy
Lpx|?. 8 ’
+| PX| ( ) dlpm/\[J—z :—(DDT)_I(Dd—DGT(Z—FKI/.IP)

The fact thatC as defined above satisfies the controller specifi-
cations follows from the proof of [23, Th. 5], since the construc-
tion of K given here for the state-space case is exactly the oneThe last three equations merely serve to defige ¢, and
used in the proof of [23, Th. 5] for the general case. Howevezt’m/\/LY and do not contribute to.. Hence, the controlled be-
for the case at hand, it is instructive to verify the satisfaction bfavior is given by the plant equations
the specifications directly. That satisfies\V' c K c P follows d

immediately from the construction &f. That/C is X-dissipative P Az + Bu 4+ Gd,
onR_ follows from the equality (8) combined with the nonnega- _

. - : 0 5 N v={(d, Hx + Ju),
tive definiteness of( ™. The inequality/”__(|d|*—|f|?)dt > 0
for all (d, f) € K of compact support, also yields external sta- y=Cz+Dd
bility. Proving thatm(X) = dim(d) is, as itis for [23, Th. 5] the combined with the control law
difficult part, especially in the case that™ > 0 is singular. We
will give a proof in the next sections, together with the specifi- - (It K{Kp)x =—(A" + KHGGT) (L, + K Kp)x
cation of the controller and a proof of internal stability. T 4T 1

—(C" + K;GDT)(DD™)

+ C(z —xp)).

E. Specification of the Controller (y— DG" (I, + K} Kp)x)
It is implied in [23, Th. 1], sinceV' ¢ X C P, thatX can — (HY'J + K} B)u,
be implemented by a controller acting on the variatflesy). w=—(JL)) (BT — J'HKp)x.

However, the equations fdt that we just derived fail to make

this apparent. In these equations, the controlled behaviorNste that wherl, + KK is singular, this is a singular-state
given asA added to a suitable sub-behavior Bfn A/-=. system. The manifest behavior of the equationginy, x) can
What we need to do, is rewrit€ as the manifest behavior ofbe viewed as a control law restrictifg, ) that, when acting
the variablegd, f) of P, interconnected with a control law on the plant, achieves the control specifications.

acting on the variable@:, ). Note thatX is given by These equations, while rather simple, still have two draw-
d backs. First, whed, + K/T/Kp is singular, they fail to make
o N T Az + Guly, apparent that the transfer function franto « of the controller

exists, or is proper. They do not even make apparentgthist
ar AT _HTH free in the controller. Second, the equations do not display the
LAV { T } {ZN } cherished observer-error-feedback structure commonly found in
dt | op | GG A P / Ho- and Ho-controllers.

G )

0 = Czp + Dvy,

-GDT B Al vin F. Error Feedback

AN g 0 In order to overcome these drawbacks, we rewrite the con-
o X troller equations using the following relation that is readily de-

zp
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duced from the algebraic Riccati equation foﬁ} and the alge- This equation shows th&t may be solved in terms gfandz; .

braic Riccati inequality fop: In order to express the solution conveniently, denote
—(AT 4+ K:GGTY (K + K1) P=(* - Kz'aDYy DD (¢ - DGTKZY)
— (K + K3')(A - GGTKY) Q=Kp'LpLpKp'.

+(Kx'B—-HY N(JT )N (BYK,' - JTH)
— (0T + KFaDTY(DDY) Y (C + DGTK})
— K L Lp K5t 9)

Define Ly c Rdim(ker(K}-{—K;l))xy, Fy e R, [, €
Rnxdim(ker([(i{,-{—K;I)), andFl c Rn >0 by

- : o . NY(P+Q)NLy =N"(CT - Kz'GD")(DD")™"  (11)
Substituting this relation into the controller equations, and I = NL (12)
definingz = —Kpy, yields - T

NY(P+Q)NL, =-NTQ, F =NL,. (13)
d —1y 4 -1 - 7
7 (KX + Kph)a = (K + Kp')(A% + Bu + Gd) Since im(NT(P + Q)N) contains bothim(NT(CT —
+(CT + KHGDTY(DDT )2 (y — §) K;'GDT)(DDT)! andim(N7Q), these equations may be
solved forLy, Iy, L;. Hence,N 2, is given in terms ofy and

—15T —1a4
- Kp'LpLpKy'a Ri, by
§=0C&+ Dd
d=-GTK;'s Niy = Fy(y — (C — DGYK5")R#,) + FiR#) + Na
w=(JT )Y BTKS - JTH)z.

with « some signal taking values ker( N (P + Q)N).

We now prove, using (9), that the varialkldoes not appear in
the equation for the controller, by showing that it is annihilated
both by the controller gain and by the differential equation that

We can also write these equations as

— (K% + Kphi = (K + K3')(Ai + Bu governs the evolution af; . To show thafJ? /)1 (BT K" —
dt . . o X JTH)Na = 0, pre- and postmultiply (9) b andN. Subse-
+Gd+GD(DD7)™ (y — §)) quently, use this equation again to show & + K5 )(A—
+(CT—K5*GDT)(DDT)! GGTK5; ) Na = 0.
(y—9) — Kx'LELpK3'#, It follows that is also represented by (1) combined with the
§=Ci+Dd controller
d=-GT"K,'¢ d
’ — RY(K% + K5')Ra
w=(JT))"YBTK;' — JTH)Z. (10) a1+ Kp R

= RT(K{ + K3')(A(R#, + Niy) + Bu+ Gd)

T T + T T\—1 ~
Note that this very attractive expression displays the controller +R(CT + KGGD™)(DDT) ™ (y — §)

both as an input/output system driven by the sensor outputs that — R"K;'LELp K5 (Ré + Niy),
returns the actuator inputs, and as an observer driven by error-Ngl;2 F(y—(C— DGTKgl)Rﬁ;l) + IR,
feedback, withj the estimate of the sensor output, ahthe — O(Ré1 + Ni») 1 Dd
estimate of the worst disturbance. f ’
d = -GTK5'(R# + Nio),
G. Properness of the Transfer Function of the Controller w=(JTI)THBYKL — JTH)(Ri1 + Nis)  (14)

We now address the issue of the properness of the transfer
function of the controller. In order to do this, we decompos‘é{'
the singular state system that specifies the controller initsr
ular and singular parts. Lek € Rrxdim(m(E{+K51) gng
N € Rrxdimker(K+K,) he matrices whose columns span®
im(K¥ + K5') andker(K 7 + K; )= (un(KN + K51,
respectively. Definety, &2 by 2 = [R N][“’l] Whence
if the columns of R and NV are orthonormaIRa:]L and Nz»
are the orthogonal projections #fonto im(Kj\; + K;l) a
ker(K3- + K3'). Pre-multiplying equation (10) for the con-
troller by N7 yields the following relation between &1, &

6 Rnxdim(im([&' —I—I(; ) and N c
nxdim(ker(KG+Kz") matrlces whose columns Spﬂﬁl(K+ +

Pl) and ker(K\ + K5 o= (im(K¥ + Ky Mt
spectively, and’, € R™**Y andF]L € R**" as defined above
These equations show that the transfer function of the
controller is indeed proper. The feed-through term is given
by (JTJ)~Y(BTK,' — JTH)NF;, while the strictly proper
part is given by the differential equation part of the above
expression. This differential equation is a regular one, since

RT( Kj\} + K;l) Re Rdim(ker(Kj.JrK,;l))xdixn(ker(lq.+1(,;1))

NT(CT - K5'GD")(DDY) : : .
o . is a nonsingular matrix.
(y = (C = DG" Kp*)(REy + Ni)) The above expression for the controller also makes it apparent
— NT"KG'LL Lp K5 (Réy + Niy) = 0. thatd is free ink.
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H. Internal Stability By regularity condition A.3), i.e., observability of the p&it —

In this section, we show that the controlled system obtaindd /)t H, (- J,(JTJ)AJT)H)’ this impliesz = 0.
by interconnecting the plant (1) with the controller (14) is inter € s€cond equation yields
nally stable, i.e., we prove that aiiy, ;) satisfying both (1) - TN T —— - .
and (14), satisfiegz(t), #,()) — 0 ast — oo, whend = 0. & (Kn + Kp )i = DH(DD7)™H(C + DG Knr)2 = 0.
For anyz; andy satisfying (14)i = Ri1+ Nio, With NZo = o . o _ R
Fy(y —(C - DGTKEI)Rﬁzl) + F1 Rz, andy are related by After mu_ItlpI|cat|on with D, it yields (D.GTFKPI B C)?j =0
(10). ObviouslyRT (K + K5')Ri: = RT(K; + K5*) Rity Now definez. = (K + K,')#. Combining the previous two
’ ! i i T Ty—1 T, —
so, to prove thatx(t), #1(t)) — 0 ast — oo, it suffices to equations, we obtaiff — D _(DD ) D)G . = 0. By com-
prove that(«(t), #(t)) — 0 ast — oc. b|r_1|ng the gontrollerequatlons (20) with (9), an_d using these re-
Note that the controlled system obtained by interconnectiff@fions derived fron{d/dt)V (x, &) = 0, we obtain, after some
(1) and (10) (withd = 0) is a singular state system with Staugalculatlons, that. satisfies the differential equation
(z, ). The following Lyapunov function argument that appliesd
to singular systems (see [22, Th. 4.3]), is the basis of the proef z. = (-AT - T (DDTY 1DGT
of internal stability. T Th_1 e
Lemma 8: Consider the singular state systéuydt)Ez = ~EnGU = DHDDT) " D)G ze.
Fz, whereE, I € R, Let P = PT ¢ R*" satisfyP > 0,
and define the Lyapunov functiovi(z) = |z|%. Assume that
Q = QT € R¥™, Q > 0, is such that for allz satisfying d . . .
(d/dt)Ez = Fz, we have 7 %o = (=47 = CH(DDT)T DG e
) (d/dt)V(z) = —|2[4); 0=(I - DT(DDT) ' D)G%x,.
i) (Qz=0)= (2 =0).

Then the system is asymptotically stable, i.e., all solutionsBy the regularity condition (A.2), which is equivalent to

Consequentlyz. satisfies

satisfyz(t) — 0 ast — oc. the observability of the paifA? — CT(DDT)"1DGT,
We now apply this lemma to the controlled system. Consider — DT(DD?)~1 D)G?T), we hence obtain. = 0.
the Lyapunov function We conclude that ifz, #) satisfy both the plantand controller

equations, and ifd/dt)V (z, ) = 0, thenz = 0, andz. = 0.

In order to complete the proof, we show that= 0, . = 0

impliesz = 0, 2 = 0. Recall thatR” (K + K5')Ra, =

ClearlyV (x, #) > 0forall («, &). A straightforward computa- R” z.. This shows that. = 0 impliesz; = 0. Also, ford = 0,

tion shows that for alz, #) satisfying the singular state equaVi, = Fy(Cz—(C— DGTK,")Ri1)+ Fy R#,. Thusz = 0,

tions (1), (10) we have 1 = 0impliesN s = 0 and hencé = 0. Now use lemma 8 to
conclude that the controlled system is indeed internally stable.

Viz, &)= —|x|§(;1 + e - jﬁ(tﬂ(;"

d
—Viz, & .
dt (z, ) |. Statement of the Results for State Representations

=—|Hz+ J(JT'J)"YBTK;' — JTH)3|? We collect our results on the state-spatg-control problem
—|GT"Kp ' —(GTKn—D"(DDT)"H(C + DG"Kx))  in the following theorem.
Az — 55)|%DDT)71_ Theorem 9: Consider the plant (1). Assume that the regu-
larity conditions A.1), A.2), and A.3) are satisfied. Then, the
Hence, along solutiongz, ) of the controlled system, the following statements are equivalent.
derivative of V(z, &) is a negative—semidefinite quadratic i) There exists a feedback controller (2) such that the con-

form. This yields condition i) of Lemma 8. trolled system is internally stable, and the closed loop
Now, turn to condition ii). Clearlyd/dt)V (z, 2) = 0, along transfer function7g., ; satisfies|Ga 7 ||#.. < 1.
solutions of the system described by the combined equations (1),ii) There exist real symmetric solutiod§, and K of the
(10) if and only if (z, &) satisfies the following two additional algebraic Riccati inequalities (3) and (4), satisfying the
equations: conditionsK s > 0, Kp < 0, andK > (—Kp)~ L.
iii) There exist real symmetric solutions of the algebraic Ric-
Hx + J(JT 7)Y (BTK;' - JTH)2 =0 cati equations (5) and (6), and the supremal real sym-
GTK3ti — (GT Ky — DT(DDT)™H(C + DGT K y)) metric solutionk ;> of (5) and the infimal real symmetric

solution K5 of (6) satisfy K, > 0, K, < 0, and
K > (—K3)
Premultiplying the first equation by’ vyields JY Hzx Assume that any .Of the;e conditions ho'd' l[éj} b_e the .
—(BTK' — JTH)3, s0, using (10 = —(JTJ)~LJT Ha, largest real symmetric solution of thg algeb.ra|c Riccati equa‘u_on
Using (17; and] = 0, yields (5_), an_d_ letKp l_:)e any real symm_etrlc solution of the algebraic

' ' Riccati inequality (4). Then a suitable feedback controller that
d satisfies i) is given by the singular state space representation

i (A=B(T ) VI H)e, (I=J(JTT) P JT)He = 0. (10).

(z—2)=0.
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Alternatively, a suitable feedback controller is given by the
regular state space representation (14). In these equakidss,
an injective matrix whose columns spang K\ + K1), N is
an injective matrix whose columns spdas(K}; + K,'), and
Iy € RV andf € R are given by (11)—(13). The dimen-
sion of the state space of this controller is equaLfmd{(Kj(/ +
(Kp)~).

J. Remarks

1) We first recapitulate the procedure followed in obtaining

2)

3)

AP+ PA+ PGGYP — (PB+HY HY(J* )~

AQ+ QAT + QHTHQ — (QCT + GDTY(DDT)™!

4)

the controller. Application of [23] leads to a representa-
tion of a controlled behavior that meets the design speci-
fications. By suitably rewriting the expression of the con-
trolled behavior, it achieves the structure of the plant in-
terconnected with a controller that has the sensor output

(5), andanyreal symmetric solution of the algebraic Ric-
cati inequality (4). This may be “dualized” into a con-
troller that uses any real symmetric solution of the al-
gebraic Riccati inequality (3), and the infimal solution
of the algebraic Riccati equation (6). Note also that the
formulas for the controller (10) simplify somewhat if we
use both the supremal real symmetric solution of (5) and
the infimal real symmetric solution of (6). In that case
the last term of the right-hand side of the formula for
(d/dt)(K}+K5")# in (10) is absent. The combined use
here of both the algebraic Riccati equation and the alge-
braic Riccati inequality is one of the two main differences
with our earlier paper [20]. The other difference is that in
[20], we treat only the so-called “standard” state-space
system structure.

y as its input, and the actuator inpus its output. This
controller is a singular state space system, and it is not

evident that it has a proper transfer function. However, ) ) )
by rewriting the controller, it may be de-singularized b In [23, Th. 5], we obtain the controlled behavior d|rectly..By.
introducing a feed-through term in order to obtain an e ._23, Th. 1], we are guaranteed that the controlled behavior is

pression that puts the properness of the controller transtgPlementable by a controller that acts on the control variables.
function into evidence. In the case thfd + K/J\’/K;) is However, in the classical view of control, a controller is always

nonsingular, this transfer is, in fact, strictly proper. Thiegarded as a feedback signal processor that accepts the sensor

controller obtained also has the structure of an obsen/@#tPuts of the plant as its own inputs, and that produces the

driven by error feedback. actuator inputs to the plant as its own outputs. It is important
It is worth emphasizing that here we solve thip be able to concluda priori when a controlled behavior is
H..-problem with nonstrict inequality specifications:implementable by a feedback processor. Some, less definitive,

|G sl < 1. 1tis this nonstrict inequality that leadsesults on this problem can be found in [21]. In this section, we
to the feeao-tﬁrough term in the controller. show how, by imposing certain restrictions on the input/output

We now demonstrate that our conditions for the existentf@nsfer functions of the plant and of the controlled behavior, we
of a controlled behaviok: that meets the specifications,c&" obtain such feedback implementability results. .

as given in Theorem 9, and the construction of the con- Ve refer to [23, Sec. IV.1 and VI.1] for a review of what is
troller, as given in the proof, specialize in the state spaf2€ant in a behavioral context by inputs, outputs, input/output
case to conditions involving a double algebraic RiccakEpresentations, f';lnd the ass'omategl transfer function. Assu'me
equation as in [1]. By pre- and postmultiplying (5) andhat the plant variables consist of disturbance and actuator in-
(6) by KX/I and k5! we obtain the following neces- puts, and .of to-be-controlled and sensor outputs (see F.|g. 5).
sary and sufficient conditions for the existence of a suill0re Precisely, assume that the to-be-controlled plant variables
able™..-controller: there exist real symmetric solution@'€ partitioned as = (d, f), with d (exogenous) disturbance

P and( of the “mixed sign” algebraic Riccati equationé”p”ts' andf (endogenous) to-be-controlled outputs, and that
the control variables are partitioned @as= (u, %), with « the

actuator inputs, ang the sensor outputs. Let the full plant be-
havior P, be represented by

dA\[f] _ . (d\[d
P(@) o] e (@) 1)
satisfyingP > 0, Q > 0, andQ~* > P.

Since we only require the closed loop transfer functiof"d assume that is square withlet(2°) 7 0. This assumption
to satisfy the nonstrict inequalityGy. ;|2 < 1, our on P implies that the variableg!, ) are indeed inputs, and that
conditions are somewhat weaker than those obtainedtii¢ variables f, v) are outputs, The matrix of rational functions
[1], where the strict inequalityi Gy, . f|l2. < 1 is re- G(d, w)(f,) :_P* Q is 'Fhe transfer function assoglated with
quired. Concretely, the strict inequali€! > P of [1] Prn.In the obvious partition suggested by the notation, we have
is weakened t@)—! > P, and the condition of [1] that
the matricesA — B(JTJ)="Y(BTP + JTH) + GGTP
andA — (QCT + GDTY(DDT)=*C + QH™ H should
have their eigenvalues in the open left half plane does not
show up in our result. In both theorems of this sectionG (4 .)—(s,,) IS a ma-
In our formulas for the controller, we need the suprem#ix of proper rational functions. Defin&x; ) .,

X )
real symmetric solution of the algebraic Riccati equatiofmscc, s—oo Ga, uy(s,»)(s). The matrix Go; )

VI. IMPLEMENTABILITY BY FEEDBACK CONTROLLERS

(B*P+JYH)+ H'H =0,

(CQ+DGY) +GGT =o.

G, wy(f,9) = |:Gd'—>y Gy
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RE+y)x(@+v) s called thefeed-through ternof the plant. Inthe  We remark, without going into details, that under the condi-
obvious partition again, we have tions of Theorem 10 and Corollary 11, in both cases the transfer
function of the controller is uniquely specified by the controlled
oo [GEy Galg behavior, equivalently, there isumiquecontrollable controller
(dyup=(fru) Gy, Gx.,l that implementdC. This follows from the fact that under the as-
sumptions of the theorem and the corollary, for a gives., s
The theorem that follows shows that if the transfer functiorthe equation (20) in the proof of theorem 10 is uniquely solvable
of the plant and the controlled behavior are both proper, afat C,,,,.
if certain surjectivity and injectivity conditions on the feed- Our second implementability result gives conditions on the
through term of the plant are met, then the following holds. Féged-through term of the plant such that if there existy
any implementable behavior, and any controller thatimplememisntroller that achieves a certaht,,-gain, then there exists a
that behavior we have: the controller is a feedback controllgtrictly properone that achieves aH..-gain that is arbitrarily
with a proper transfer function if and only if the implementablg|ose to the original one. Basically, the result is a behavioral
behavior itself already has a proper transfer function. restatement of a result that dates back to the earliest work on
Theorem 10:Assume that the full plant behavidfzs €  77_ control, see, e.g., [24], [2]. We include it here for the sake
LI+ has the input/output structure described in the pref completeness, but we omit the proof.

amble, with input(d, ) and output(f, y). Assume also that  Theorem 12:Assume that the full plant behavid,, €
the transfer function g, .y, ) associated wittPry has the - gate+uty has the input/output structure described in the

following properties: pre-amble of theorem 10, with input variabléd, ») and
i) G(a,uys(s,y) IS proper, output variableg f, %). Assume also that the transfer function
iy G2 is injective; G4, )1, ) @SSOCiated withPr has the following properties:
Iil\l/)) gg}y is sourjectwe; i) Ga,upe(s. ) iS PrOpET;
>, = 0. s 0
Let A € £91 be the hidden behavior, arfd € £3+* be the m')') ’gﬁr?éj;llGd(lfIIH < o0, OF

plant behavio_r a_ssociated wimuu_. Assu.me th_at the behavior iii) ”the behaviol{(u, f, y) € €=(R, R:++)|(y, 0, £,
K € £4+1 satisfiesV' ¢ K C P, i.e.,K is an implementable
behavior. LetC € £%7 be a controller that implements.
Then, the following statements are equivalent:
1) in K, d is input andf is output, and the transfer function
Kay fromdto f in X is proper.
2) inC, yis input andw is output, and the transfer function
Cyy fromy to w in C is proper.

The above theorem gives natural conditions under which
implementability by means of feedback control is a straight-
forward consequence of certain properness assumptions of the
transfer functions of the plant and of the controlled system. )
These assumptions are often implicit in many controlidfhen for ally > [[Kq.. s[l.., there is a controlle€ ¢
design questions. It shows that the behavioral idea of contrdfch that
while being formulated as a general interconnection, capturesl) in C, y is input, » is output, and the transfer function
feedback by simply imposing natural conditions on the plant  C,—.,, fromy tow in C is strictly proper,

y) € Pra} € £51%1Yis controllable, and is observ-
able from(d, u, ¥) in Prun.
Let AV € £3tT pe the hidden behavior, arfd € £+ the
plant behavior associated with,;. Assume that there exists
a behaviorkC € £4+* such that

iv) N C K C P,i.e, K is an implementable controlled
behavior;

V) in K, d is input andf is output;

vi) the transfer functiod(,. ; from d to f in K is proper
and has finiteH ,-norm.

guty

and the to-be-controlled system. 2) in K, the controlled behavior implemented By d is
input andf is output;
A. Feedback Implementability and Dissipativity 3) the transfer functionky, ., from d to f in K’ has

In the case of the synthesis of dissipative systems, the Heo-norm less thary: || K7, ¢lln.. <.
problem discussed in [23], we readily obtain the following The combination of Theorems 10 and 12 with [23, Th. 5]
useful corollary of Theorem 10. give methods for constructing a feedback controller with input
Corollary 11: Consider the full plant behavioP,u € ¥, outputy, and (strictly) proper transfer function, such that the
ga+t+u+y  Assume it has the input/output structure describédosed loop transfer function frodto f hasH..-norm less than
in the pre-amble of theorem 10, with input variables «) orequalto 1 (or, atleast, less thar- with € > 0 sufficiently
and output variablegf, %), and assume that conditions i) tosmall). First verify that the appropriate conditions of [23, Th. 5]
iv) of Theorem 10 are satisfied. L&t € £3+f andP € £3+f are met in the case of disturbance attenuation, i.e., with respect
be the hidden behavior and the plant behavior, respectively,the quadratic differential forrfjd||* — || f||*. If these condi-
associated with the plaf,y andX = diag(Zls, —I¢). If there tions are indeed satisfied, then there exists a controlled behavior
existsk € £21% such that\' ¢ K c P, K is E-dissipative on that achieveg{..-norm less than or equal to 1. This controlled
R_ andm(K) = d, then every controlle€ that implementd’ behaviorX’ may not be implementable by a controller that has
has the property that id, ¥ is input andu is output, and the the desired input/output structure of a feedback controller. How-
transfer functiorC,,.—.,, fromy to« in C is proper. ever, as shown in Corollary 11, if on the one hand conditions i) to
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iv) of Theorem 10 are satisfied, then theorem 10 guarantees thatVe ~ will now prove that |Ga/|lz. =

any controller that implemenf§ is in fact a feedback controller sup,cg |Ga— s (iw)| < 1. For this, let

with ¢ as input and: as output, and proper transfer function. If, d

on the other hand, conditions i) to flipf Theorem 12 are satis- d <$>

fied, then, for any > 0, there exists a feedback controller with [ } = l

y as input and: as output, and strictly proper transfer function <i>

that achieve${..-norm less thad + . An alternative to The- dt

orem 12 is taregularizethe system first, such that conditions ijoe an observable image representatiorKofThen we have

to iv) of Theorem 10 are satisfied. This can be achieved, for e&tu— s = ND~*. Also, for all latent variable trajectoriése D

ample, by replacing — (f, e'w), d — (d, &),y — y +&'d’, we haveff:’: |N(d/dt)¢)? dt — |D(d/dt)¢|* dt < 0. Taking

with ¢’ sufficiently small. Next, one can compute, using the=ourier transforms in the integrand, it follows from Parseval’'s

orem 10, a feedback controller with proper transfer function thédteorem thatV* (—iw) N (iw) — D*' (—iw)D(iw) < 0 for all

achievesH..-norm less thar + . w, whenceG_ ;(—iw)Gar s (iw) < I for all w. Together with
the fact thatP is Hurwitz, this yields|Gy— ;||».. < 1.

B. Implementability by Filters With a Proper Transfer Matrix iii) = i): In K, d is input andf is output, hencen(K) =

In Section IV we explained, in the context of the filtering!(@) = 0+(2). To prove thaf| G s+, < Land(d, f) &
problem, that if for the full plant behavioPsy there exists AND Imply.ffoo |d|? dt > [~ |f]? dt, write K in minimal i/o
a filter that implements a given estimation error behadior 'epresentation agl/dt)x = Az +Bd, f = CxTJFDd- Now use
then there also exists a filter which implemestsand hasy 22 Th-T6-4] to prove that2there exisls = K > 0 su20h that
as input andf as output. Hence, such filter acts as a signal pré?/dt)z’ Kz < |d* — [f|*. Integrating yields/___|d|* dt =
cessor fromy to f. We noted that there is reopriori reason for ffoo |7 dt.
the transfer function frony to f of this signal processor to be i) = ii): Let P(d/dt)f = Q(d/dt)d be a full row rank
proper. Now, we give conditions 0P, which guarantee that kernel representation éf. ThenP~1Q = Gq.y € Hoo. Since
this transfer matrix is proper. K is controllable, this implies thalP is Hurwitz. From this it

Assume that in the full plar®e, d is input andy and f are  followsthat(0, ) € Kimplies thatf(¢) goes to zero as— co.
output. Denote the transfer functions frafito (f, y) in Py 1€ inequalityl| fllc, @, re) < lldllz,r,re) for (d, ) € KN
by Gu.; andGy._.,, respectively. L, follows from sup,,cg |Gue s + (iw)| < 1 and Parseval’s

Theorem 13:Assume that in the plant is input andy and theorem. _

/ output, with the transfer function& .. ; andGy,_., proper. i) = iii): From the fact thai free and that0, f) € X im-
Assume further thaGs,, = lim,_o, Ga,(s), the feed- plies thatf(¢) goes to zero as— oo, it follows thatd is input,
through term ofG._.,, is surjective. Then the estimation erro@"d f output. LetP(d/dt)f = Q(d/dt)d be a full-row rank

behavior& of Theorem 6 (assuming it exists) can be implek€rnel representation fd€. Hence,P is squaredet(F) # 0,

mented by a filterF € £/7% such that inF, y is input and and 2 is Hurwitz. Finally, || fllz, r,re) < ldl|c,w re) for
7 output chg cont Y P al (d, f) € Kn £, and Parseval's theorem again yield
’ Y

ot the transfer function of thé{..-filter, is SUDpcr (Guy(i)| < 1. Combined with? Hurwitz, this
)/I(E'CIS||G'd._>f||7-(oo < 1.

Proof of Proposition 2: We first prove that i) implies the
existence of an input/output representation of the type claimed
Proof of Proposition 1:i) = iii): We first prove inii) and iii). Obviously, i) implies thakC is dissipative oriR_

that i) implies that the variableg must be free InK. withrespectt@s(v) = |e+f|*>—|e— f|?, andtham(K) = e =
Sincen(K) = o4(¥) = dim(d), there aredim(d) free . It hence follows from proposition 1 that admits a minimal
variables in K. Therefore, if d is not free, the behavior input/state/output representation of the fofiidt)z = Az +
§ = {f € €°(R,R")|(0, f) € K} contains free variables, B(c + f), ¢ — f = Cz + D(c+ f), with DT D < 1. We need
whence§ N D contains nonzero elements. However, Sificis  the following matrix lemma, stated here without proof.
d-dissipative,f € §ND implies||f||%2 < 0, a contradiction. Lemma 14:Llet M <€ R™2* and assume that
Note that, as a consequencekind is input andyf is output. dim(ker(M)) = n. Let P(d/dt)f = Q(d/dt)d

Let P(d/dt)f = Q(d/dt)d be a full row rank kernel repre- j = [Ov}wf 01« ] Assume thatz € ker(M) implies
sentation ofC. Then, sincelis input andy is output,Pis square ;7 7., > . Let M, denote theth column of M. Then there is a
anddet(P) # 0,andGa.-.. s, the transfer function from to f,  selection of linearly independent columni:, ¢z, .. ., cn}
equalsP~*@Q. We now prove thaP’ is Hurwitz. Letf be any el- of Af such that for alll < i < n, either;, or M; ..., but not
ement of the autonomous behavid(d/dt) f = 0. Then, since poth, belongs tqcy, ca, . .., cn}.
K'is controllable, there existsl, f) € K andt’ < 0 suchthat  Now apply this lemma to the matri{ — D I+ D]. The
(d, f)(#) = 0fort < ¢/, and(d, f)(t) = (0, f()) fort > 0.  equation(7 — D)e = Cz+(I+ D)f may hence be rewritten as
Now, consider for thigd, f), the integralf_TOO(|d|2 —[f1?)dt. y=C'z+D'u,withforalll < i < e = £, eithere;, or f;, but
Sincek is 2-dissipative orR_, thigintegral is nonnegative for not both, components af, and the others the components,of
all T € R. This implies thatf," | /|2 dt < cc. Consequently, It follows that without loss of generality, we may hence as-
all solutions ofP(d/dt) f = OsatisfnyJroo |f|?dt < oo. There- sume thate = v andy = f, for otherwise, reverse the roles
fore, P is Hurwitz. of ¢; and f; appropriately. We will make this assumption in the

»—)}"

VII. PROOFS



TRENTELMAN AND WILLEMS: SYNTHESIS OF DISSIPATIVE SYSTEMS USING QUADRATIC DIFFERENTIAL FORMS: PART Il 83

remainder of the proof. The state equationsfomay then be be a kernel representation Bf,;. Then

written as(d/dt)x = A’z + B'e, f = C'x + D'e.

N . o " d d

i) = iii): The existence of the required input/output partition Ry <%> d+ Ry <%> f=0 (16)
has already been proven. L&{d/dt)v = 0, i.e.,R.(d/dt)e = _ . .
Ry(d/dt)f be a full row rank kernel representation iof As- IS pbwously a kernel representation.®t. SinceN C &, there
sume, as in the pre-amble, that= « andy = f. Using ©Xists, by [23, Lemma 14], & € R***[¢] such that
the input/state/output representation/éfderived in the pre- d d d d
amble shows thaki, is square andet(R;) # 0 (and also that <§> Raq <§> d+F <@> By <§> e=0 (17
R, "R, is proper, but we do not need this). To prove positive re- ) i
alness, note that the transfer functi@s...; andGye 4 ppc_ ) is a kernel representation 6f We claim that
are related byG oy pyve—py = (I — G p)(L + Gorsp)™h d d\ d dy\
From here it follows that?...; is positive real if and only if r dt Ry dt f+F dt Ry )Y 0 (18

G et p)(e—plln.. < 1. The latter is a consequence of diSSii's a kernel representation of a filtér that implementst. To
pativity of  onR _ with respect td)s(v) = |e+ f|? —|e— f|?, P b i

) see this, eliminatg, f, andy from (15), (18), anct = f — f,
an'c_j. propo.smon L. . . . ) and show that (17) is the resulting equation goverr{iige).

i) = I): Use again the fact tha¥.... ; is positive real |f_and_ Pre-multiply (15) byF'(d/dt) and subtract (18) from it, to obtain
only if |Get fys(e—p llr.. < 1. Subsequently, use the Impll'equivalent equations (15), (17), and= f — f. Now, observe
ca_tlon '!!) = 1) (.)f proposition 1. . that sinced is free in (15), for any!, ¢ satisfying (17), there exist

i) = ii): The input/output partition has already been proverllf » such that (15) holds. Hence, (17) is the resulting equation
To showj'f;: el'fdt > 0forall (e, f) € KN Ly, use that gé)verning(d 0) ' '

) impli;as thatk i? dissipative orit With. respect ts(v) = Now assujme:. implementable, and, iff, d is input ande is

L(:r: éfe| b; |v(\3/tht£ |n ,aand d[:t)ropgsg?n L. ;nally,_nocts thmlr;ay output. Repeat the above argument, but now chéosech that
§/dt)e = A’z + Ble, fT_ T+ B¢ (17)is a minimal kernel representation&fi.e., [FRy FRy]

and tha; by [ZZ’TTh' 6.4], there exist§ = K™ > 0 such that has full row rank. Then (18) represents a filter that implements

(d/dt)z” Kz < " f. Now takee = 0, and deduce that, and, ¢ 1 ever, since iif, dis input anc: is output,F R is square

hence,f, are bounded oR.. .

ii) = i): Follows from [22, theorem 6.4 (in particulaf) and nonsingular. Consequently,Jf f is output andy is input.

interpreting that theorem as a statement abouttransferfunctioaﬁ Proof of Theorem 6:From [23, Prop. 3] and the main re-
Proof of Proposition 3:We have to prove thal’ — 0 t, [23, Th. 5], we deduce thai-dissipativity onR_ of A/ is

. . At . .
if and only if v is observable fronz. AssumeN = 0 and let equwilent o th..e existence éfe .2‘“"“ such that " C £, i
e Then 0y — n(€) = 4, and iii) £ is X-dissipative orR_. In turn, by Propo-
(v1, ¢, (2, €) € Prun. Then(vy —uy, 0) = (v1, ©)—(v2, ¢) € iy ¢ i) and iii) are equivalent to the conditions 2, 3, and 4
Prail, SOv1 — v2 € N. This impliesv; = wv», hence observ- . he Th
ability. Conversely, assume observable frome. Letv € N nthe Theorem statement.
: e ) ) Proof of Lemma 7:Denotel — QT (QQT)~1Q by S. If
Then(w, 0) € Pra. Since alsq0, 0) € Pga1, We conclude, by -
e Pri + Qs = 0, then
observabilityy = 0.
Proof of Theorem 4:Apply [23, Th. 3] with A" = 0. Ti| _ T1 0
Proof of Theorem 5:We give two proofs of the first part of 2| | —QT(QQT)" P, Sza |’
the theorem. The second proof also covers the second staterrAe&.nple calculation yields that for all sueh , > we have
of the theorem.
First Proof: This theorem is actually an immediate conses; Mx1 + 221 Nxo + x5 72
quence of [23, Th. 1]. Simply make the following identifications — 2T (M-NNT + (P-QNDT(QQT)Y 1 (P—QNT))x,
(the variables on the left are those appearing in [23, Th. 1], those NT o 2 19
on the right are those appearing in Theorem 5): w2+ N5 (19)
Assume now that for alt; andzx, such thatPz; + Qzo = 0,

v col(d, GA) we haver? Mz, + 227 Nxy + 2%z, > 0. Take an arbitrary,
¢ « col(y, f) and letz, be such thaf’r; +Qzy = 0andS(za+Ntz1) =0,
Pran — {col(d, ¢, y, f)lcol(d, e+ f, y) € Peun} equivalently
P — €°(RRY) x €°(R, RY) Q P
N <N [s}“:‘[sm}”’l'
C —F This equation is solvable for any given, since the image of
K «—E&. col(P, SNT) is contained in the image obl(Q, S). Applying

: . 19) to thisz; and ields
Second Proof:We also give a direct proof. That the con-( ) 151 z2 Y

ditions of are necessary for implementability is obvious. The] (M — NN +(P-QN)T(QQ")™H(P-QNT))z; > 0.

proof of sufficiency uses kernel representations. Let Sincez; is arbitrary, this proves the required nonnegativity of

d d d\ M — NNT + (P - QNTYT(QQT) (P — QNT). To prove
Hu <%> atFy <%> I+ Ry <@> v=0 (19 e converse, note that > 0. Hence the right-hand side of
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(19) is nonnegative for alt; andzs. As a consequence, the
left-hand side of (19) is nonnegative for all andx, satisfying
Pz, + Qxzo = 0. The remaining statement of the theorem i
immediate.
Proof of Theorem 10:Let K € £3** be an implementable

behavior, and le€ € £*17 be a controller that implements.

(1. = 2.) Assume ink, d is input andf is output, and the
transfer functionC,.—.  fromd to f in K is proper. This part of
the proof is divided into a number of steps.

1) Analyze the input/output structure &%y, and observe

that surjectivity ofGG32,,, and hence of#y..,,, implies
that(u, y) is free inPpy.

2) Definee1 = {(d, f, v, ¥) € Pran|(d, f) € K}. We
now analyze the input/output structure/@f,;;, and prove
that in e, dis input and( f, u, y) output. Sinced, w)

is input and(f, y) output in Py, it suffices to prove

that in K1, d is free, and that there are no additional

free components im. Sinced is in put in K, it is also
free inXCgy. By assumption ii)Ggon and, hencel7.,..
are injective. This implies that, wheh = 0, there are
indeed no free componentsiinn Ky, Since injectivity
of Gy implies that when! = 0, a free component in
is carried over tof.

3) Prove thap(C) = u. In order to see this, we revert to
the notatiorv = (d, f), ¢ = (u, y). There obviously
exists a minimal kernel representation 8, of the
form R(d/dt)v = M(d/dt)c, 0 = My(d/dt)c, with R

and M, polynomial matrices of full-row rank. Since, as

shown in step 1¢ is free, the termM(d/dt)c = 0 is
absent. LetC(d/dt)c = 0 be a minimal kernel repre-
sentation ofC. This yieldsR(d/dt)v = M(d/dt)c and
C(d/dt)c = 0. as minimal (full row rank) kernel rep-
resentations of the plant and the controller, respective

These equations combined form a minimal kernel repre-

sentation ofKC,;. Hencerow dim([R — M|) = £ +y,
androw dim([R—M])+row dim(C) = £4u+y. Itfol-
lows thatrow dim(C) = p(C) = u. Write the represen-
tation C(d/dt)c = 0 in terms of(u, y) asN(d/dt)y =
D(d/dt)u. Fromp(C) = u it follows that D is square.
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D~IN. It remains to be proven that,, .., is proper. In
order to do this, we first prove thdt— G, Cy—. iS
nonsingular. Let

_> q

P<d>y:Q<%>“+S<dt

be a minimal kernel representation of the behavior

S

d
dt

{(d, w, y) € €°(R, R"Y)[I f € €(R, R")
such thatd, f, u, ¥) € Pran}-

Obviously, since in this behavidi, «) is input, andy
output, P is square and invertible, and 1@ = G,.

Then
d d
w)y=Q<a>“+5<%)d

g
(2o (8)

d

dt dt

is a kernel representation of

d, u, y) € C(R, RT)|T f € T(R, RY)
such tha(d, I u, y) S Kfuu}.

{(

Since, by step 24 is input and(x, y) output in this
behavior, it follows that the polynomial matriky €]
is square and nonsingular. This is equivalent to the
nonsingularity of I — P7'QD~'N, which equals
I — GuyCyu.

6) Observe that the transfer functiéfy._. ; in K is given by

Kd|—>f = Gd»—>f + GquCyHu(I - G'tuCyHu)_lGdHy-
(20)

ly.  Now examine the feed-through terms and use surjectivity

of GgZ,, and injectivity of G737, . to conclude that
X = Cpu(d = GuayCyy)™t is proper. Finally,

sinceCy—, = (I + XGyuy) X and sinceG, ., is
strictly proper, this implies tha®',..,, is indeed proper.
(2. = 1.) The converse implication is immediate. This con-
cludes the proof of Theorem 10.

4) We want to prove thab is in fact nonsingular. For this, Proof of Corollary 11: SinceX satisfiesm(X’) = d and
we first prove thaty is free inKg,y. In order to see this, ||f||> < ||d||* forall (d, f) € KND, dis input andf output in
we first prove that the transfer functidfiy.., in e is K, and theC -norm of the transfer functiok 4,  fromd to f
proper. Indeedi(y . = Gy s+ Gu s Kau. Whence, is finite. In particular,K 4. s is proper. Now apply Theorem 10.
since K45, Ga.y and G,y are proper and’}ZOHf Proof of Theorem 13:Examine the transfer function
is injective, K4, is proper. The transfer function from Ga—. from d to e. Note that it equals?y.; — G, ;Gay.
d 10y in Kpay Kasy, €QUaISGaoy + Guey K. The H..-norm of Gy—.. is bounded (actually, by 1). Since
This transfer function is proper, and its feed-through terfda— s is proper, this implies tha¥, _ .Gq.., is proper. Since
equalsGy. . SinceGY,, is surjective, S0 iy, . This Gf;;y is surjective, this implies tlyﬁaﬂyH} is also proper, as
implies thaty is free in K. Next, we prove thap is  claimed.
nonsingular. Indeed, if not, there exists a polynomial row
vectorh # 0 such thab.D = 0. Since[D N] has full row VIIl. CONCLUSION
rank, N # 0. This implies that alys appearing irCrun In this second part, we have discussed several special cases
satisfy the differential equatiohN(d/dt)y = 0, which of the results obtained in the first part of this paper.
contradicts the fact thatis free inXCr,p. The first two special cases disturbance attenuation and passi-
5) We have now shown that @, y is input andw is output. vation. We have shown that the control synthesis question then

The transfer function’,,,, of C from y to « is equal to reduces, as expected, to &f1,-norm restriction or a positive
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realness condition on the transfer function of the controlled bitrve framework of models in terms of polynomial matrices (in
havior. many indeterminates) and QDFs makes perfect sense. And, of
We have also discussed two extreme situations: when tt@urse, there is also the question of how to cast robust control in
hidden behavior is zero, and when the plant behavior contathe framework QDFs, the generalization to nonlinear systems,
all trajectories. The first of these corresponds to what we céilx-versions, treating the case when the weighting functional is
fullinformation control. Itimplies that the to-be-controlled vari-a general two-variable polynomial matrix, etc.
ables are observable from the control variables. In the contexiThe combination of the two parts of this paper gives a rather
of the synthesis of dissipative systems, this leads to the restdmplete and self-contained theory of the synthesis a dissipative
that a controlled behavior that meets the specifications existsstems. We emphasize that our treatment was completely rep-
if and only the orthogonal complement of the plant behavisesentation independent. This was achieved by systematically
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